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ABSTRACT
Most chronic viruses evade T-cell and natural killer (NK) immunity through downregulation of immune surface
markers. Previously we showed that Pomalidomide (Pom) increases surface expression of major histocompat-
ibility complex class I (MHC-I) in Kaposi sarcoma-associated herpesvirus-infected latent and lytic cells and
restores ICAM-1 and B7-2 in latent cells. We explored the ability of Pom to increase immune surface marker
expression in cells infected by other chronic viruses, including human T-cell leukemia virus type-1 (HTLV-1),
Epstein-Barr virus (EBV), human papilloma virus (HPV), Merkel cell polyoma virus (MCV), and human immuno-
deficiency virus type-1 (HIV-1). Pom increased MHC-1, ICAM-1, and B7-2/CD86 in immortalized T-cell lines
productively infected with HTLV-1 and also significantly increased their susceptibility to NK cell-mediated
cytotoxicity. Pom enhancement of MHC-I and ICAM-1 in primary cells infected with HTLV-1 was abrogated by
knockout of HTLV-1 orf-1. Pom increased expression of ICAM-1, B7-2 and MHC class I polypeptide related
sequence A (MICA) surface expression in the EBV-infected Daudi cells and increased their T-cell activation and
susceptibility to NK cells. Moreover, Pom increased expression of certain of these surfacemarkers on Akata, Raji,
and EBV lymphoblastic cell lines. The increased expression of immune surface markers in these virus-infected
lines was generally associated with a decrease in IRF4 expression. By contrast, Pom treatment of HPV, MCV and
HIV-1 infected cells did not increase these immune surface markers. Pom and related drugs may be clinically
beneficial for the treatment of HTLV-1 and EBV-induced tumors by rendering infected cells more susceptible to
both innate and adaptive host immune responses.

ARTICLE HISTORY
Received 15 June 2018
Revised 17 October 2018
Accepted 4 November 2018

KEYWORDS
T cells; Natural killer (NK)
cells; epstein barr virus
(EBV); human
T lymphotropic virus type 1
(HTLV-1); pomalidomide;
major histocompatibility
complex class I (MHC-I);
ICAM-1; CD86; interferon
regulatory factor 4 (IRF4);
ikaros (IKZF1).

Introduction

Thalidomide (Thal), lenolidomide (Len) and pomalidomide
(Pom) are structurally related immunomodulatory drugs that are
effective in the treatment of multiple myeloma and certain other
diseases1. Our group previously demonstrated that Thal and to
a greater extent Pom have clinical activity in patients with Kaposi
sarcoma (KS),2,3 and Len has also been found to have activity in
KS.4-6 KS is caused by Kaposi sarcoma-associated herpesvirus
(KSHV), also called human herpesvirus-8 (HHV-8),
a gammaherpesvirus that is also the cause of several other diseases
including primary effusion lymphoma (PEL), and a form ofmulti-
centric Castleman disease (MCD). Pom and Len are approved for
the treatment of multiple myeloma, and Len is also approved for
treating mantle cell lymphoma and 5q myelodysplastic
syndrome.6,7 The principal target of these drugs is cereblon, an
E3 ubiquitin ligase that provides substrate specificity for certain
cullen-4 (CUL4) ubiquitin ligases.8,9 Many of the anti-tumor and
immunomodulatory effects of these drugs can be attributed to
increased degradation of Ikaros family zinc finger protein 1 and 3
transcription factors (IKZF-1 and IKZF-3), also called Ikaros and
Aiolos, respectively, and to downstream effects related in part to
the downregulation of interferon regulatory factor-4 (IRF4) and

c-Myc10,11 However, the activity of Len against 5qmyelodysplastic
syndrome as well as the activity of Pom against PEL can be at least
partially attributed to cereblon-mediated degradation of casein
kinase 1α.1 The anti-tumor effects of these drugs can be attributed
to their direct cytotoxic effects on tumor cells, and to enhanced
overall T-cell and natural killer (NK) cell-mediated immune
function.1,11,12

While the initial interest in testing these drugs in KS was
based on in vitro reports of the anti-angiogenic activity of
Thal,13 the mechanism(s) for the activity of these drugs
against KS is still unclear. In investigating potential mechan-
isms, we found that they prevented the KSHV-mediated
downregulation of surface immune recognition molecules on
KSHV-infected PEL lines,14 specifically downregulation of
major histocompatibility class-1 (MHC-I) during lytic infec-
tion, and downregulatioin of intracellular adhesion molecule-
1 (ICAM-1) and B7-2 (also known as CD86) during latent
infection. MHC-I is primarily involved in antigen presenta-
tion to and activation of CD8-positive cytotoxic T-cells, while
ICAM-1 and B7-2 are involved in the activation of both
T-cells and natural killer (NK) cells. ICAM-1 is primarily
a cell-adhesion molecule and helps increase T and NK cell
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activity either by increasing cell-cell adhesion or through
downstream signaling pathway resulting from its binding to
its receptor lymphocyte function-associated antigen-1 (LFA-
1).15-17 B7-2, one of the essential co-stimulatory molecules,
binds to its receptor, CD28, and enhances the TCR/CD3-
mediated activation of T-cells.18 B7-2 also increases NK activ-
ity through CD28-dependent as well as independent
signaling19-21 Essentially all human viruses that establish
chronic infections have evolved mechanisms to counteract
both innate and adaptive host responses, in part by decreasing
the expression of MHC-I and other cell surface molecules
involved in immune recognition (for reviews see22,23). In the
case of KSHV, escape from immune recognition is mediated
in part by K3 and K5, two viral lytic proteins. K3 and K5 are
ubiquitin ligases that destroy surface MHC-I, ICAM-1, B7-2
and a number of other surface markers including ICAM-1
and B7-2 through ubiquitination and degradation.24 K5 is also
expressed at low levels during latent infection25,26 making PEL
cells resistant to NK and T cell-mediated cytotoxicity.26 By
blocking the downregulation of MHC-I, ICAM-1, and B7-2,
Pom and Len could potentially thwart the ability of KSHV to
render the cells invisible to these immunologic control
mechanisms. A detailed analysis of the effects of Pom and
Len on surface immune markers revealed that Pom blocked
downregulation of MHC-I that was induced by transfected
K3, but not K5. Further studies identified several potential
contributing mechanisms for these effects in cells, including
a modest increase in HLA mRNA expression and decreased
upregulation of K3 in cells induced to lytic replication.14

To determine whether these effects were specific for KSHV
or could also be seen with other chronic viruses, we investi-
gated the effects of Pom on expression of these surface mar-
kers in cells infected by human T-cell leukemia virus type 1
(HTLV-1), Epstein Barr virus (EBV), human papillomavirus
(HPV), Merkel cell polyomavirus (MCV), and human immu-
nodeficiency virus (HIV-1). These viruses utilize a variety of
mechanisms to downregulate surface markers. Decreased
expression of MHC-I by HTLV-1 is mediated by open reading
frame-I (orf-I)-encoded p12 protein, which binds to MHC-I
in the endoplasmic reticulum and redirects it for
degradation.27 In addition, the p12 cleavage product p8,
which downregulates the T-cell receptor28, works in concert
with p12 to render infected cells invisible to immune
recognition.29 HTLV-1-encoded orf-I proteins also downre-
gulate ICAM-1 and ICAM-2 as well as ligands for NK cell
activating receptors, NCR and NKG2D30 and thus decrease
the susceptibility of HTLV-1 infected cells to NK cell-
mediated cytotoxicity.

EBV has also evolved multiple mechanisms to avoid
immune surveillance. The EBV-encoded lytic proteins
BILF1 and BDLF3 increase degradation of MHC-I.31,32

Also, the latently-expressed EBV membrane protein 2A
(LMP2A) can induce downregulation of MHC-I through
the sonic hedgehog pathway,33 and EBV downregulates sev-
eral surface markers in primary infected B-cells including
B7-2.34 Other viruses use different strategies. For example,
HPV E5 protein binds to MHC-I in the endoplasmic reticu-
lum and prevents its trafficking to the plasma membrane,35

and it has been reported that HPV E7 can inhibit MHC-I

transcription.23 There is evidence that MCV downregulates
MHC-I expression through multiple mechanisms involving
the small and large T-antigens.36 For HIV-1,the viral
encoded Nef protein downregulates MHC-I and other cellu-
lar proteins by routing them to the endosomal degradation
compartment37 and there is evidence that HIV-1 Vpu can
modulate MHC-II/CD74 expression by interacting with its
cytoplasmic tail.

With this background, we studied the changes induced
by Pom on MHC-I, ICAM-1 and B7-2 expression in cells
infected with the viruses listed above. In addition, we stu-
died the functional consequences of this Pom-induced
ICAM-1 and/or B7-2 upregulation on NK cell-mediated
cytotoxicity as well as T-cell activation. We focused on
Pom because it had the strongest activity of the three
drugs in vitro on KSHV-induced surface immune
expression14 and has shown substantial clinical activity
in KS.3

Results

Pomalidomide increases expression of immune surface
markers in certain HTLV-1-infected cell lines
We previously demonstrated that Pom prevented virus-
induced downregulation of MHC-I and restored expression
of the NK ligands and T-cell activation markers, B7-2 and
ICAM-1, in KSHV-infected PEL cells.14 Extending this work,
we sought to explore whether Pom has similar effects on cells
infected with other chronic viruses. We first treated the
HTLV-1-transformed CD4+ T-cell line, MT-2 which consti-
tutively produces HTLV-1,38 with 0.5, 1.0, and 10 µM Pom for
3 and 10 days. Cell viability (live cell number/total cell num-
ber) remained above 90% during this period (Fig. S1A and
S1B), although the number of live cells in Pom-treated cul-
tures was less than control cells, especially at higher doses
(maximum decrease approximately 62% with 10 µM Pom
after 10 days), indicating that Pom has some inhibition of
MT-2 cell growth (Fig. S1C and S1D). After 3 days of treat-
ment with 1 µM or 10 µM Pom, MT-2 cells on average
exhibited a 1.6 and 1.8 fold increase, respectively, in MHC-I
surface expression as assessed by flow cytometry (Figure 1A
and 1B). Pom was also found to increase both ICAM-1 and
B7-2 expression in MT-2 cells in a dose-dependent manner
(Figure 1A and 1B). ICAM-1 expression increased 1.6-fold
with 1 µM Pom (p < 0.05) and 1.8 fold with 10 µm Pom
(p = 0.056), respectively (Figure 1B) while B7-2 increased 1.5
fold (p < 0.01) and 1.7 fold (p < 0.05) with 1 and 10 µM Pom
(Figure 1B). MHC-I expression in MT-2 cells was also exam-
ined after 10 days of treatment with Pom and even greater
increases in MHC-I were observed, with increases of 1.7 and
3-fold (p < 0.05) for 1 and 10 µM Pom, respectively (Fig.
S2A-S2B).

Anadditional HTLV-1-producing cell line, C91PL,39 was
also examined. While Pom had little effect on MHC-I expres-
sion at day 3, the MHC-I surface expression increased 1.63-
fold over control (DMSO-treated) cells by day 10 (Fig. S3A
and S3B). We next examined TLOM1 cells, which are infected
with HTLV-1 but do not express Tax protein or produce
transmittable virus.40 Among the three HTLV-1 infected
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lines, TLOM1 cells routinely had the highest baseline median
fluorescence intensity (MFI) expression of MHC-I and
ICAM-1 (Figure 1C) and by contrast to MT-2 cells, exposure
of TLOM1 cells to Pom did not result in significant changes
in MHC-I, ICAM-1, or B7-2 expression (Figure 1C and 1D).
Also, MHC-I expression in TLOM1 cells remained unchanged
by Pom even after ten days of Pom treatment (Fig. S4A-B).

Downstream of its interaction with cereblon, Pom can
downregulate the transcriptional repressors IKZF1 and IKZF3
as well as IRF4 in certain cells.1,10 Treatment of MT-2 cells with
Pom decreased IKZF1 to undetectable levels and substantially
decreased IRF4 expression (20% of control levels) (Figure 2A).
The decrease in IKZF1 and IRF4 coincided with an increase in
cellular MHC-I expression (3.8-fold) as assessed by western blot
(Figure 2A). Interestingly, while Pom treatment also decreased
IKZF1 in TLOM1 cells to undetectable levels, it increased IRF4
levels in those cells Figure 2B). Also, by contrast with MT-2
cells, Pom caused a small decrease in cellular MHC-I expression
in TLOM1 cells (72% of control levels) (Figure 2B). Pom also
decreased IKZF1 expression in C91PL cells to undetectable
levels, but interestingly caused no change in IRF4 expression
(Fig. S3C). Pom also increased cellular MHC-I by 1.6-fold in
C91PL cells treated for 10 days as assessed by western blot (Fig.
S3D). Overall, these data suggest that Pom can increase MHC-I
surface expression in cells actively producing HTLV-1 virus
(MT-2 and C91PL) but not in at least one cell line (TLOM1)
that does not express Tax or actively produce HTLV-1.

Pomalidomide increases NK cell-mediated cytotoxicity of
MT-2 cells but not TLOM1 cells
Because B7-2 and ICAM-1 regulate NK cell activity, we next
sought to determine if the Pom-induced increases in B7-2 and

Figure 1. Pom increases MHC-I, ICAM-1 and B7-2 surface expression in HTLV-1 infected MT-2 cells but not in HTLV-1 infected TLOM1 cells. Indicated MT-2 cells (A,B)
or TLOM1 cells (C,D) were treated for 3 days and then analyzed for surface expression markers. (A,C) Shown are representative histograms of DMSO control (solid
black line) and 10 µM Pom treated (dashed line) MT-2 (A) or TLOM1 (C) cells for MHC-I, ICAM-1, and B7-2. Isotype controls are shown shaded in grey. (B,D). Fold
change in MHC-I, ICAM-1, and B7-2 for MT-2 cells (B) or TLOM1 cells (D) treated for three days with 0, 1 and 10 µM Pom. Shown are the averages ± the standard
deviations of 4 separate experiments for MT-2 cells and 3 separate experiments for TLOM1 cells. Asterisks indicate p values as follows compared to DMSO control: *
p < 0.05, **p < 0.01.

Figure 2. Effect of Pom on cellular IKZF1, IRF4 and MHC-I in MT-2 cells and
TLOM1 cells. Immunoblots for IKZF1, IRF4 and beta actin in MT-2 cells (A) or
TLOM1 cells (B) treated for 10 days with 10 µM Pom or DMSO control. Relative
protein levels for IRF4 and MHC-I were determined based on the loading
controls (beta-actin or tubulin) using the Licor system and the relative values
are shown below the images.
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ICAM-1 would result in increased NK cell-mediated cytotoxi-
city. MT-2 cells and TLOM1 cells were cultured with Pom or
DMSO control for 5 days and then NK cell-mediated cytotoxi-
city was assessed using YTS NK effector cells,41 which are
sensitive to B7-2 expression but, because they do not express
killer cell immunoglobulin like receptors (KIR)s, are not inhib-
ited by MHC-I.19,26 Essentially no NK cell-mediated cytotoxi-
city was observed against DMSO-exposed control MT-2 cells at
effector-to-target (E:T) cell ratios of up to 1:1 and only about
7% cytotoxicity was observed at an E:T ratio of 5:1 (Figure 3A).
By contrast, cells exposed to 1 µM Pom showed increased NK-
cell mediated toxicity up to a maximum of 19% as the effector-
to-target ratio was increased, and this increase was statistically
significant compared to DMSO treated cells at 1:1 and 5:1 E:T
ratios (Figure 3A). By contrast, Pom treatment of TLOM1 cells
did not lead to increased NK cell-mediated cytotoxicity at any
of the effector to target ratios used (Figure 3B). These data
provide evidence that Pom-induced increases in NK surface
markers result in increased susceptibility of the cells to NK cell-
mediated cytotoxicity.

Pomalidomide increases MHC-I and ICAM-1 in
HTLV-1-infected primary T-cells
We also sought to determine if Pom affected surface marker
expression in primary T-cells infected de novo with HTLV-1.
Previous studies have shown that the orf-I p12 protein of
HTLV-1 is in large part responsible for down-regulating
MHC-I and ICAM-1 expression in primary T-cells30 and ren-
ders HTLV-1 infected cells less susceptible to cytotoxic T-cells
and NK cell-mediated cytotoxicity.29,42 CD4+ primary T-cells
were infected with wild type (WT) HTLV-1 or an HTLV-1
with orf-I/p12 knocked out. Infection was verified by determin-
ing virus levels in the supernatant of established cells after
infection as previously described.43 Cells infected with WT
HTLV-1 had 4-fold lower MHC-I surface expression as com-
pared to cells infected with the orf-I knockout virus (MFI of
206 for WT as compared to 870 for orf-I knockout) (compare
solid line tracing in Figure 4A to solid line in Figure 4B).
Treatment of WT HTLV-1 infected T-cells with 1 µM Pom
led to a 2.67-fold increase in MHC-I expression (Figure 4A,
dashed line). However, Pom did not increase MHC-I expres-
sion in cells infected with HTLV-1 lacking orf-I (MFI of 722
with Pom and 870 without Pom) (Figure 4B, dashed line). We
also examined the effect of Pom on ICAM-1 expression in
these infected primary CD4+ cells. As with MHC-I, Pom
increased ICAM-1 expression in HTLV-1 productively infected
primary CD4 + T-cells by 2.7-fold (MFI increased from 9.04 to
24.4) (Figure 4A) but did not increase ICAM-1 in the HTLV-1
orf-I knockout-infected cells (MFI 6.67 in orf-I KO vs 6.19 in
WT cells) (Figure 4B). These data suggest that orf-I/p12 con-
tributes to MHC-I and ICAM-1 downregulation in primary
T-cells infected with HTLV-1 and that Pom interferes with
virus-induced downregulation of both these surface markers.

Pom upregulates surface markers in EBV-infected cell lines
We previously demonstrated that Pom could prevent MHC-I
downregulation during KSHV lytic replication and increase
MHC-I expression in JSC-1, a PEL cell line that is dually
infected with EBV and KSHV.14 To explore these effects in
EBV-infected cells that lack KSHV co-infection, we utilized the
EBV-infected Burkitt lymphoma lines Akata, Daudi, and Raji.
Treatment of unstimulated Akata cells with Pom at 1 µM or
10 µM had little effect on cell viability or live cell numbers (Fig.
S5A and B). (Figure 5A and B). However, four independent
experiments revealed that Pom at 1 µM and 10 µM significantly
increased MHC-I expression in Akata cells a mean of 1.6 and
1.8 fold, respectively, while having little effect (less than a 25%
change) on the other two markers (Figure 5A and B). Pom
treatment of Akata cells also led to a dramatic reduction in the
level of IKZF1 protein (Figure 5C) and variable effects on IRF4
levels (Figure 5D) although the basal level of IRF4 in Akata
cells was extremely low in these cells, consistent with previous
observations.44,45 Pom also increased cellular MHC-I expres-
sion up to 2.5-fold in a dose dependent fashion as determined
by western blot (Figure 5E).

EBV is known to further downregulate MHC-I expression
during lytic activation31,32 and so we assessed the effects of
Pom on MHC-I expression in Akata cells induced to lytic
replication with anti-human IgG (anti-IgG).46,47 We did not
detect a significant decrease of MHC-I surface expression as

Figure 3. Pom increases NK cell-mediated cytotoxicity against MT-2 HTLV-
1-producing cells but not of TLOM1 HTLV-1 nonproducing cells. MT-2 cells
(A) or TLOM1 cells (B) were treated with DMSO control or 1 µM Pom for
5 days and then assayed for NK cell-mediated cytotoxicity using YTS effector
cells with effector-to-target ratios ranging from 0.25:1 to 5:1. The data
represent the average of 3 independent experiments ± the standard devia-
tion. Asterisks indicate p values as follows compared with the DMSO control:
* p < 0.05, ** p < 0.01. In these experiments, expression of B7-2 increased
from 2.9–3.6 fold in MT-2 cells treated for 5 days with 1 µM Pom but was
not increased in TLOM-1 cells.
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assessed by flow cytometry analysis in anti-human IgG treated
cells (less than a 5% decrease in MHC-I) (Fig. S5C). However,
Pom treatment of anti-human IgG-treated cells at 10 µM
increased MHC-I surface expression 1.5-fold over that for
anti-human IgG alone (Fig. S5C). Anti-human IgG-
treatment of Akata cells also decreased MHC-I cellular pro-
tein approximately 25% by western blot (Fig. S5D, compare
lane 1 to lane 4), and this decrease was prevented with Pom
treatment, which resulted in substantial increases in MHC-I
(Fig. S5D, compare lane 4, 5 and 6). Cellular MHC-I levels
increased 6.3-fold in the presence of 10 µM Pom as compared
to uninduced cells and increased 8.4-fold as compared to the
anti-IgG-induced control cells based on western blot (Fig.
S5D). Induction of lytic replication by anti-human IgG in
these experiments was verified by assessing the lytic EBV
BMRF1 gene product by western blot (Fig. S5E, lanes 4–6).
Although Pom has been reported to induce EBV lytic replica-
tion in certain other EBV-infected cell lines such as B95.8 and
Daudi,48 we did not detect induction of lytic replication
(assessed by BMRF1 induction) in Akata cells by Pom in
these experiments (Fig. S5E, lanes 1–3), nor did it have

a substantial effect on the levels of BMRF1 lytic protein
induced by anti-human IgG (Fig S6E, lanes 4–6).

We also investigated the effect of Pom on the Daudi cell line.
Daudi cells do not express beta 2-microglobulin and thus do not
express surface MHC-I.49,50 They do, however, express B7-2 and
ICAM-1, and we explored the effect of Pom on these surface
proteins as well as expression of MICA, which can increase
recognition by both NK cells and CD8 + T-cells and is normally
decreased in EBV infected cells.34 Treatment of Daudi cells for
48 hours with 0.1, 1, and 10 µMPom led to an increase in ICAM-
1 expression of up to 1.5-fold and this was statistically significant
at 1 and 10 µM Pom (p < 0.01) (Figure 6A). Also, B7-2 expres-
sion increased as much as 2.1-fold and this was statistically
significant at 0.1, 1 and 10 µM Pom (p < 0.01) (Figure 6B).
MICA surface expression in Daudi cells was close to isotype
controls but significantly increased more than 20 fold with 1
and 10 µM Pom (P < 0.005 and < 0.05 respectively) (Figure 6C).
Cell viability was minimally decreased by Pom during the 2-day
culture period, although live cell number was almost 40% lower
as compared to DMSO- treated control cells (Fig. S6). We also
assessed the effect of Pom on IKZF1 and IRF-4 expression in

Figure 4. Pom increases MHC-I and ICAM-1 expression in WT HTLV-1 but not orf-I/P12 knockout HTLV-1-infected CD4+ primary T-cells. CD4+ primary T-cells infected
with WT HTLV-1 (A) or orf-I knockout HTLV-1 (B) were treated with DMSO control (solid black line) or 1 µM pomalidomide (dashed line) for four days. Cells were then
analyzed by flow cytometry for MHC-I (left panel) and ICAM-1 (right panel) expression. The isotype control is shown shaded in grey. Shown are representative results
from two separate experiments for WT infected cells but only one experiment for orf-I knockout-cells due to limitation of available cells.
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Daudi cells. Pom at 1 and 10 µM dramatically decreased IKZF1
(Figure 6D). Consistent with previous reports,51 IRF4 levels were
very low in these cells, and Pom appeared to decrease these levels
further (Figure 6D).

The effects of Pom on EBV-infected Raji cells was also
studied. Raji cells treated with Pom at 1 and 10 µM for two
days showed a non-significant trend for slightly increased
MHC-I, while B7-2 increased 1.6-fold and 1.7-fold for 1 and
10 µM Pom, respectively (p < 0.05) (Figure7A to D). Similar
to Akata and Daudi cells, Pom reduced IKZF1 expression in
Raji cells (Figure 7E). However, unlike the other lines, Pom at
10 µM did not cause a complete loss of IKZF1 in Raji cells
(69% reduction at 10 µM) (Figure 7E), and it had essentially
no effect on cellular MHC-I (Figure 7E). As reported
previously,51 IRF4 levels were very low in these cells and,
unlike most other lines tested, Pom treatment did not
decrease IRF4 levels (Figure 7E).

We next studied the effect of Pom on MHC-I, B7-2,
MICA/B, and ULBP4 surface expression in lymphoblastoid
cell lines (LCLs) established by infecting primary B-cells with
EBV; these immune markers are known to be decreased by
EBV infection.34 LCLs from four different donors were treated
with 0.3, 1, or 3 µM Pom for three days and then analyzed for
surface marker expression. Although there was a tendency for
increased MHC-I expression with Pom in two independent
experiments, the MHC-I expression was already relatively
high in all four LCL clones (Fig. S7A). However, Pom led to
1.25–1.5 fold increase in B7-2 and MICA/B in all four

different clones in two independent experiments (Fig. S7B
and S7C). By contrast, changes in ULBP4 were not consistent
among the different clones and overall there was a tendency
for decreased expression in the presence of Pom (Fig. S7D).

Pomalidomide increases NK cell-mediated cytotoxicity of
Daudi cells but not Raji cells
We next assessed Pom’s effect on the cell-mediated cytotoxi-
city of YTS NK cells against Daudi and Raji cells. Daudi and
Raji cells were treated with DMSO control or Pom at 1 or
10 µM for two days and then the ability of YTS NK cells to kill
these cells was assayed. Treatment of Daudi cells with 1 µM
Pom led to an increase in YTS cell-mediated cytotoxicity, and
this further increased with 10 µM Pom (Figure 8A). The
increase in cell death was significant (p < 0.05) for 1 and
10 µM Pom at the 5:1 effector to target ratio. However, Pom
at 1 or 10 µM did not lead to increased NK cell-mediated
cytotoxicity of Raji cells (Figure 8B).

Pomalidomide increases T-cell activation by EBV-infected
cells
In addition to activating NK cells, ICAM-1 and B7-2 also
bind to their receptors LFA-1 and CD28, respectively on
T-cells and can provide important co-stimulatory signals
for T-cell activation. Therefore, we wanted to test whether
increases in surface expression of these markers by Pom
resulted in enhanced T-cell activation. To perform T-cell
activation assays, we utilized a Jurkat T-cell line that

Figure 5. Pom increases MHC-I surface expression in EBV-infected akata cells but does not increase ICAM-1 or B7-2 expression. Akata cells were treated for 2 days
with DMSO control, 1 µM Pom or 10 µM Pom. (A) Representative histograms of each surface marker for DMSO control (solid line), 1 µM Pom (dashed line) or 10 µM
Pom (dotted line) treated cells. The isotype controls are shown shaded in grey. (B) The fold change in MHC-I, ICAM-1, and B7-2 in Akata cells treated for three days
with 0, 1 and 10 µM Pom. Shown are the averages ± standard deviations of 4 separate experiments for MHC-I, (only 3 experiments at 10 µM) and 3 separate
experiments for ICAM-1 and B7-2. Asterisks indicate p values as follows compared to DMSO control: * p < 0.05, ** p < 0.01. (C,D) Nuclear extracts were prepared
2 days after treatment and analyzed for IKZF1 (C) and IRF4 (D) by immunoblot. β-actin was measured as a loading control. (E) Immunoblot for MHC-I with tubulin as
a loading control from cytoplasmic extracts from Akata cells treated for 2 days with 0, 0.1, 1.0 and 10 µM Pom. In C, D and E, the relative levels of IKZF1, IRF4, and
MHC-I are indicated under the blots and are relative to the DMSO treated controls using the Licor system.
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expresses luciferase under the control of an IL-2 promoter.
These cells can be stimulated independent of MHC-
mediated antigen-presentation using anti-CD3 antibody,
and this stimulation is enhanced in the presence of addi-
tional CD28 co-stimulation by B7-1 or B7-2 cellular
ligands. Daudi and Raji cells were treated with Pom for
two days and then co-incubated with the anti-CD3

antibody-stimulated Jurkat T-cells for 6 hours. Both Daudi
and Raji control cells activated T-cells more than just anti-
CD3 antibody alone (Figure 9A and 9B). Additionally,
Daudi cells treated with 1 µM Pom increased T-cell activa-
tion by more than 2 fold over DMSO-treated control cells
and this increased to almost 3 fold in the presence of
10 µM Pom (Figure 9A). Pom treatment also significantly

Figure 6. Pom increases ICAM-1, B7-2, and MICA expression in EBV-infected Daudi cells. Daudi cells were treated for two days with DMSO control or Pom (0, 0.1 1, or
10 µM). Shown are representative histograms of each surface marker for (A) ICAM-1, (B) B7-2, and (C) MICA for cells treated with DMSO (solid line) or 1 µM Pom
(dashed line). The isotype control is shown in grey. The average fold changes for these markers are shown in the bar graphs to the right. Shown on the graphs are
the averages ± standard deviation from five independent experiments for ICAM-1 and B7-2, and three independent experiments for MICA. Asterisks indicate p values
as follows compared to DMSO control: *p < 0.05, **p < 0.01, and ***p < 0.005. (D) Levels of IKZF1 and IRF4 in the nuclear extracts of cells treated for 2 days. β-Actin
was measured as a loading control. The levels of IKZF1 and IRF4 relative to DMSO control are indicated under the blots and are relative to the DMSO treated control.
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increased T-cell activation by Raji cells, although the extent
of activation was less than that observed for Daudi cells
(Figure 9B). The increased activation by Daudi cells as
compared to Raji cells correlates well with the extent to
which Pom upregulates B7-2 in these two cell lines. This
data suggests that the Pom-induced increases in B7-2 may
lead to increased T-cells activation by increasing the CD28
costimulatory signaling pathway.

Pomalidomide does not increase MHC-I, ICAM-1, or B7-2 in
HPV, HIV-1, and MCV-infected cell
Human papillomaviruses downregulate MHC-I surface expres-
sion largely through the effect of E5 and E6 proteins.52,53 We
tested the effect of 1 and 10 µM Pom in the HPV-infected
cervical carcinoma cell line CaSki and observed that they did
not increase the expression of MHC-I (Fig. S8A) or ICAM-1
(Fig. S8B). B7-2 was not expressed in these cells over isotype

Figure 7. Effect of Pom on MHC-I, ICAM-1, and B7-2 surface expression in raji cells. (A-C) Raji cells were treated for two days with DMSO control or Pom (0, 1, or
10 µM). A representative surface expression histogram for (A) MHC-I, (B) ICAM-1, and (C) B7-2 is shown for DMSO (solid line), 1 µM Pom (dashed line), and 10 µM Pom
(dotted line). The isotype control is shown in grey. (D) The average fold change in MHC-I, ICAM-1 and B7-2 expression. The data represents the averages ± standard
deviations from three independent experiments. The asterisk indicates p < 0.05. (E) Nuclear and cytoplasmic extracts were prepared 2 days after treatment and
analyzed for MHC-I (cytoplasmic) and IKZF1 and IRF4 (nuclear) expression. β-Actin was measured as a loading control. The levels of MHC-I, IKZF1 and IRF4 relative to
the DMSO-treated control are indicated under the blots. Note the viability of Raji cells remained > 95% for all treatments.
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controls and Pom did not induce expression of B7-2 (Fig. S8C).
The effect of Pom on the expression of MHC-I, IKZF-1, and
IRF4 was also evaluated by western blot. MHC-I cellular pro-
tein levels were essentially unchanged (Fig. S8D) and neither
IKZF-1 nor IRF4 protein were detected with or without Pom in
nuclear or cytoplasmic extracts (Fig. S8E). Also, Pom only
marginally decreased cell viability and live cell number in
CaSki cells over this time period (Fig. S8F and S8G).

MHC-I surface expression is decreased in HIV-1-infected
cells, and there is evidence that this is mediated by HIV-1 Nef
and Vpu.54,55 The effect of Pom on MHC-I surface expression
was examined in MOLT4 cells infected with HIV-1IIIB
(MOLT4/IIIB). These cells had moderate MHC-I expression,
which was not increased by treatment of these cells with Pom
at 1 or 10 µM over a ten-day period (Fig. S9A). ICAM-1 and
B7-2 surface expression was essentially undetectable in DMSO

treated MOLT4/IIIB cells and these markers were also essen-
tially unchanged by treatment with Pom (Fig. S9A). Recently
it was shown that MCV-infected Merkel cell carcinoma
(MCC) lines have downregulated MHC-I expression.36 We
tested the effect of 1 and 10 µM Pom treatment for 3 days
on MHC-I, ICAM-1, and B7-2 expression in MCV-infected
WaGa and MCC13 cells. However, Pom treatment did not
lead to significant effects on these surface markers as assessed
by flow cytometry analysis (Fig. S9B and S9C).

Discussion

While investigating possible mechanisms for the activity of Thal,
Len, and Pom in patients with KS,2-4,56,57 we found that these
drugs increase the surface expression of MHC-I in PEL cell lines
latently and lytically infected with KSHV and also restore the NK
cell and T-cell co-stimulatory ligands, ICAM-1 and B7-2, in cells
latently infectedwith KSHV.14 Of the three drugs, Pomwasmost
active. Here we extend these studies and show that Pom can also
increases MHC-I, ICAM-1, and/or B7-2 surface expression in
HTLV-1 and EBV infected cell lines (Table 1). We further report
that Pom increases immune surface marker expression in
HTLV-1-infected primary CD4+ T-cells and EBV infected
LCLs. In addition, we demonstrate that the Pom-induced
increases in NK cell and T-cell-activating ligands are associated
with increased NK cell-mediated cytotoxicity of HTLV-
1-infected and EBV-infected cells as well as increased T-cell
activation by EBV-infected cells. By contrast, Pom had little or
no effect on these immune surfacemarkers in the HPV,MCV, or
HIV-1-infected cell lines that we tested (Table 1).

In these experiments, Pom pretreatment of EBV-infected
Daudi cells resulted in increased ICAM-1, B7-2 and MICA
expression as well as increased T-cell activation and increased
cell-mediated cytotoxicity to YTS NK cells. By contrast, Pom
pretreatment of EBV infected Raji cells led to minimal increases
in ICAM-1 and B7-2, and lesser increases in T-cell activation
and no increase in NK cell-mediated cytotoxicity. The difference
in YTS NK toxicity between the two lines can not simply be
attributed to the lack of expression of MHC-I on Daudi cells
because YTSNK cells lack KIRs needed to recognizeMHC-I and
downregulate NK activity41. Additional experiments will be
needed to understand the variability between different cell lines.

MHC-I plays an important role in T cell cytotoxicity, and
ICAM-1 and B7-2 provide activation signals to NK cells as well
as provide important co-stimulatory signals for T-cell-
activation. Viruses have evolved mechanisms to simultaneously
suppress MHC-I, ICAM-1, and B7-2, thus rendering infected
cells relatively invisible to both cytotoxic T-cells and NK cells.
By simultaneously increasing all three of these markers, Pom
can potentially render virus-infected tumor cells more suscep-
tible to attack by the immune system. MHC-I expression it is
required for the T-cell-mediated cytotoxicity of cells expressing
foreign antigens, yet MHC-I is generally inhibitory to NK cell-
mediated cytotoxicity. This said, NK cell killing of cells can
occur even in the presence of normal MHC-I expression,
especially when activating receptors in the NK cells are engaged
by their activating ligands.58,59 Also, there is evidence that NK
killing of cells infected by another herpesvirus, cytomegalo-
virus, is not inhibited by MHC-1 expression on the target

Figure 8. Pom increases NK cell-mediated cytotoxicity against Daudi cells but
not raji cells. Daudi cells (A) or Raji cells (B) were treated with DMSO control,
1 µM Pom or 10 µM Pom for 2 days and then assayed for NK cell-mediated
cytotoxicity with YTS effector cells using effector-to-target ratios of 0.25:1 to 5:1.
Shown are the average results ± standard deviation from 3 independent
experiments for each cell line. The asterisk indicates p < 0.05 compared with
DMSO control.
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cells.59 Moreover, tumor cells with upregulated MHC-I can still
respond to IRF-1-induced NK cell-dependent elimination.60

The importance of NK cells in controlling EBV tumorigenesis
has also been demonstrated by others who have shown that
depletion of human NK cells promotes EBV-associated
tumorigenesis.61

Our previous studies suggested that the main effects of
these drugs on immune surface markers does not result
from their interacting with KSHV viral proteins but more
likely is an indirect effect of their alteration on host cell
pathways. This conclusion is bolstered by the finding in the
present study that Pom also increases MHC-I, ICAM-1, and
B7-2 in EBV- and HTLV-1-infected cells. Although the cur-
rent study was not specifically undertaken to explore in detail
the mechanism(s) by which Pom affects surface marker
expression, our results do provide some potential clues. The
finding that cellular levels of MHC-I as assessed by western

blot were enhanced by Pom, in addition to its surface expres-
sion, suggests that Pom does not simply enhance transport of
existing protein to the surface but rather may involve
enhanced production and/or interference with a common
degradation pathway. This said, it is unclear why we did not
see increased expression in cells infected with HIV, HPV, or
MCV. It is noteworthy that upregulation of surface markers
by Pom was most obvious in cells with low levels of basal
expression of these markers. It is possible that changes in the
balance between production and degradation only results in
increased surface expression in those cases where viral infec-
tion has reduced surface expression by shifting the balance
towards degradation.

With regard to the results seen with HTLV-1, Tax
enhances MHC-I production30 while the orf-I gene products
p8/p12 can override this effect by interacting with MHC-I and
ICAM-1 in the endoplasmic reticulum and redirecting them

Figure 9. Pom increases T-cell activation by Daudi and raji cells. Daudi (A) or Raji (B) cells were treated with 0, 1, or 10 µM Pom for 2 days and co-incubated with
Jurkat IL-2 reporter T-cells in the presence of various concentrations of anti-CD3 antibody. Luminescence, a measure of T cell activation, was measured after 6 hours.
This experiment was performed three times. Data from one representative experiment for each cell line is shown in the left panel. The activation is expressed as
relative luminescence unit (RLU) and plotted as a 4PL regression graph and the error bars represent standard deviations from technical replicates. Right panel shows
average fold changes in T-cell activation by 1 and 10 µM Pom-treated Daudi cells (A) or Raji cells (B) relative to DMSO control in the presence of 0.16µM anti-CD3
antibody. Error bars represent standard deviations from three independent experiments. *p < 0.05, ***p < 0.005.
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for degradation.30,62,63 Therefore, Pom could enhance basal
production of these markers, potentiate the enhancing effect
of Tax on ICAM-1 and MHC-I expression, or inhibit their
degradation by p8/p12. Our data do not permit differentiating
between these possible mechanisms. On the one hand, Pom
had little or no effect in TLOM1 cells, which do not produce
HTLV-1 and also do not express Tax. On the other hand, we
observed that Pom could upregulate MHC-I and ICAM-1 in
CD4+ primary T-cells infected with a WT HTLV-1 virus but
not the HTLV-I orf-I knockout virus. While it is possible that
Pom somehow interferes with the activity of p12, it is more
likely that Pom’s effects are only revealed when the surface
markers are relatively suppressed by virus.

One of the principal results of the binding of Pom to
cereblon is increased destruction of the transcription factors
IKZF3 and IKZF1 and decreases in IRF4 expression.10,11

A recent study suggests that the effects of Pom on IRF4 can
occur by a novel mechnaism unrelated to its effects on IKZF3,
IKZF1, or CK1α.64 Cell lines in which Pom induced increases
in MHC-I often had Pom-induced decreases in IRF4 expres-
sion (Table 1). However, we also saw increases in surface
markers in cells such as Akata and Daudi that produce little
to no IRF4, so the role of IRF4, if any, remains unclear. We
also considered a more direct mechanism involving IKZF1
downregulation; however, our data revealed that in some
cases loss of IKZF1 expression occurred in the absence of
upregulation of immune surface markers. For example,
TLOM1 cells treated with Pom had complete loss of IKZF1
protein expression, yet there were no increases in any of the
surface markers. Interferon gamma (IFN-γ) can upregulate
MHC-I, and in certain cells, Pom can lead to increased IFN-
γ.65 However, B cells generally do not produce IFN-γ, and we,
and others,66 also previously failed to detect IFN-γ in PEL
lines exposed to Pom.14 The related immunomodulatory drug,
CC-122, has been reported to increase transcription of certain
IFN-stimulated genes by an unclear mechanism independent
of increases in IFN-α, IFN-β, or IFN-γ, and it is possible that

a similar effect is occurring here.67 Additional studies will be
required to sort out the precise mechanisms most responsible
for the changes observed and to explain the variation among
cell lines and viruses.

The results reported in this study may have clinical utility.
The increase in ICAM-1 and B7-2 expression by virus-infected
tumor cells can potentially enhance the anti-tumor effects
mediated by the broad Pom-induced upregulation of NK cell
function. Also, the effects of Pom on MHC-I expression may be
useful in combination with checkpoint inhibitor therapy. In
recent years, checkpoint inhibition using antibodies directed at
programmed cell death protein-1 (PD-1), PD-1 ligand (PD-L1),
or cytotoxic T lymphocyte-associated antigen (CTLA-4) have
been found to be active against a number of tumors by removing
constraints in cytotoxic T-cells.68-71 Checkpoint inhibition ther-
apy requires epitopes in the target cells that can be recognized by
T-cells and have been shown to be especially effective against
tumors with multiple mutations.72 This therapy can also be
useful in virus-associated tumors as the viruses provide foreign
antigens and antibodies directed at anti-PD-1 or anti-PD-L1
have been shown to be effective against Merkel cell
carcinoma73 and Kaposi sarcoma.74 However, potent viral-
mediated mechanisms that downregulate expression of MHC-I
can potentially reduce the effectiveness of these approaches for
viral-associated tumors. By preventing virus-induced downre-
gulation of surface markers, Pom can potentially render tumors
caused by KSHV, HTLV-1, and EBV more visible to cytotoxic
T-cells and thus susceptible to immunotherapy, especially when
combined with the overall immune activation induced by Pom
and related drugs. A potential advantage of Pom-mediated
upregulation of surface proteins is that it is occurring in the
virus-infected tumor cells and thus may be less likely to lead to
some of the autoimmune toxicities observed with checkpoint
inhibitors. Thus, the results here suggest that Pom may have at
least three mechanisms of action in certain tumors: a direct
cytostatic effect, general immunostimulation, and an upregula-
tion of immune surface markers. The results here thus provide

Table 1. Effect of Pomalidomide on immune surface markers in virus infected cells*.

Surface Expression Cellular Expression

Virus Cell Line MHC-I ICAM-1 B7-2/CD86 MHC-I IKZF1 IRF4

KSHV BCBL-1 ↑ ↑↑↑ ↑↑↑ ↑ ↓↓↓ ↓↓

BC-3 ↑ ↑ ↑↑ ↑ ↓↓↓ ↓↓↓

KSHV/EBV JSC-1 ↑↑ ↑↑↑ ↑↑↑ ↑↑ ↓↓↓ ↓↓

EBV Daudi NA ↑↑ ↑↑↑ NA ↓↓↓ ↓↓**
Akata ↑↑ ↑ ↓ ↑↑↑ ↓↓↓ ↓*
Raji ↑ ↑ ↑↑ - ↓↓ ↑**

HTLV-1 MT-2 ↑↑ ↑↑ ↑↑ ↑↑↑ ↓↓↓ ↓↓

TLOM-1 - ↑ - ↓ ↓↓↓ ↑↑↑

HPV CaSki - - undetected - undetected undetected
HIV-1 MOLT4/IIB - - undetected - ↓↓↓ undetected
MCV WaGa ↑ undetected - - undetected undetected

MCC13 - - undetected ↑↑↑ ↓↓↓ undetected
Code: Upregulation Downregulation
↑ ≧1.2≦1.5 ↓ <0.8≧0.5
↑↑ >1.5≦2.0 ↓↓ <0.5≧0.2
↑↑↑ >2.0 ↓↓↓ <0.2
- no change - no change

*Shown are surface expression levels (measured by FACS) with 10 µM Pom after 2 days (EBV, KSHV), 3 days (HTLV-1 and MCV), and 10 days (HPV and HIV-1). Cellular
expression levels (measured by western blot) with Pom at 10 µM for 2 days (EBV, KSHV), 3 days (MCV), and 10 days (HTLV-1, HIV, HPV).

* *These lines are known to have very low or no expression of IRF-4
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a rationale for the study of Pom or related drugs in tumors
caused by these viruses. In addition to KS, there are preliminary
results showing that Len has activity in acute T-cell leukemia/
lymphoma caused by HTLV-1.75 Finally, the results suggest that
Pom could be useful in virus-induced tumors in combination
with checkpoint inhibitors, which can enhance the T-cell
response to tumor cells expressing foreign antigens.

Materials and methods

Cells and cell culture
HTLV-1 infected cell lines MT-2,38 C91PL, and TLOM1 were
obtained as previously described.40,42,76 EBV cell lines Raji
(#CCL-86) and Akata, and the HPV infected line CaSki were
obtained from the American Type Culture Collection (ATCC,
Manassas, VA). HIV-1-infected cells MOLT4/HIV-1IIIB were
generated as described previously77. The Merkle cell carcinoma
lines WaGa78 and MCC1379 were provided by Isaac Brownell
(National Institutes of Health, Bethesda, MD). Suspension cell
lines and CaSki cells were grown in RPMI 1640 medium
(Invitrogen, Carlsbad, CA) supplemented with 15 % fetal-
bovine serum (FBS) (Thermo Scientific, Rockford, IL), 1 %
penicillin/streptomycin glutamine (Sigma, St. Louis, MO) at 37
ºC with 5 % CO2. YTS cells were a kind gift from Jordan Orange
MD, Baylor College of Medicine. YTS is s subclone of the NK
tumor line that was established from a patient with acute lym-
phoblastic lymphoma80. The adherent cell line MCC13 was
cultured in DMEM (Invitrogen, Carlsbad, CA) with 10% FBS
and 1 % penicillin/streptomycin glutamine.

Reagents
Stocks (20–100 mM) of pomalidomide (Celgene) were stored
frozen in cell culture grade dimethyl sulfoxide (DMSO)
(Sigma) and DMSO was used as a vehicle control. The effect
of drug treatment on cell viability (live cell/total cell number)
and growth (live cell number) was investigated over three
passages. Cell viability was assessed by trypan blue staining.
Cells grown for periods longer than 3 days were passed at
3 × 105 cells/ml in fresh media.

Flow cytometry analysis and antibodies
Analysis of cells for surface marker expression was carried out
as described previously.14 Briefly, control and drug-treated
cells were exposed to FITC-labeled isotype antibody or anti-
bodies toward HLA class I (A, B and C), ICAM-1, and B7-2
for 1 hr. Cells were washed three times with 10% FBS in
phosphate buffered saline (PBS), suspended in 10% FBS/PBS
and then analyzed with a flow cytometrycalibur™ Flow
Cytometry system (BD Biosciences, San Jose, CA). Cells
were examined using FlowJo flow cytometry analysis software
(flowjo.com).

Western blotting
Whole cell lysates were prepared for control (DMSO) or drug-
treated cells with M-PER (Pierce, Rockland, IL) in the presence
of Halt Protease Inhibitors Cocktail (Pierce, Rockland, IL).
Where indicated, nuclear and/or cytoplasmic extracts were
prepared using the NE-PER Nuclear Extraction Reagent kit
(Pierce) with Halt Protease Inhibitors and 1 mM

ethylenediaminetetraacetic acid (EDTA). Protein concentrations
were determined using the BCA assay (Pierce). Samples of equal
protein content were subjected to LDS-PAGE (4 to 12 %
NuPAGE Tris-Bis) (Invitrogen, Carlsbad, CA) and transferred
to nitrocellulose membranes using iBlot (Life Technologies
Grand Island, NY). The membranes were blocked with
Odyssey blocking buffer (Licor, Lincoln, NE) for use in the
Licor system. Blots were incubated with indicated antibodies:
mouse anti-β-actin, mouse anti-β-tubulin, mouse anti-IKZF1
(Sigma), mouse anti-IRF4, (Cell Signaling, Beverly, MA),
mouse anti-MHC-I (Santa Cruz Biotechnology, Dallas, TX),
and mouse anti-BMRF1(Millipore Billerica, MA), and subjected
to the appropriate secondary antibodies conjugated to green or
red fluorescent dyes (Licor). Membranes were scanned, and
images were processed. Quantitation of protein was determined
using Image Studio software (Licor).

Generation and characterization of HTLV-1-infected
primary human cells
Stable HTLV-1-producing 729.6 human lymphoblastoid
B-cells were generated as described previously.43 The 729–6
B-cell line infected with the pAB wild-type (WT) HTLV-1 was
maintained in 10% FBS/RPMI 1640. Using negative selection
beads (StemCell) CD4+ T-cells were isolated from uninfected
peripheral blood mononuclear cells. Stable HTLV-1 produ-
cing CD4+ T-cell lines were established by co-cultivation of
donor uninfected primary HLA.A2+/CD4+ T-cells with leth-
ally γ-irradiated 729.6-HTLV-1 producing lines. T-cells were
cultured in 20% FBS/RPMI 1640 and 100 U of interleukin-2
for several months. The production of HTLV-1 in the super-
natant of the infected cell cultures was assessed by measuring
the amount of MA (p19 Gag) protein by enzyme-linked
immunosorbent assay (ELISA) according to the manufac-
turer’s instructions (Zeptometrix, Buffalo, NY). Viral genomic
sequences were verified by sequencing of the ClaI-SalI frag-
ment as described previously.29

Establishment of lymphoblastoid cell lines (LCLs) and LCL
flow cytometry analysis
Infectious EBV stocks were prepared as previously described.-
81 EBV viral stocks were titrated on Raji cells as described
previously82 and used at a multiplicity of infection (MOI) of
0.1. Human primary B cells were prepared from PBMCs by
Ficoll-Hypaque gradient centrifugation with Ficoll-Paque
PLUS (GE healthcare) and cultivated with virus stock for
18 h. After replacement with fresh medium, the infected
cells were seeded at an initial density of 5 × 105 cells per ml.
Resulting LCLs were incubated and expanded in 10% FBS/
RPMI 1640 and used for experiments between 1 ~ 3 months
after infection. To assess the effect of Pom on immune surface
markers, LCLs (2 × 105 cells per ml) from four different LCL
clones were treated with DMSO control or Pom at 0.3, 1, or 3
uM for three days. After immunostaining with fluorophore-
conjugated antibodies, single-cell suspensions were measured
with flow cytometryCanto II (BD) flow cytometers and the
flow cytometryDiva software (BD). Dead cells were excluded
with LIVE/DEAD Cell Viability Assays (Thermo Fisher).
Acquired data were analyzed with FlowJo software Ver. 9.9
(FlowJo). The following fluoro- phore-conjugated antibodies
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reactive to human antigens were used: anti HLA-ABC-APC
(W6/32), B7-2/CD86-PE (IT2.2), anti MICA/B-PE (6D4), anti
Isotype-APC (MOPC-173) and Isotype-PE (MPC-11)
(BioLegend, San Diego, CA). The anti ULBP4-PE (6E6) anti-
body was from Santa Cruz (Dallas,TX).

NK cell-mediated cytotoxicity assay
NK cytotoxicity mediated by the YTS natural killer cell line
(effector cells) was assessed using a two-color fluorescence
assay adapted from Hoppner et. al.83 A green fluorescent
membrane dye DiOC18(DiO) (Sigma) was used as an effector
cell marker while a red fluorescent nuclear counterstain pro-
pidium iodide (PI) (Sigma) was used as a dead cell marker.
Cells were plated with Pom or DMSO control at indicated
concentrations for the indicated number of days. On the day
of the assay, the effector cells were washed once with PBS,
suspended at 106 cells per mL in PBS, and stained with DiO at
a 20 µM final concentration by incubating at 37ºC for 30 to
60 minutes. The DiO-stained effector cells were washed with
PBS three times and suspended at 2 × 106 cells per mL with
complete media. The target cells were suspended at 2 × 106

cells per mL with complete media and mixed with the DiO-
stained effector cells at various effector to target ratios by
keeping the number of effector cells constant at 105 cells per
well. This mixture was incubated at 37ºC for approximately
3.5 hours and then PI was added at a 75 µM final concentra-
tion. Target cells without effector cells were incubated in
parallel to obtain a background level of target cell death (no
NK control). The cells were then analyzed by flow cytometry
using a flow cytometrycalibur™ Flow Cytometry system (BD
Biosciences, San Jose, CA). The scatter gate was set to include
all cellular events and analyzed in the FL1 and FL3 channels
for DiO and PI respectively. The Dio-negative cells (total
target cells) and the PI-positive cells in the Dio-negative
fraction (dead target cells) were used to calculate the % of
dead target cells. NK-induced cytotoxicity was then calculated
as an increase in % dead cells by subtracting the % of dead
target cells obtained in the absence of effector cells (no NK
control) from that obtained in the presence of effector cells.

T-cell activation assays
An assay for T-cell activation was performed using the
T-cell Activation Bioassay kit (Promega, cat# J1651),
which uses IL-2 reporter Jurkat T-cells expressing
a luciferase reporter gene under IL-2 promoter as effector
T-cells. Cells were treated with the indicated concentrations
of Pom for 2 days, after which T-cell activation was assessed
using IL-2 reporter Jurkat T-cells according to the manu-
facturer’s recommended protocol. Briefly, 105 Jurkat T-cells
per well of a 96-well plate were stimulated using various
concentrations of anti-CD3 monoclonal antibody (OKT3
from ThermoFisher Scientific, Cat# 16–0037-81). Control
or Pom-treated Daudi and Raji cells were co-incubated
with the stimulated Jurkat cells at a 5:1 ratio (Jurkat to
target) in a 37°C incubator. After 6 hours, bio-glo reagent
was added and luminescence was measured using Victor X3
multilabel plate reader (PerkinElmer). Background lumines-
cence from wells without cells was subtracted from all the

wells containing cells. Luminescence data was plotted as
a 4PL regression graph using GraphPad Prism software.

Statistics

Where indicated, the mean and standard deviation were cal-
culated for experiments repeated 3 or more times. Statistical
comparisons were performed using the Student’s two tailed
paired T-test.
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