
BMD = bone mineral density; COL = collagen; ER = estrogen receptor; OA = osteoarthritis; OP = osteoporosis; PGOA = primary generalized
osteoarthritis; VDR = vitamin D receptor.

Available online http://arthritis-research.com/content/3/5/270

Background
Osteoarthritis (OA) and osteoporosis (OP) are two
common age-related chronic disorders of the skeleton
with a complex, multifactorial pathogenesis. They are both
associated with considerable morbidity and mortality.
Apart from being influenced by environmental factors, OA
and OP have a strong genetic component, as has been
shown by twin and family studies [1–4]. Although in clini-
cal practice, a combination of OP and OA may be coinci-
dentally encountered, particularly in the very elderly, there
is now considerable evidence from large population
studies that these two disorders are inversely related

[5–8]. While low bone mineral density (BMD) is an essen-
tial feature of OP, an increased BMD has been often
shown in subjects with OA. Moreover, if OA patients
develop osteoporotic fractures, they do so in very old age,
suggesting that OA, or related factors, might have a pro-
tective effect on the progression of OP [7]. Patients with
primary OP and those with OA also appear to represent
anthropometrically different populations. The typical
patient with OA tends to be a mesomorph, to be fatter,
and to have greater muscular strength, whereas the typical
OP patient tends to be an ectomorph [8]. Because of the
contrasting levels of BMD in OA and OP, studies on the
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pathophysiology of OA may also provide some insight into
the understanding of OP. In particular, the knowledge of
the genetics of OA could benefit from characterization of
genetic markers linked to OP risk, and vice versa. A recent
co-twin control study suggested that the generalized
increase in BMD observed in subjects with OA may be
due in part to shared genetic factors in hip OA and high
bone mass [9]. It is therefore possible that individuals may
be genetically predisposed to be ‘bone formers’, with a
higher BMD, a lower chance of osteoporotic fracture, and
a greater tendency to develop OA, or ‘bone losers’, with a
higher age-related bone loss and a lower tendency to form
osteophytes. Potential candidate genes for OA and OP
are listed in Table 1.

Genetic markers in primary generalized
osteoarthritis
OA is a heterogeneous cluster of diseases sharing carti-
lage involvement as the main feature [10]. Bone may be
also affected, with the formation of osteophytes and
sclerotic areas. OA is classified as idiopathic and secon-
dary [11]. Several reports suggest that genetic influ-
ences contribute considerably to the development of OA
[12]. The concept of hereditary OA has been defined as
an entity encompassing primary generalized OA, familial
chondrodysplasias, and familial crystal deposition
disease [13]. However, the relevance of the genetic
component varies among subgroups of patients, and as
yet it is not clear which genes are involved. Families with
primary generalized OA (PGOA) exhibit a higher inci-
dence of OA than is seen in in the general population,
with premature development of Heberden’s and
Bouchard’s nodes and rapid cartilage degeneration at
multiple joints [14]. Early family studies suggested that

first-degree relatives of PGOA probands were twice as
likely to have radiographically visible generalized disease
as were population controls [15]. Recently, a twin study
of 120 nonidentical and 130 identical female twins,
examined for radiological evidence of OA, showed a
striking genetic influence on the development of PGOA,
with a score of 40 to 70% for an effect of hereditability
[2]. This result has been recently confirmed by evidence
that osteoarthritis of the hand, knee, and hip, and disc
degeneration of the spine, is statistically more frequent in
sibling studies [16]. 

The cluster of familial chondrodysplasias, which are inher-
ited as an autosomal Mendelian trait, is characterized by
induction of precocious cartilage destruction with conse-
quent OA. Several mutations in genes encoding the com-
ponents of cartilaginous extracellular matrix have been
described [13]. Conversely, the multifactorial nature of
PGOA and the heterogeneity that characterizes the syn-
drome greatly complicate the choice of putative candidate
genes. Moreover, there is now substantial evidence from
epidemiological, twin, and segregation studies that the
genetic contribution to osteoarthritis is gender- and joint-
related [17–21]. In PGOA, identification of genes that
could lead to development of the disease is still under
investigation.

Studies of collagen genes
Mutations of the COL2A1 gene have been identified in
familial chondrodysplasias [13,22]. This gene also seems
to be involved both in early-onset PGOA [23–25] and in
families with crystal deposition disorder [26]. However,
linkage analysis of 14 candidate genes in OA kindreds
resulted in the exclusion of 10 important genes, including
COL2A1 [27]. Moreover, both PGOA and familial crystal
deposition disease have been related to a region of chro-
mosome 8q [28], while nodal OA appeared significantly
associated with loci on chromosome 2q23–35, where the
gene encoding the α3-chain of collagen type VI is located
[29]. Recently, various other chromosomal loci have
reported to be associated with OA [30–35], as summa-
rized in Table 2.

Studies of estrogen receptor genes
Evidence that PGOA is becoming apparent in post-
menopausal women [36,37] prompted investigations on
the role of genes encoding for estrogen receptors (ERs).
In a Japanese study, a restriction-fragment-length polymor-
phism at the ERα gene locus appeared to associate sig-
nificantly with PGOA [38], although studies in other
populations failed to confirm this association [39].

Studies of the gene for vitamin D receptor
The association of polymorphism of the gene for vitamin
D receptor (VDR) with BMD [40] was followed by investi-
gations of this gene’s possible association with OA. VDR

Table 1

Potential candidate genes common to osteoporosis and
osteoarthritis

Adhesion molecules and ligands (e.g. integrins)

Cartilage and bone matrix proteins
Collagenic
Noncollagenic

Calciotropic hormones and their receptors
Calcitonin and calcitonin receptor
Vitamin D and vitamin D receptor
PTH and PTH receptors
Calcium-sensing receptor

Cytokines, growth factors, and their receptors (IL-6, IL-1, IGF1, etc)

Enzymes (aromatase, metalloproteinases, etc)

Sex hormones and their receptors
Androgen and androgen receptor
Estrogen and estrogen receptors

IGF, insulin-like growth factor; IL, interleukin; PTH, parathyroid
hormone.
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gene polymorphisms segregated significantly (showing a
2.27-fold increased relative risk) with the presence of
osteophytes in knee OA [41,42] and in the spine [43]. The
genetic association is substantial: subjects with the VDR
allelic variant TT have a 50–60% lower risk of spinal
osteophytosis and disc narrowing than the opposite (tt)
genotype [43]. To date, results do not allow us to distin-
guish the associations between VDR and osteophytes or
between VDR and disc narrowing. Polymorphisms of this
receptor might directly affect the pathophysiology of OA
by promoting either osteophytosis or disc narrowing. VDR
is expressed in both osteoblasts and chondrocytes, both
of which are found in osteophytes, suggesting a role for
the vitamin D/VDR complex in the formation or progres-
sion of osteophytes, or both. It has also been hypothe-
sized that polymorphisms in COL2A1, one of the major
candidate genes for familial OA, are in linkage disequilib-
rium with VDR gene polymorphisms [41].

Studies of other candidate genes
In recent years, new polymorphisms in other candidate
genes, such as IGFI [44], COL1A1 [39], COL2A1 [45–47],
TGFB1 [48], and the gene for aggrecan proteoglycan [49],
have been identified and found to be correlated with OA in
some studies, although agreement is not universal

[39,50,51]. An updated list of candidate genetic polymor-
phisms associated with osteoarthritis is reported in Table 3.

Gene–environment interaction
Finally, a strong interaction between genes and environ-
ment plays an important role, because increasing age and
body mass index are known to be associated with
increased prevalence and severity of spinal degenerative
disease, as are smoking and quadriceps strength for
osteophytosis. Moreover, joint degeneration in the early
stages of OA may be reflected in changes in structural
and material properties of the articular cartilage. A recent
study showed that for a given loading condition, the
contact areas are higher and peak stresses are lower in a
diseased joint than in a normal one [52]. Thus, loading
stress conditions may play a critical role in the selection of
‘genetically’ susceptible joints.

OA has wide variability, both clinically and radiologically.
The identification of gene(s) linked to PGOA might make it
possible to construct a new OA classification based on

Table 2

Quantitative trait loci (QTL) associated with osteoarthritis

Region 
Reference QTL affected Phenotype

[28] 8q GOA Early-onset OA-CPDD 
(1 family)

[29] 2q23–35 Hand Nodal OA

[30] 11q Hip, knee Female OA

[31] 2q Hip, knee OA of the hip

4q Female OA of the hip

6p/6q OA of the hip

11q Female OA

16p/16q Female OA of the hip

[32] 2q12–13 Hand Distal interphalangeal joint OA

4q26–27 Distal interphalangeal joint OA

7p15–21 Distal interphalangeal joint OA

X-cen Distal interphalangeal joint OA

[33] 4q35 Hip Premature degenerative OA of 
the hip

[34] 6q12–13 Hip, knee Female OA of the hip

6p21.3 Female OA of the hip

[35] 2q31 Hip, knee Familial OA of the hip

CPDD = calcium pyrophosphate deposition disease; GOA =
generalized osteoarthritis; OA = osteoarthritis.

Table 3

Candidate gene polymorphisms associated with osteoarthritis

Genetic Association 
polymorphism Phenotype found? Reference

VDR Female knee OA Yes [42]

Knee OA (osteophytosis) Yes [41]

Female OA (hip replacement) No [50]

Hand, hip, knee OA No [51]

Idiopathic OA No [39]

COL2A1 PGOA/chondrodysplasia Yes [140]

Nodal GOA No [141]

GOA, finger joints OA No [24]

GOA Yes [45]

Female OA (hip replacement) No [50]

GOA Yes [46]

Knee OA (joint space narrowing) Yes [47]

COL1A1 Female OA (hip replacement) No [50]

Idiopathic female OA Yes [39]

ERα GOA Yes [38]

Idiopathic OA No [39]

TGFB1 Spine OA (osteophytosis) Yes [48]

IGF-I GOA Yes [44]

Aggrecan Male bilateral hand OA Yes [49]
proteoglycan

OA = osteoarthritis; COL = collagen; ER = estrogen receptor; GOA =
generalized osteoarthritis; IGF = insulin-like growth factor; PGOA =
primary generalized osteoarthritis; TGF = transforming growth factor.



genetic causes, independent of clinical or radiological fea-
tures, to develop molecular tests for definition of OA risk,
and to design a preventive therapeutic strategy based on
gene therapy [53], as has already been done successfully
by gene transfer of interleukin-1 receptor antagonist in the
animal model [54].

Animal model
Very recently, an elegant study in mice demonstrated that
mutation at the progressive ankylosis (ank) locus, mapped
to proximal mouse chromosome 15, causes a generalized
progressive form of arthritis with mineral deposition, for-
mation of bony outgrowths, and joint destruction. Interest-
ingly, the human orthologue of the ank gene, ANK, is
nearly identical to the mouse gene and maps to chromo-
some 5p in a region showed to be linked in several human
pedigrees with arthritis and chondrocalcinosis [55,56].

Genetic markers in osteoporosis
Osteoporosis is a systemic multifactorial disease charac-
terized by decreased BMD and microarchitectural deterio-
ration of bone structure, leading to a higher susceptibility to
fractures [57]. Although there are several environmental
influences on BMD, such as diet and amount of physical
exercise, a genetic contribution to the pathogenesis of OP
accounting for 50% to 70% of the interindividual variability
in bone mass has been recognized [3,4]. Given the
complex biology of the skeleton, it is likely that bone mass
is under the control of a large number of genes, many of
which exert relatively small effects on BMD and a few of
which contribute substantially to the variation in this trait. It
is also likely that complex gene–environment interactions
exist. Many candidate genes have been implicated in the
determination of BMD and in the pathogenesis of OP,
including those encoding cytokines, calciotropic hormones
and their receptors, and matrix bone proteins (see Table 1).

To date, among the genetic strategies commonly
employed for the dissection of complex traits, the analysis
of the genetic determinants of BMD has largely relied on
association studies, in which a polymorphism in a candi-
date gene is analyzed in unrelated affected and unaffected
individuals from a given population. However, there are
some pitfalls for such an approach in late-onset disorders
such as OP, mainly due to inappropriate choice of the
control group, to population admixture, and to competing
risk leading to selection bias [58]. Moreover, a positive
association can arise for any of three reasons: a given
allele might in effect be a cause of the disease; or it might
not cause the trait but be in linkage disequilibrium with the
actual cause; or the apparent association might be an arti-
fact of population admixture.

Studies of vitamin D receptor gene
Among the several candidate genes, that encoding VDR
was the first to be proposed as a major locus for the

genetic effect on bone mass. The VDR gene possesses
several polymorphic sites, of which that detected by the
restriction endonuclease BsmI at intron 8 was associated
with BMD in the Australian population [40]. Since that
original report, conflicting data have been published on
the association of the diallelic BsmI restriction-fragment-
length polymorphism (RFLP) with the VDR gene and BMD
in both premenopausal [59–62] and postmenopausal
[63–68] women. Similarly, studies examining the relation
of this polymorphism with skeletal growth [69–72], bone-
turnover markers [59,63,73,74], rates of bone loss [63,
74–76], intestinal calcium absorption [74,77–80], and
osteoporotic fractures [81–83] yielded conflicting results.
A meta-analytical approach incorporating the results from
16 studies revealed a weak contribution of the allelic
variant at the 3′ end of the gene to the variation of BMD
values [84], while a more recent meta-analysis concluded
that BMD is associated with VDR polymorphism at high
confidence levels and that both genetic and nongenetic
factors can interfere with the unmasking of the effects of
VDR variants on bone phenotype [85].

There are several possible explanations for the discrepan-
cies among these studies. First, interactions of environ-
mental factors such as dietary calcium intake appeared to
represent an important confounding factor [72,78,79,
86–88]. Moreover, linkage disequilibrium with other bone-
metabolism-related genes on chromosome 12 (i.e. colla-
gen type 1 and retinoic acid receptor genes) cannot be
excluded. Finally, the limited sizes of samples, differences
in genotype distribution among different ethnic groups,
and interactions with other genes all have to be consid-
ered as potential confounders. Other polymorphic genes,
such as the one encoding ERα, have been shown to mod-
ulate the effect of the VDR gene in the determination of
BMD, confirming the existence of gene–gene interaction
[67,89]. Taken together, these findings may help to
explain contrasting data among published studies, sug-
gesting the possibility of modifying genetically determined
BMD through appropriate lifestyle changes. However,
polymorphisms at the 3′ end of the VDR gene are anony-
mous polymorphisms, as they do not code for different
amino acids in the VDR protein. Therefore, a major ques-
tion is how these allelic differences may be related to func-
tional differences. Current evidence suggests that these
VDR restriction-fragment-length polymorphisms do not
affect the abundance of VDR mRNA [90–92]. Recently, a
new diallelic (ATG/ACG) polymorphic VDR variant has
been described in exon 2 of the gene, detectable with the
restriction endonuclease FokI [93]. This polymorphism is
responsible for a three-amino-acid difference in VDR
length between FF and ff individuals and the short form of
the VDR gene (FF) gave an approximately 1.7-fold
increase in transcription activation in transfected HeLa
cells [94]. Mexican–American postmenopausal women
with the ff genotype showed lower lumbar BMD than
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those with the FF genotype [93]. This relation, also found
in Japanese [94], North American [95], and Italian [96]
populations, was not found in French [97] and Swiss [98]
women, although a significant association of this genotype
with differences in urinary type I collagen cross-linked
n-telopeptide was observed in the French population [97].

Studies of estrogen receptor genes
The importance of the ER genes in the determination of
BMD is supported by several observations. Firstly,
osteoblasts, osteoclasts, and bone marrow stromal cells
bear ERs and are modulated by estrogen [99,100]. In
addition, a homozygotic inactivating mutation of the ERα
gene caused OP in a male patient [101]. Finally, ERα
knockout mice exhibit a low BMD [102]. It is possible
that common allelic variants of the ERα gene cause
milder estrogen resistance, which becomes evident with
aging or with menopausal hypogonadism, leading to clin-
ical disorders such as OP. Both intronic polymorphisms
(recognized by the restriction endonucleases PvuII and
XbaI) and polymorphic variable numbers of (TA)n repeats
upstream of the ERα have been associated with BMD in
Japanese populations [103,104]. Similar studies in other
populations yielded conflicting results [67,89,105–107].
Recently, we investigated the role of these polymor-
phisms at the ERα gene locus in a large sample of post-
menopausal Italian women [108]. We found a strong
linkage disequilibrium between intron 1 (PvuII and XbaI)
polymorphic sites and also between these sites and the
microsatellite (TA)n dinucleotide repeat polymorphism,
with a high degree of coincidence of the short TA alleles
and the presence of PvuII and XbaI restriction sites.
Interestingly, a statistically significant correlation
between the (TA)n repeat allelic variants and osteoporo-
sis was observed, with subjects with a low number of
repeats (TA<15) showing the lowest BMD values and
the highest risk of vertebral fracture. Two studies, in
American and Danish populations, recently confirmed
this observation [109,110]. However, in another study in
a Scottish population, no overall association between
the TA repeat number and BMD was observed [111]. All
the positive studies are concordant and demonstrate a
significant association between reduced BMD values
and the presence of a low number of TA repeats. Con-
versely, in the Scottish study, the small group of subjects
with the highest number of TA repeats (having at least
one allele TA≥26) appeared to have lower BMD values
at the spine than those with fewer TA repeats [111]. The
molecular mechanism underlying how bone mineraliza-
tion is affected by the variation in the number of dinu-
cleotide repeats is still unclear. However, because of the
TA repeats position, between promoters A and B of the
ERα gene and next to a regulatory region, it is possible
that allelic variation due to different (TA)n dinucleotide
repeat lengths might have physiological relevance by
affecting promoter usage and/or mRNA transcription.

Studies of collagen genes
Collagen type I is the major constituent of bone matrix pro-
teins and, therefore, collagen type I genes (COL1A1 and
COL1A2) have been proposed as candidates for the
determination of bone mass. Indeed, the osteoporotic
phenotype of osteogenesis imperfecta is due to mutations
that affect the coding regions of collagen type I genes
[112]. Recently, Grant and colleagues showed that a G/T
polymorphism in the first intron of COL1A1 strongly seg-
regated with BMD and osteoporotic fractures [113]. Addi-
tional data in larger samples of different populations
support these findings [114–116]. A recent cross-section
large-scale study indicates that the unfavorable COL1A1
allele (the T variant, arbitrarily called the ‘s’ allele) acts as a
marker for accelerated age-related bone loss rather than a
marker for lower peak bone mass [117]. However, a small
study in a Finnish population [118] showed no significant
association of COL1A1 Sp1 polymorphism with bone
mass or fracture, nor did another study in twins in the USA
[119]. Sp1 is a transcription factor. To date, the molecular
mechanisms by which the described COL1A1 Sp1
diallelic polymorphism associates with bone mass are
currently unclear. Preliminary data have recently supported
evidence of allele-specific differences in binding of the
Sp1 protein to the polymorphic recognition site, in colla-
gen protein production and in bone strength in samples
derived from patients with different genotypes [120].

Other studies of candidate genes and linkage analysis
Polymorphisms of other candidate genes such as those
for interleukin-6 [121], transforming growth factor-β [122],
apolipoprotein E [123], calcitonin receptor [124,125],
androgen receptor [109], and osteocalcin [109] have
been related to BMD in some isolated studies. These
observations have not yet been confirmed by other inde-
pendent studies; certainly other genes, with as great or
even greater effects both on BMD and bone metabolism,
have yet to be mapped and identified. An updated
overview of candidate genes related to BMD and osteo-
porotic risk is depicted in Fig. 1.

The absence of a clear Mendelian pattern of inheritance
(at least for a subset of cases) makes it extremely difficult,
if not impossible, to determine a priori the number of
involved genes and their effects on the trait of interest (i.e.
peak bone mass, BMD, rates of bone loss) [72]. A study in
22 French families unraveled an autosomal dominant
pattern of transmission for BMD [126]. However, in the
French study and in general, the term ‘familial osteoporo-
sis’ is lacking a clinical definition, because of the difficulty
of separating genetic from environmental factors. Criteria
for definition and selection of osteoporotic kindreds are
therefore essential. One possibility could be to focus on
subsets of kindreds showing a clear family history of low
BMD/OP and of characteristics that make the pedigree
‘interesting’. Some families with apparently transmissible
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osteoporosis also exhibit clinical evidence of connective
tissue dysplasia, with no clinical or biochemical evidence
of osteogenesis imperfecta or Ehlers-Danlos syndrome
[127]. This sign can itself become a hallmark for definition

of the ‘patients’ within the kindred. The a priori chance of
success for linkage studies in a family is increased by the
analysis of multiple generations (a minimum of three gen-
erations could be the cut-off) exhibiting a pattern of inheri-
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Figure 1

Genetics of osteoporosis: candidate genes. Numbers at the bottom are chromosome numbers. p, q = short and long arms, respectively, of the
chromosome. 



tance with high penetrance. The need for at least four
affected (i.e. having low BMD and osteoporosis) members
in multiple generations, including males, will help to
narrow the definition of an ‘interesting’ pedigree as a pedi-
gree that constitutes a rare subset of a common pheno-
type. Linkage studies in man and experimental animals
suggested the existence of multiple loci regulating bone
mass, but the genes that account for such effects remain
to be defined. Linkage analysis for chromosome
11q12–13 polymorphic loci indicated the possible exis-
tence of a candidate gene or genes in this region that may
play an important role in the variation of BMD in a normal
population [128]. Linkage studies in sib-pairs were able to
define other loci controlling the BMD on different human
chromosomes in different populations [129–131]. To
date, traditional linkage analysis has been successfully
used to find major contributory genes but has limited
power to detect genes with only a modest effect. In the
latter case, different approaches, such as nonparametric
allele-sharing methods (i.e. affected sib-pair analysis,
linkage disequilibrium, and transmission/disequilibrium
testing) have far greater power [132,133]. In this respect,
recent observations have revealed a few chromosomal
regions containing genes (quantitative trait loci) modulat-
ing the BMD [128–130,134,135], as shown in Table 4.
Recruitment of a large number of sib-pairs would be valu-
able for doing linkage studies of haplotype sharing and
transmission/disequilibrium tests in humans [136].
Affected relatives should show excess allele sharing even
in the presence of incomplete penetrance, phenocopy,
genetic heterogeneity, and a high frequency of disease
alleles [132]. Nonparametric linkage approaches testing
multiple candidate genes in large pedigrees could also
provide interesting information. Preliminary data from such
a study showed a suggestive linkage of the parathyroid
hormone receptor type 1 to osteoporosis [131]. A limiting
factor in linkage analysis of multiple candidate genes is the
lack of accurate statistical software to clearly define the
threshold of significance.

Information derived from cross-sectional association
studies could offer potential starting points, although a
complete genomic screening with high-resolution linkage
maps and regional follow-up by additional markers could
not be excluded.

Animal models
Comparative genetics could add information about poten-
tially interesting genes in humans once quantitative trait
loci in animal models (i.e. rodents, primates) are identified
[137]. Very recently, an autosomal recessive mutation at
locus sfx, mapped to central chromosome 14, was found
to segregate with stage-specific bone growth failure and
fracture in a new mouse model, designated spontaneous
fracture (sfx) [138]. Fine mapping of this chromosomal
region could define the role of this gene in the pathophysi-

ology of the skeleton and could provide evidence of other
genes co-localizing with sfx.

Together, these efforts will make it possible to map
unknown OP-related genes to defined chromosomal
regions, to clone them, and to identify their function.

Conclusions
OP and OA affects hundreds of millions of people
throughout the world, causing pain and disability and
having a great impact on individuals and on society as
whole. There is evidence that the two disorders are often
inversely correlated and that they have a complex genetic
component. The identification of the genetic pathways
involved is difficult and represents a great challenge in the
near future. As in other multifactorial diseases (such as
hypertension and diabetes), in both OA and OP, the initia-
tion, progression, and severity of the disease may be influ-
enced by multiple environmental factors with multiple
genes in a given individual. The authors of some associa-
tion studies have suggested the possibility that a given
allelic variant in a candidate gene (i.e. VDR) may increase
the risk for OP and be protective for OA, and vice versa
[40–43,47,60,61,67]. However, this intriguing hypothesis
remains to be confirmed in larger samples, in different
populations, and by other genetic approaches. Moreover,
we must take into account that the inverse correlation
between OP and OA observed in several epidemiological
reports may have other, nongenetic, components. Indeed,
it is known that increased physical loading due to
enhanced weight-bearing activity is protective for OP but
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Table 4

Quantitative trait loci (QTL) associated with BMD or
osteoporosis

Genetic 
Reference QTL analysis Phenotype

[135] 11q12-13 Linkage High bone mass

[129] 1p36

2p23-24

4qter

11q Linkage Low BMD

[128] 11q12-13 Sib-pairs Femoral neck BMD

[130] 2p

13q Sib-pairs Proximal and distal forearm BMD

[134] 1q21-23 Sib-pairs Lumbar or femoral BMD

5q33-35

6p11-12

11q12-13

BMD = bone mineral density.



seems to confer a higher risk of developing OA in the
elicited joint structures.

Several large-scale investigations now under way, involving
thousands of patients and genome-wide screening, may
make it possible to identify multiple gene variations associ-
ated with an increased risk for OA and/or OP. However, the
importance of genetic heterogeneity, including ethnicity, as
well as of environmental, hormonal, and constitutional con-
founders (e.g. skeletal and body size) will need to be taken
into serious account in future genetic studies. Gene–gene
and gene–environment interactions and interactions
between pharmaceuticals and the genome in humans and
animal models will be critical targets for future research.
Further developments in molecular genetics, such as
microarray chips, will allow simultaneous large-scale differ-
ential identification of thousands of genetic polymorphisms
segregating with OA or OP or both [139]. All these efforts
will improve our understanding of the pathogenesis of these
two disabling disorders, making possible earlier preventive
strategies as well as the development of more appropriate
and effective treatment options.
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