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Background: Breast cancer is a heterogeneous disease characterised by complex molecular alterations underlying the varied
behaviour and response to therapy. However, translation of cancer genetic profiling for use in routine clinical practice remains
elusive or prohibitively expensive. As an alternative, immunohistochemical analysis applied to routinely processed tissue samples
could be used to identify distinct biological classes of breast cancer.

Methods: In this study, 1073 archival breast tumours previously assessed for 25 key breast cancer biomarkers using
immunohistochemistry and classified using clustering algorithms were further refined using naı̈ve Bayes classification
performance. Criteria for class membership were defined using the expression of a reduced panel of 10 proteins able to
identify key molecular classes. We examined the association between these breast cancer classes with clinicopathological factors
and patient outcome.

Results: We confirm patient classification similar to established genotypic biological classes of breast cancer in addition to novel
sub-divisions of luminal and basal tumours. Correlations between classes and clinicopathological parameters were in line with
expectations and showed highly significant association with patient outcome. Furthermore, our novel biological class stratification
provides additional prognostic information to the Nottingham Prognostic Index.

Conclusion: This study confirms that distinct molecular phenotypes of breast cancer can be identified using robust and routinely
available techniques and both the luminal and basal breast cancer phenotypes are heterogeneous and contain distinct subgroups.

Breast cancer, which is the most common cancer in women
(Parkin et al, 2001; Kamangar et al, 2006) is a complex disease
characterised by multiple molecular alterations. The current
clinical management of breast cancer relies on availability of
robust clinicopathological and individual molecular prognostic and
predictive factors to support decision making. However, the varied
behaviour and response to therapy within the clinically and
morphological similar classes indicate that the traditional prog-
nostic factors currently available are insufficient to reflect the

genetic heterogeneity of breast tumours. Recent advances in high-
throughput molecular technologies have further demonstrated this
biological heterogeneity of breast cancer.

A seminal study by Perou et al (2000) identified four distinct
molecular breast cancer groups based on gene expression profiles:
luminal epithelial/oestrogen receptor (ER) positive, c-erb-B2 (HER2)
positive, basal-like and normal breast-like. A subsequent study
extended this by dividing the luminal/ER-positive group into three
subtypes: luminal A, B, and C (Sorlie et al, 2001), but existence of the
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luminal C group remains uncertain (Sorlie et al, 2003). Sotiriou et al
(2003) demonstrated six similar groups, with two basal-like subgroups
and no normal breast-like group. While numerous studies have
reported these and other novel molecular subtypes, and assigned a
prognostic significance to these identified classes (West et al, 2001;
van’t Veer et al, 2002; Calza et al, 2006), they remain varied in their
detailed classification (Hu et al, 2006). In addition, issues regarding
the potential clinical utility of gene expression profiling include
sample processing, data interpretation and analysis, reproducibility,
validation, feasibility, and cost (Ein-Dor et al, 2006; Pusztai et al, 2006;
Simon, 2006). Existing studies have also not addressed the stability of
the proposed classifications across different case sets, the biological
value of the different genes involved in the cluster designation and
the proportion of cases that cannot be classified into any of the
core molecular classes. Such an issue appears of critical relevance
considering the need to identify the molecular features of individual
tumours in routine practice.

An alternative approach is to use established robust laboratory
technology, such as immunohistochemistry on formalin-fixed
paraffin embedded (FFPE) patient tumour samples utilising a set
of proteins with a well-defined biological and clinical relevance in
breast cancer. Previously, we have applied a 25-protein biomarker
panel with known relevance to breast cancer, to large numbers of
cases using FFPE tissue microarrays and unsupervised clustering
analysis, and have confirmed the existence and clinical significance
of distinct breast cancer classes (Abd El-Rehim et al, 2005). In
further analysis, we used a consensus methodology between three
alternative clustering techniques, Hierarchical (Anderberg, 1973),
K-means (Al-Daoud and Roberts, 1996), and Adaptive Resonance
Theory (ART) (Carpenter and Grossberg, 1987), followed by the
computation of several validity indices to independently verify the
number of output clusters and address the issue of clustering
stability and classification uncertainty. By examining the con-
cordance between the clustering techniques, we determined a set of
core six breast cancer classes (Soria et al, 2010). Concordance
between clusters, assessed by conventional statistical techniques
(principal component projections and boxplots) and two auto-
mated methods (an artificial neural network and a rule-extraction
approach) were used to characterise these classes. This served to
confirm that key biological classes of breast can be identified using
an immunohistochemical panel of biomarkers and demonstrated
that luminal and basal classes of breast cancer are heterogeneous
and contain distinct subclasses. Of importance was the observation
that only 60% of breast cancer cases clearly exhibited core class
membership criteria, while the remaining 40% of cases were not
assigned to a class. However, clinical adoption of such a classification
system using 25 proteins determined by immunohistochemistry
would be impractical due to cost and time constraints.

Further analysis was therefore required to minimise the number
of markers needed to classify patients into these distinct breast
cancer classes but retain the sophistication of the classification,
maintain the clinical heterogeneity of classes, and reduce the
unclassified tumours to a lower level while retaining usefulness for
clinical decision making.

In this study, we therefore have sought to reduce the number
of biomarkers necessary to classify breast cancer classes using
immunohistochemistry and to examine the association between
these classes with various clinical and pathological factors and
patient outcome.

PATIENTS AND METHODS

Patients and laboratory methods. A series of 1073 patients from
the Nottingham Tenovus Primary Breast Carcinoma Series
presenting with primary operable (stages I, II and III) invasive

breast cancer between 1986 and 1998 were used. Immunohisto-
chemical reactivity for 25 proteins, with known relevance in breast
cancer including those used in routine clinical practice, were
determined using standard immunohistochemical techniques on
tumour samples prepared as FFPE tissue microarrays as previously
described (Abd El-Rehim et al, 2005). Levels of immunohisto-
chemical reactivity were determined by microscopical analysis
using the modified H-score (values between 0 and 300), giving a
semi-quantitative assessment of both the intensity of staining and
the percentage of positive cells as previously described (Abd
El-Rehim et al, 2005). For c-erb-B2, the American Society of
Clinical Oncology/College of American Pathologists Guideline
Recommendations for Human Epidermal Growth Factor Receptor 2
Testing in Breast Cancer were used for assessment (Wolff et al,
2007). Equivocal (2þ ) cases were confirmed by chromogenic in situ
hybridisation as previously described (Garcia-Caballero et al, 2010).

The Nottingham Series is a well-characterised consecutive
assembly of patients who were treated according to standard
clinical protocols. Of the available cases, 708 (66%) cases were aged
50 years or more. At the time of diagnosis, 160 (14.9%) tumours
were histological grade 1,343 (31.9%) were grade 2, and 572
(53.2%) grade 3 (Table 1). A total of 736 (68.4%) had tumour size
more than 1.5 cm. A total of 654 (60.8) patients had lymph node-
negative disease and 419 (38.9%) had positive lymph nodes
(332 cases with between one and three positive nodes, 87 cases with
four or more positive nodes). Frequencies for histological tumour
types were: 649 invasive ductal carcinomas of no special type,
171 tubular and tubular mixed carcinomas, 30 medullary
carcinomas, 112 lobular carcinomas, 11 mucinous carcinomas, 37
mixed histological type, 3 papillary type carcinomas and four
miscellaneous tumours. Patient management was based on tumour
characteristics using Nottingham Prognostic Index (NPI) (Galea
et al, 1992) and hormone receptor status. Patients with an NPI
score of o3.4 received no adjuvant therapy, those with a NPI score
43.4 received hormone therapy if ER positive or classical
cyclophosphamide, methotrexate and 5-fluorouracil if ER negative
and fit enough to tolerate chemotherapy. Hormonal therapy was
given to 420 patients (39%) and chemotherapy to 264 (24.5%).
This study was approved by the Nottingham Research Ethics
Committee 2 under the title ‘Development of a molecular genetic
classification of breast cancer’. The Reporting Recommendations
for Tumour Marker Prognostic Studies (REMARK) criteria,
recommended by McShane et al (2005), were followed.

Data relating to survival were collated in a prospective manner
for those patients presenting after 1989 only; including survival
time, defined as the interval (in months) from the date of the
primary treatment to the time of death. Both short (5 years) and
long (up to 20 years)-term patient outcome was investigated
with respect to the biological classes in all patients where outcome
data was available. Follow-up data was available for 974 patients,
with overall survival ranging from 4 to 224 months (median
123 months, mean 118 months). During this period, a total of 317
(29.5%) patients developed distant metastases while 346 patients
died, 263 of them from breast cancer. Patient age ranged from 18
to 72 years (median 54 years).

Classifying methods. Using the expression of 25 proteins,
determined by immunohistochemistry, breast tumours were
classified as previously described (Soria et al, 2010). Using the
combination of boxplots for the whole data and for the singular
classes and following clinical judgment, the 25 markers on
which the breast cancer classes were derived were reduced to
14 by dismissing those biomarkers that had ‘no role’ in the class
definition (i.e., had an identical overall distribution even when
considered in any specific class). Then, using supervised classifica-
tion approaches based on the naı̈ve Bayes classification perfor-
mance (Soria et al, 2008), the number of markers was further
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reduced by an exhaustive search down to the minimum number of
biomarkers required to retain the previous classification. This
formed the basis of the development of a fuzzy rule induction
algorithm using the methodology previously described in Rasmani
et al (2009). The ultimate goal of this process was to create a single
algorithmic process to classify a breast tumour into one of the six
clinical classes, while reducing the number of unclassified patients
to a minimum. Technical class characterisation in terms of marker
distribution was performed as previously described (Soria et al,
2010). The rule induction algorithm was subsequently validated on
the expression of the 10 biomarkers determined by IHC in an
additional 238 unselected cases of primary breast cancer from the
Nottingham Tenovus primary breast cancer series.

Statistical analysis. The association between breast cancer classes
and both histopathological and clinical characteristics, which were
not involved in the development of the classes, was assessed using
Cramer’s V (Friendly, 2000) to produce P-values. Breast cancer-
specific survival and disease-free survival (DFS) between classes

was determined using Kaplan–Meier curves. Non-parametric
Kruskal–Wallis was used to test the difference of NPI across
classes.

RESULTS

Breast cancer classification. Using an exhaustive search of the
best combination of a reduced set of 14 biomarkers, the minimum
number required for classification of breast tumours into the six
classes was reduced from 25 biomarkers to 10. These biomarkers
were ER, progesterone receptor, cytokeratin (CK) 5/6, cytokeratin
7/8, EGFR, HER2, c-erbB3 (HER3), c-erbB4 (HER4), p53, and
Mucin 1. Using a fuzzy rule induction-derived algorithm, a total of
997 out of 1073 (93%) breast tumours were subsequently assigned
to one of the six classes and contained 370, 146, 123, 126, 87, and
145 patients, respectively. The remaining patients (n¼ 76, 7%)
were not assigned to any class.

Table 1. Breast cancer biological class and clinicopathological parameters (Note that P-values derived using Cramer’s V (Friendly, 2000).)

Biological class

Luminal
A

Luminal
N

Luminal
B

Basal–p53
altered

Basal–p53
normal

HER2þ /
ERþ

HER2þ /
ER�

Cramer’s V
(P-value)

Parameter n (%) n (%) n (%) n (%) n (%) n (%) n (%)

Size

o15 mm 106 (28.6) 45 (30.8) 27 (22.0) 15 (11.9) 10 (11.5) 6 (10.0) 10 (11.8) 0.199
X15 mm 264 (71.4) 101 (69.2) 95 (77.2) 111 (88.1) 77 (88.5) 54 (90.0) 75 (88.2) (5.782e-07)
Total 370 146 122 126 87 60 85

Grade

1 79 (21.4) 41 (28.1) 20 (16.3) 1 (0.8) 0 (0) 1 (1.7) 1 (1.2) 0.405
2 160 (43.2) 80 (54.8) 48 (39.0) 4 (3.2) 8 (9.2) 13 (21.7) 10 (11.8) (0.00)
3 131 (35.4) 25 (17.1) 54 (43.9) 121 (96.0) 79 (90.8) 46 (76.6) 74 (87.0)
Total 370 146 122 126 87 60 85

Stage

1 227 (61.4) 100 (68.5) 69 (56.1) 82 (65.1) 56 (64.4) 29 (48.3) 38 (44.7) 0.116
2 120 (32.4) 37 (25.3) 37 (30.1) 33 (26.2) 24 (27.6) 25 (41.7) 33 (38.8) (0.008)
3 22 (5.9) 9 (6.2) 15 (12.2) 11 (8.7) 7 (8.0) 6 (10.0) 14 (16.5)
Total 369 146 121 126 87 60 85

Tumour type

Invasive ductal 202 (54.6) 37 (25.3) 67 (54.5) 103 (81.7) 70 (80.5) 53 (88.3) 73 (85.9) 0.23
Invasive lobular 28 (7.6) 25 (17.1) 12 (9.8) 0 (0) 1 (1.1) 1 (1.7) 0 (0) (0.00)
Medullary 1 (0.3) 0 (0) 0 (0) 14 (11.1) 9 (10.3) 0 (0) 5 (5.9)
Mixed type 112 (30.3) 74 (50.7) 37 (30.1) 6 (4.8) 6 (6.9) 6 (10.0) 6 (7.1)
Mucinous 8 (2.2) 0 (0) 1 (0.8) 0 (0) 0 (0) 0 (0) 0 (0)
Other 0 (0) 0 (0) 0 (0) 2 (1.6) 0 (0) 0 (0) 0 (0)
Papillary 1 (0.3) 0 (0) 1 (0.8) 1 (0.8) 0 (0) 0 (0) 0 (0)
Tubular 16 (4.3) 6 (4.1) 4 (3.3) 0 (0) 0 (0) 0 (0) 0 (0)
Total 364 142 122 126 86 60 84

Nottingham Prognostic Index

Excellent 54 (14.6) 29 (19.9) 14 (11.4) 0 (0) 0 (0) 1 (1.7) 1 (1.2) 0.203
Good 93 (25.1) 49 (33.6) 21 (17.1) 2 (1.6) 5 (5.7) 5 (8.3) 4 (4.7) (0.00)
Moderate 1 103 (27.8) 34 (23.3) 30 (24.4) 50 (39.7) 22 (25.3) 18 (30.0) 24 (28.2)
Moderate 2 70 (18.9) 24 (16.4) 35 (28.5) 45 (35.7) 37 (42.5) 18 (30.0) 26 (30.6)
Poor 39 (10.5) 8 (5.5) 15 (12.2) 20 (15.9) 21 (24.1) 13 (21.7) 19 (22.4)
Very poor 8 (2.2) 2 (1.4) 5 (4.1) 7 (5.6) 1 (1.1) 4 (6.7) 9 (10.6)
Total 367 146 120 124 86 59 83
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Having removed unclassified tumours, we compared the
classification of the 619 remaining tumours between the classifica-
tion using 25 and 10 biomarkers. There was a good agreement
between classes (Table 2, kappa index¼ 0.79, Kendall’s tau
correlation coefficient¼ 0.92). Any shift in classification between
tumours primarily occurred within the main (luminal and basal)
groups.

The classification approach was validated using an additional set
of 238 patients for which IHC data for the ten biomarkers was
available. Results showed that the breast cancer classes were
populated with similar distribution to our initial findings (68, 61,
36, 23, 24, and 25 patients, respectively) and presented clear
characteristics of the six classes.

Class characterisation. Figure 1 provides a visualisation of the
separation of the classes and the association with the biomarkers.
Table 3 summarises the performance of the principal component
analysis where the first two components accounted for 44% of the

variance. Figure 1A shows the biplot obtained for all patients, in
which those not assigned to any class (unassigned) have been
coloured grey. It can be seen that these fall mainly into the centre
region of the biplot. Figure 1B shows the biplot obtained for only
patients assigned to all classes—except the unassigned cases. The
first axis was mainly determined, on the left, by luminal markers
including luminal cytokeratin (CK7/8), hormone receptors (ER
and PgR), and MUC1 overexpression and, on the right, by basal
cytokeratin (CK5/6) and partly by p53 overexpression. The second
axis is determined, on the bottom, by HER2, HER3, and HER4
overexpression.

The core molecular classes identified in this study included
three luminal class tumours characterised by high luminal CK7/8
and hormone receptor (ER and PgR) expression. Luminal A and
luminal B tumours showed high expression of CK7/8, ER, HER3
and HER4 but were separated by relatively lower levels of PgR
expression in luminal B compared with luminal A tumours. In
contrast, luminal N tumours showed differential expression of
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Figure 1. Biplots of classes projected on the first and second principal component axes: (A) for all patients and (B) for only patients assigned to a
class.

Table 2. Comparison of the distribution of breast tumours by classification using 25 and 10 biomarkers

Classification (10 biomarkers)

Classification (25 biomarkers) Luminal A (n) Luminal N (n) Luminal B (n) Basal–p53 altered (n) Basal–p53 normal (n) HER2þ (n)
Luminal A 173 3 14 0 1 4

Luminal N 29 99 5 0 0 2

Luminal B 31 3 28 1 3 9

Basal–p53 altered 0 0 0 79 0 1

Basal–p53 normal 1 0 3 17 35 3

HER2þ 0 0 2 6 4 63

Kappa index¼ 0.79; Kendall’s tau correlation coefficient¼ 0.92.

Table 3. Performance of principal component analysis

Component

1 2 3 4 5 6 7 8 9 10

s.d. 1.649 1.298 1.077 0.966 0.881 0.841 0.776 0.736 0.678 0.644

Proportion of variance 0.272 0.168 0.116 0.093 0.078 0.071 0.060 0.054 0.046 0.042

Cumulative proportion 0.272 0.440 0.557 0.650 0.727 0.798 0.858 0.913 0.96 1.000
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HER3 and HER4. There were two basal classes of tumour,
characterised by low luminal cytokeratin and high basal expression
(CK5/6) along with showing a triple-negative phenotype (i.e., ER,
PgR and HER2 negative). They were, however, separated by p53
protein expression levels where the tumours either expressed high
p53 (basal–p53 altered) or low p53 (basal–p53 normal). The
remaining class (HER2) was characterised by high luminal
cytokeratin and HER2 overexpression but showed heterogeneity
in the expression of hormone receptors. We therefore split these
tumours into two subclasses those expressing ER (HER2þ /ERþ )
and those that showed an ER� phenotype (HER2þ /ER� ). The
unassigned tumours showed heterogenic expression of all ten
markers. A summary of the breast cancer classes and relative
biomarker expression is shown in Figure 2A and B.

Clinical characterisation of patients by class. Significant associa-
tions were found between the identified breast cancer classes with

respect to tumour grade, size, lymph node stage, and histological
tumour type and were in line with expectations (Table 1). The
basal and HER2 classes were significantly associated with larger
tumour size, higher grade, higher stage, invasive ductal carcinoma
of no special type and the poorer NPI prognostic groups. The
luminal classes were significantly associated with tubular, lobular,
and mixed-type tumours where luminal N tumours tended to be of
lobular and mixed type compared with luminal A and B tumours,
which were ductal of no special type.

Short- and long-term patient outcome was compared by tumour
class where each class was significantly associated with distinct
breast cancer-specific survival (BCSS) rates (Figure 3A and B,
Table 4) and DFS (Figure 3C and D, Table 5). The highest
frequency of mortality due to breast cancer in the first 5 years was
seen in patients whose tumours belonged to the HER2 classes, with
the HER2/ER� being the worst. A lower, but still high, frequency
was seen in patients with tumours from luminal B and basal

Breast cancer

ER-
Basal CKs+

ER-
Luminal CKs+

HER2+ Unassigned
76 (7.1%)

Luminal

PgR+

HER3+
HER4+
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normal
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Figure 2. Breast cancer biological classes. (A) Classification and proportions of cases. (B) Representative immunohistochemical profiles of the
biological classes of breast cancer.
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classes. Luminal A and N had the lowest frequency of breast
cancer-specific death. Over a period of 20 years, luminal B and
HER2þ /ERþ tumours showed the worst BCSS (Figure 3B).
A similar pattern of outcome in the biological classes was observed
for DFS as for BCSS although the basal–p53 normal class had a
longer disease-free interval compared with the basal–p53 altered
tumours during the first five years.

A boxplot of the NPI split by class is shown in Figure 4
illustrating significant differences between the NPI score and

biological class (overall Kruskal–Wallis Po0.01). Table 6
summarises P-values for the class-by-class comparisons. It can be
seen that the NPI for luminal N tumours is lower than that of the
other luminal classes (luminal A and B). HER2þ /ER� class of
tumours have a higher NPI score than the other classes. This is an
interesting observation for two reasons. First, it confirms that the
NPI is providing discriminant information between the biological
classes. Second, it suggests that the class divisions are providing
additional information to the NPI.
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Figure 3. Breast cancer biological classes in relation to (A) 5-, (B) 20-year breast cancer-specific survival and (C) 5-, (D) 20-year disease-free
survival.

Table 4. Kaplan–Meier P-values between breast cancer classes and BCSS

Breast cancer class

Luminal A Luminal N Luminal B
Basal–p53

altered
Basal–p53

normal HER2/ERþ

BCSS (5 years)

Luminal N 0.447
Luminal B 0.508 0.169
Basal–p53 altered 0.00199* 0.00147* 0.00419*
Basal–p53 normal 0.0222 0.0152 0.0473 0.294
HER2/ERþ 0.205 0.0603 0.553 0.0578 0.44
HER2/HER� 0.0418 0.0337 0.0861 0.328 0.933 0.429

BCSS (20 years)

Luminal N 0.432
Luminal B 7.74e-09* 7.57e-05*
Basal–p53 altered 0.00906* 0.182 0.0483
Basal–p53 normal 0.00594* 0.128 0.144 0.805
HER2/ERþ 1.57e-07* 0.000246* 0.616 0.0425 0.0823
HER2/HER� 3.07e-07* 0.00123* 0.775 0.074 0.130 0.768

*Po0.01.
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DISCUSSION

We have identified core classes of breast cancer using a reduced
panel of 10 protein biomarkers determined by immunohisto-
chemistry which, we believe, are clinically meaningful and
clinically well-characterised. Three of these classes have not been
previously identified and, while their precise prognostic and
therapeutic relevance is not yet clear, their elucidation serves as a
basis for ongoing investigations to address these important factors.
Of course, different clustering techniques can and will result in
different clusters. It is for precisely this reason that we have
previously used concordance between multiple methods to
establish the core classes: the identification of stable clusters
through multiple methods forms a basis of methodological
validation (Soria et al, 2010). A further study is underway to
refine these classes using a more sophisticated fuzzy rule induction
algorithm (Soria et al, 2013).

Also of importance is the observation that 93% of breast cancer
cases clearly exhibit core class membership criteria, whereas only
7.1% remain unclassified. As a matter of fact, when core classes
were derived in Soria et al (2010) the number of unclassified
patients was 413, whereas after applying Rasmani et al’s (2009)
approach this number went down to 76. Some of these unclassified
cases result from the stringent criteria used to derive class
membership but it is important to recognise that other cases do
exhibit characteristics of more than one class. Biologically, this
observation may be explained by the complex heterogeneity of the
molecular portrait of breast cancer. These mixed class cases clearly
merit recognition and investigation to determine their optimal
treatment strategies. However, the well-defined biological and
clinical relevance of the markers used, association with clinico-
pathological variables, and outcome indicates the biological and
clinical relevance of the current molecular classification.

The core molecular classes identified in this study are similar to
those determined by gene expression profiling, but we have been
able to refine the definition of the luminal and basal tumours into
further distinct classes with different clinical outcome. Phenotypic
classification into core luminal, basal, and HER2 classes is possible
using smaller panels of three to five antibodies (Nielsen et al, 2004;
Carey et al, 2006; Cheang et al, 2008; Blows et al, 2010) but such
limited panels cannot further sub classify these core groups. Our
study clearly demonstrates that using a larger panel of 10
biomarkers a higher level of stratification is achieved, which may
have direct and important clinical relevance.

The biological characterisation of the luminal A tumours are
consistent with our previously identified group 1 (Abd El-Rehim
et al, 2005) and Ambrogi’s group 1 (Ambrogi et al, 2006), but are
more distinctly defined. These tumours show high homology to the
luminal-A-type tumours, as identified in gene array studies, which
are also characterised by high gene expression of luminal
differentiation, ER signalling markers and those involved with
EGF (epidermal growth factor) signalling (Sorlie et al, 2006).
Luminal B tumours were also characterised by higher levels of
EGFR, HER3, and HER4 but, in contrast, showed relatively lower
levels of PgR (levels of ER were similar). This class was not
identified by our previous study (Abd El-Rehim et al, 2005), but is
similar to group 2 in the Ferrara series (Ambrogi et al, 2006). This
class of tumour shows homology to the luminal B group of

Table 5. Kaplan–Meier P-values between breast cancer classes and DFS

Breast cancer class

Luminal A Luminal N Luminal B Basal–p53 altered Basal–p53 normal HER2/ERþ

DFS (5 years)

Luminal N 0.755
Luminal B 0.382 0.623
Basal–p53 altered 2.34e-06* 5.1e-05* 0.000635*
Basal–p53 normal 0.0518 0.184 0.233 0.108
HER2/ERþ 0.749 0.668 0.631 0.000522* 0.21
HER2/HER� 7.93e-05* 0.00354* 0.00787* 0.606 0.309 0.00408*

DFS (20 years)

Luminal N 0.506
Luminal B 0.002* 0.0379
Basal–p53 altered 0.0826 0.387 0.467
Basal–p53 normal 0.621 0.986 0.112 0.416
HER2/ERþ 0.000127* 0.00434* 0.306 0.0965 0.0216
HER2/HER� 0.000928* 0.0263 0.488 0.227 0.0763 0.671

*Po0.01.
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Figure 4. Boxplots of NPI by biological class.
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tumours, defined by low-to-moderate expression of luminal-
specific genes, including the ER cluster (Sorlie et al, 2006).

Whereas gene expression profiling has determined two luminal
tumour classes, we have divided those tumours with a luminal
phenotype into a further class (luminal N). This novel class of
tumours while having high levels of ER and PgR, have negative/low
expression of the HER family, particularly HER3 and HER4.
Interestingly, the luminal A and luminal N tumours were similarly
associated with good prognostic factors, including smaller tumour
size, grade 1 tumours, node-negative and tubular mixed carcinomas.
In contrast, the third luminal class, luminal B, although phenotypi-
cally similar to the luminal A tumours (except for PgR expression),
consisted of those tumours with poorer prognostic factors such as
larger tumour size, higher stage, and grade. It is also apparent that
HER3 and HER4 are important discriminators in our breast cancer
classification, although there remains controversy as to their
prognostic significance (Witton et al, 2003; Abd El-Rehim et al, 2004).

We previously identified a basal-like subtype using protein
expression (group 5 (Abd El-Rehim et al, 2005) and Ambrogi’s
group 3 (Ambrogi et al, 2006)). However, consistent with other
studies that showed that the basal-like subtype is heterogeneous
(Laakso et al, 2006), we have now determined two basal-like
classes. These classes were characterised by high expression of basal
cytokeratin (CK5/6), low expression of luminal cytokeratin and a
triple-negative phenotype. They were, however, separated by p53
protein expression level, which is similar to our observation in
triple-negative breast cancer (Biganzoli et al, 2011). High frequency
of tumour suppressor p53 mutations and protein expression have
previously been detected in the basal-like subtype (Ellis et al, 1999;
Sorlie et al, 2001; Pollack et al, 2002). The association between
medullary carcinomas, p53 and basal tumours has been previously
demonstrated (de Cremoux et al, 1999; Sorlie et al, 2001).

Those tumours with high HER2 expression were clustered into
one class, which is homologous to Sorlie’s HER2 group (Sorlie et al,
2001) and Ambrogi’s group 4 (Ambrogi et al, 2006). This class has
the worst overall survival. However, due to the heterogeneity of
HER2 overexpression in both ER-positive and -negative tumours,
we manually split this class into two classes those with (HER2þ /
ERþ ) or without (HER2þ /ER� ) ER expression.

In conclusion, we have previously applied different clustering
techniques with validity indices, and used cluster consensus to
derive a classification that is robust across different multivariate
procedures. This has highlighted the dangers of relying on a single
clustering technique, as has often been the case in other studies,
particularly in the interpretation and management of high-
throughput assay results. As a consequence, we have now further
refined the classification of breast cancer based on a panel of 10
proteins assessed by immunohistochemistry to identify distinct
biological classes of breast cancer. Using 10 biomarkers has
produced a more realistic distribution of breast cancer patients into
the three main classes of luminal, basal and HER2, which were
established in Sorlie et al (2001) and confirmed by subsequent

papers (Abd El-Rehim et al, 2004). The fuzzy approach used to
derive the classification with 10 markers has produced a breast
cancer classification consistent with the proportion of cancer
subtypes reported in other studies, while the previous classification
with 25 markers assigned, for example, only 7% of patients to the
HER2þ group. We have shown that, in addition to the luminal A,
luminal B and HER2 classes identified using gene expression
analysis, there are three further biologically and clinically relevant
classes of breast cancer, namely the luminal N, basal–p53- altered,
and basal–p53 normal classes. Furthermore, we have confirmed the
complex biological heterogeneity of breast cancer through the
identification of cases exhibiting characteristics of mixed class.
Studies are underway to further validate these classes and to enable
the creation of a clinically usable algorithm for prospective
classification, taking into account current therapeutic strategies.
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