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Abstract: Orexin peptides comprise two neuropeptides, orexin A and orexin B, that bind two
G-protein coupled receptors (GPCRs), orexin receptor 1 (OXR1) and orexin receptor 2 (OXR2).
Although cell bodies that produce orexin peptides are localized in a small area comprising the
lateral hypothalamus and adjacent regions, orexin-containing fibres project throughout the neuraxis.
Although orexins were initially described as peptides that regulate feeding behaviour, research has
shown that orexins are involved in diverse functions that range from the modulation of autonomic
functions to higher cognitive functions, including reward-seeking, behaviour, attention, cognition,
and mood. Furthermore, disruption in orexin signalling has been shown in mood disorders that
are associated with low hedonic tone or anhedonia, including depression, anxiety, attention deficit
hyperactivity disorder, and addiction. Notably, projections of orexin neurons overlap circuits involved
in the modulation of hedonic tone. Evidence shows that orexins may potentiate hedonic behaviours
by increasing the feeling of pleasure or reward to various signalling, whereas dysregulation of orexin
signalling may underlie low hedonic tone or anhedonia. Further, orexin appears to play a key role
in regulating behaviours in motivationally charged situations, such as food-seeking during hunger,
or drug-seeking during withdrawal. Therefore, it would be expected that dysregulation of orexin
expression or signalling is associated with changes in hedonic tone. Further studies investigating this
association are warranted.

Keywords: orexin; sleep; arousal; reward; motivation; hedonic tone; depression; anxiety; ADHD;
anhedonia

1. Introduction

Neuropeptides orexin A and orexin B were first described in the late 1990s and were
initially shown to regulate feeding behaviour [1,2]. Since their discovery, it has been shown
that orexins are involved in diverse functions that range from the modulation of autonomic
functions (i.e., food intake, sleep regulation, and cardiovascular function), and promotion
of physical activity, as well as reward-seeking behaviour and higher cognitive functions,
including attention, cognition, and mood [3,4]. While the roles of orexin in the regulation
of food intake, sleep/wake cycles, and addictive behaviours have been extensively studied
and reviewed [4–10], the role of these peptides in the modulation of mood and affect has
not been as thoroughly explored. The aim of this review is to provide a general overview
of the neurobiology and physiological roles of orexin, with a focus on its role in sleep as
well as its activity as a mediator of reward pathways, mood, and affect. Additionally, this
review will specifically discuss the potential overlap of the orexin projection system its
effect on the modulation of hedonic tone.
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2. Neurobiology of the Orexin System

Orexins comprise two neuropeptides, orexin A and orexin B, which are proteolytically
cleaved from a precursor peptide, prepro-orexin [11]. Orexin A is a 33-amino acid peptide
with an N-terminal proglutanyl residue, two intrachain disulfide bonds, and C-terminal
amidation [11]. Orexin B is a 28-amino acid, C-terminally amidated linear peptide. The two
peptides have very similar C-terminals and different N-terminals. Orexins were initially
identified as ligands for orphan G-protein coupled receptors (GPCRs), which were later
identified as orexin receptor 1 (OXR1) and orexin receptor 2 (OXR2) [1,2]. Orexin A has an
equal affinity to both receptors, whereas orexin B has a 10-fold higher affinity for OXR2
than for OXR1 [12].

Although cell bodies containing prepro-orexin mRNA and orexin peptides are local-
ized in a small area that includes the lateral hypothalamus and adjacent regions, orexin-
containing fibres project throughout the neuroaxis, from the spinal cord to cortical re-
gions [1,2]. Accordingly, OXR1 and OXR2 receptors are widely distributed throughout the
central nervous system [13–16]. Although the distribution patterns of the two receptors
overlap to a great extent, some regional differences have also been reported. For example,
OXR1 is more highly expressed in cortical regions, the bed nucleus of the stria terminalis,
and the locus coeruleus, whereas OXR2 expression is higher in the NAc [16].

3. Overview of Physiological Roles of the Orexin System
3.1. Role of Orexin in the Regulation of Sleep and Arousal

The role of orexin in promoting arousal and waking from sleep has been well doc-
umented, with evidence showing that orexin plays a critical role in the regulation of
sleep-to-wake transitions [3,17]. Additionally, an orexin deficiency is observed in nar-
colepsy, a disorder characterized by excessive sleepiness, sleep paralysis, and in some cases,
episodes of cataplexy [3,17].

Further to this point, orexin neurons have been shown to be more active during wake-
fulness than during sleep, and their stimulation causes waking within several seconds [18].
Physiological studies have shown that orexin lengthens, and orexin disruption shortens
continuous periods of wakefulness. Furthermore, loss of orexin neurons or receptors are
hallmarks of narcolepsy/cataplexy in animals and humans. Additionally, orexin projec-
tions have been shown to excite wake-promoting regions, including the locus coeruleus
norepinephrine secreting neurons, dorsal raphe serotonin secreting neurons, tuberomam-
millary histamine secreting neurons, and basal forebrain/brainstem acetylcholine secreting
neurons [18].

Neuroanatomical studies have further supported the role of the orexin system in
sleep and wakefulness by demonstrating that orexin-containing neurons project to key
brain regions involved in the regulation of sleep-wake cycles, including histaminergic
neurons in the tuberomammillary nucleus (TMN), cholinergic and GABAergic neurons of
the basal forebrain, dopaminergic neurons within the ventral tegmental area (VTA), and
norepinephrine neurons in the LC [17]. In addition, arousal has been shown to occur from
the direct stimulation of the mesopontine cholinergic nuclei and the locus coeruleus (LC),
which contain noradrenergic neurons [19]. Additionally, neurons in the basal forebrain, an
attention- and arousal-sustaining area, have been shown to be depolarized by orexin [20].
The basal forebrain receives projections from midbrain dopamine neurons, and it has
been proposed that this connection may underlie the coupling of motivation to arousal
states. Notably and in support, the VTA dopamine neurons, which have been implicated
in motivation, have also been shown to be active in the promotion of arousal and the
initiation of sleep-preparatory behaviours, also express orexin receptors. Additionally,
administration of orexin A into the LC increases firing rate, whereas optogenetic inhibition
of LC neurons blocks orexin-induced sleep-to-wake transition [21–24].
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3.2. Role of Orexin in the Regulation of Affect, Motivation, and Reward

The role of the orexin system in the regulation of motivation and reward-seeking
behaviours has been well established [3]. Evidence for the role of orexins in modulation of
these function primarily comes from studies of food-seeking and drug-seeking behaviours
and has been extensively reviewed by other authors [4,25,26]. Generally, this evidence
indicates that the orexin system receives information about the internal environment, such
as macronutrient or circulating hormone levels, blood pressure, and circadian rhythms, and
integrates this information to coordinate behaviours and arousal levels that are appropriate
for reward-directed behaviours, such as acquisition of food [4]. Additionally, the orexin
system specifically mediates food seeking and consumption in motivationally charged
circumstances, such as hunger or during Pavlovian cues [18].

The actions of orexins on motivation and reward-seeking are mediated by projections
to areas of the mesolimbic reward pathway, including the VTA and the nucleus accumbens
(NAc) [4]. Within the VTA, 20% of neurons that originate in the lateral hypothalamus dis-
play orexin immunoreactivity [27]. In the VTA, orexin-containing axons make appositional
contacts onto both dopaminergic and GABAergic neurons. Further, orexin is co-localized
with dopamine in neuronal fibres in the medial prefrontal cortex (mPFC) and the medial
shell of the NAc, indicating that orexin may interact with dopamine in these reward ar-
eas [28]. Further, orexin neurons also project to the amygdala, a region that connects the
basal forebrain to the classical reward systems of the LH (Schmitt et al., 2012).

3.3. Influence of Orexin on Attention/Cognition and Learning

Given that arousal and attention are closely linked, it is not surprising that orexin
has also been implicated in the regulation of attention. Several lines of evidence indicate
that orexin contributes to attentional processing and learning via actions on the mPFC,
cholinergic system in the basal forebrain, dopaminergic neurons in the ventral midbrain,
and noradrenergic neurons in the LC [19]. Studies have shown that administration of orexin
into the basal forebrain excites cholinergic neurons, induces Ach release, and increases
attention. Further, administration of orexins into the basal forebrain excites cholinergic
neurons that release Ach in the cerebral cortex and thereby promotes wakefulness. Orexin
has also been shown to improve attentional processes via actions in the medial prefrontal
cortex (mPFC) [29]. In one study, administration of orexin B into the PFC improved accuracy
under high attentional demand by exciting the same thalamocortical synapses that are
activated by Ach from the basal forebrain [29]. These findings suggest that orexin may
promote attention through an increased Ach release and direct actions on thalamo-cortical
projections.

Orexins have also been shown to play a role in appetitive and motivated learning
via actions in the mPFC, LC, and the hippocampus. In the mPFC, where they increase
sustained attention and modulation of basal forebrain neurons [18]. In the LC, orexins
have been shown to play a role in the acquisition of Pavlovian fear conditioning, and
hippocampal orexins play a role in learning performance in a Morris water maze task.
Further, orexin neurons are required for attentional aspects of motivated learning and
acquisition of morphine-conditioned place preference requires orexinergic projections
to the VTA. Finally, antagonism of orexin receptors in the VTA reduced cocaine-evoked
premature responses in a five-choice serial reaction time task, indicating that orexin neurons
are involved in executive function in normal and pathological conditions [30].

3.4. Influence of Orexin on Mood and Mood and Psychiatric Disorders

Given the roles of orexin in reward-seeking, arousal, and motivation, it has been
hypothesized that dysregulation of orexin signalling has been demonstrated in psychiatric
disorders that are characterized by deficits in these states. A study in humans showed
that orexin-A levels are maximal during positive emotion, social interaction, anger, and
increase at wake onset, whereas lowest orexin-A levels are observed during sleep, during
wakefulness just before sleep, and during wakefulness while in pain, indicating that orexin-
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A levels are linked to specific emotions and state transitions [31]. Further, orexin signalling
may be affected in ADHD, anxiety, depression, and addiction.

3.4.1. Depression

Studies of the role of orexin in depression have reported that depression is associated
with changes in the level of orexin and their receptors, although both increases and de-
creases in orexin levels have been reported (Deats et al., 2014; Nocjar et al., 2012; Nollet et al.,
2011). One study using a rat model of depression showed that depression was associated
with an increase in the number of orexin-positive neurons in the hypothalamus. However,
a study of an animal model of seasonal affective disorder (SAD) reported a reduction in
the number of orexin-A immunoreactive neurons in the hypothalamus and attenuated
orexin-A fibre density in the dorsal raphe nucleus of animals with SAD compared with
controls [32]. Further, treatment of animals with SB-334867, a selective OX1R antagonist,
led to a depressive phenotype in control animals, indicating that loss of OX1R activation led
to depressive symptoms [32]. Rats with depressive-like symptoms were also shown to have
lower levels of orexin in the hypothalamus, mPFC, and VTA compared with controls, indi-
cating that a reduction in orexin levels was associated with depressive-like symptoms [33].
In another study, animals with depressive-like symptoms had a lower expression of OXR2
in the thalamus and the hypothalamus compared with controls [34]. However, the same
group reported that treatment with dual orexin receptor antagonist almorexant prevented
the development of depressive-like symptoms, indicating that pharmacological blockade
of the orexinergic system induces an antidepressant-like effect.

Studies in humans have also investigated changes in orexin levels in depressive
disorders and after suicide attempts. In a study of 101 patients with a recent suicide
attempt, low orexin-A level in the CSF was correlated with difficulties initiating activities
(lassitude), a greater decrease in frequency and extent of voluntary movement, and a greater
rating of global illness [35]. Another study by the same group showed that CSF levels of
orexin-A were significantly lower in patients with MDD than in those with adjustment
disorder and dysthymia after a suicide attempt [36]. Further, a follow-up study of ten
patients showed that orexin-A levels were higher one year after compared to immediately
after the attempt [37]. The authors concluded that suicidal patients with MDD may have
reduced levels of orexin-A, a peptide regulating the state of arousal.

Another study that analysed 120 postmortem samples from patients with depression,
some of whom died by suicide, reported that orexin A immunoreactivity was significantly
increased in female, but not male patients with depression compared to controls [38]. Addi-
tionally, unlike controls, patients with depression did not exhibit the diurnal fluctuation
in orexin immunoreactivity. Notably, male patients who died by suicide had significantly
higher expression or OXR2 mRNA in the anterior cingulate cortex compared to male
controls. Taken together, these findings indicate that changes in the orexin system are
associated with depression and that these changes may be sexually dimorphic. However,
in contrast to aforementioned studies, one study of 15 patients reported that there were no
differences in CSF orexin levels between patients with major depressive disorder (MDD),
those with manic disorder, and control participants [39]. Although these data are not
consistent with those from other studies, the number of participants was low and therefore
may have been insufficient to detect statistical differences in orexin levels between groups.

Taken collectively, evidence suggests that changes in orexin levels or orexin signalling
may be associated with depression; however, given the heterogeneity of the findings by
animal and human studies, further research is needed to determine the role of orexins and
their receptors in depression.

3.4.2. Anxiety

Orexins play a role in the modulation of stress responses and have been implicated in
promoting anxiety-like behaviours in rats, with both OX1R and OX2R playing a role [17,40].
Administration of orexin has been shown to induce panic-like behaviours in several an-
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imal models [41,42]. Conversely, treatment with OXR1 antagonists reduced panic-like
behaviour and cardiovascular responses to anxiety-inducing stimuli in an animal model of
panic [43–46]. Additionally, stimulation of OX2Rs induced anxiolytic behaviours, demon-
strated by reduced fear conditioning and conflict freezing and startle in a rat model of
anxiety [47].

Induction of anxiety-like behaviours is mediated by projections of orexin neurons to
regions involved in mediating stress responses, including the amygdala and bed nucleus of
stria terminalis [48,49]. Additionally, anxiety-promoting role of orexin has been shown to
be mediated by projections to the paraventricular thalamus and LC [41].

An increase in orexin-A in anxiety has also been demonstrated in humans. In a study
of 56 adolescents diagnosed with an anxiety disorder and 32 healthy controls, orexin-A
levels were significantly higher in those with anxiety [50]. Furthermore, there was a positive
correlation trend between trait anxiety and orexin-A [50]. Another study in human subjects
reported that variations in HCRTR1 gene, which mediates hyperarousal, was associated
with the aetiology of panic disorder and agoraphobia. Specifically, the presence of HCRTR1
rs2271933 allele was significantly associated with panic disorder/agoraphobia, with the
association being particularly strong in female participants [51].

3.4.3. Addiction

The role of orexins in reward-seeking behaviours is closely related to its role in ad-
diction, which has been extensively summarized in other reviews and will only be briefly
summarized here (for example, see [3,4,7]. Studies of the orexin system reported that orexin
neurons in the lateral hypothalamus are activated by drugs of abuse (i.e., cocaine, morphine,
and fentanyl) [52–54]. Further, evidence shows that seeking for all major addictive drugs is
more involved than by natural non-drug reinforcers [3]. Studies have shown that prepro-
orexin mRNA is upregulated following alcohol consumption, or heroin self-administration.
Further, acute withdrawals from morphine and heroin, as well as intermittent access to
fentanyl also increase orexin expression. Conversely, administration of OXR1 antagonist
SB334867 reduces intake of oxycodone, heroin, fentanyl, and remifentanil, and reversed
addiction behaviours induced by intermittent access to fentanyl [3,53].

Postmortem analysis of human brains has shown a 54% increase in the number of
orexin-producing neurons in brains of heroin addicts compared with controls, with an
average orexin-producing cell being 22% smaller in addicts compared with controls [55].
Taken together with studies in animals, these findings indicate that addiction may be
associated with dysregulation of orexin production and/or signalling.

3.4.4. ADHD

Studies evaluating the role of orexin in ADHD are limited, however, it has been demon-
strated that orexin A levels were significantly lower in children with ADHD than those
without ADHD [56]. Further, a study of patients with narcolepsy showed that those with
orexin deficiency (i.e., narcolepsy type 1) displayed higher severity of ADHD hyperactive
domain and depressive symptoms compared with those without orexin deficiency (i.e.,
narcolepsy type 2) [57].

3.4.5. Schizophrenia

Although the evidence for the potential role of the orexin system in schizophrenia is
limited, some studies indicate that the orexin system may contribute to the neurochemical
alterations associated with schizophrenia. In an animal model of schizophrenia, charac-
terized by an increased dopamine neuron activity, systemic administration of dual orexin
receptor normalized the increase in dopamine neuron activity [58]. Similar findings were
observed following the administration of the orexin receptor antagonist into the paraven-
tricular nucleus of the thalamus, a region that provides peptidergic inputs to the NAc.
Additionally, studies in humans have shown that orexin levels may be altered in individuals
with schizophrenia. One study has shown that individuals with schizophrenia treated with
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antipsychotic drug haloperidol have lower CSF orexin A levels compared to those who
were not medicated [59].

Another study demonstrated that patients with schizophrenia had significantly higher
plasma orexin A levels than healthy individuals [60]. Further, the same study showed
that patients with high orexin A levels had significantly fewer negative and disorganized
symptoms and tended to have fewer perseverative errors than those with normal orexin
A levels.

3.4.6. Overview of Hedonic Tone and Anhedonia

As reviewed previously, anhedonia is the state of reduced ability to express feelings of
pleasure [61]. Anhedonia is characterized by deficits in reward-related processing, which
may present as loss of interest or pleasure and may impede an individual’s ability to engage
in goal-directed behaviours. Pathological hedonic dysfunction may contribute to affect-
related disorders, including depression and addiction [62]. Hedonic tone, also referred to
as hedonic capacity or hedonic responsiveness, is the trait or genetic predisposition that
underlies an individual’s baseline range and lifelong characteristic ability to feel pleasure.
Low hedonic tone represents a reduced capacity to experience pleasure, thus increasing
the likelihood of experiencing anhedonia. It has been proposed that individuals with low
hedonic tone may have an increased need for stimulation, which may manifest as seeking
external stimulation (e.g., risky behaviour or substance abuse) or internal stimulation (e.g.,
fantasy) to raise their hedonic tone [61]. Individuals with low hedonic tone may attempt to
cope by maximizing pleasure or raise mood from their low baseline tone. In the absence
of such stimulation, individuals may experience a shift toward their usual, lower hedonic
tone, and therefore a drop in their mood to their baseline dysphoric state.

The interplay between hedonic tone and the experience of reward indicates that hedo-
nic tone may be regulated by neural pathways involved in processing reward. Accordingly,
studies of neurobiology of hedonic tone have identified dopaminergic circuits as playing a
key role in the maintenance of hedonic tone [61]. Specifically, hedonic tone is maintained
by circuits that contain bottom-up and top-down projections into the prefrontal cortex,
lateral habenula, and the VTA dopamine system. Regions presumed to contribute to mod-
ulation of hedonic tone are summarized in Figure 1. Hedonic tone is closely related to
mood, reward, and motivation, and is modulated by the limbic-cortical-striatal-pallidal-
thalamic (LCSPT) circuits. In healthy individuals, presentation of positive stimuli increases
the activation of regions involved in reward processing, including the caudate, putamen,
NA, basal forebrain, medial frontal region, anterior cingulate cortex, inferior parietal area,
right fusiform, and lingual gyrus [63–65]. In contrast, suppressing a positive emotion is
associated with activation of the right ventrolateral prefrontal cortex [66]. Furthermore,
anhedonia is negatively correlated with the activation of the NAc, basal forebrain, and the
hypothalamus, and positively correlated with the activity in the ventromedial prefrontal
cortex [64,67,68]. These findings indicate that anhedonia alters the activity of regions in-
volved in reward processing and may be partly due to the insufficient activation of circuits
that regulate feelings of pleasure.
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Figure 1. A schematic diagram showing the overlap of orexin projections with hypothesized regions
contributing to modulation of hedonic tone. Orexin neurons are shown in blue. Abbreviations: A,
amygdala; ACG, anterior cingulate cortex; C, caudate; DLPFG, dorsolateral prefrontal cortex; H,
habenula; I, insula; LC, locus coeruleus; LHA = lateral hypothalamus; NA, nucleus accumbens;
OMPFC, orbitomedial prefrontal cortex; P, putamen; RN, raphe nucleus; SCG, subgenual cingulate
cortex; T, thalamus; VTA, ventral tegmental area; and VMPFC, ventromedial prefrontal cortex.

Low hedonic tone has been associated with several psychiatric disorders, including
MDD, substance use, and schizophrenia [61]. For example, evidence indicates that neural
circuits involved in maintaining hedonic tone may be altered in individuals with depression.
Patients with MDD show attenuated activation of the ventral striatum, medial frontal cortex,
and the NA, and increased activation in the inferior frontal cortex, subgenual anterior
cingulate cortex, thalamus, putamen, and the insula [61]. These findings suggest that
alteration of neural pathways involved in the maintenance of hedonic tone may underlie
changes in hedonic tone observed in patients with psychiatric disorders.

4. Potential Role of Orexin in Modulation of Hedonic Tone and Anhedonia

Although the role of orexin in the modulation of hedonic tone has not been specifically
investigated, studies in animal models indicate that orexin is involved in the modulation of
hedonic behaviour, as it relates to food intake and drug abuse. Additionally, a mounting
body of evidence indicates that mood disorders characterized by low hedonic tone, such as
depression, anxiety, addiction, and ADHD, are also associated with alterations in orexin
signalling [3,4,17,32–34,40,47,56]. Further, projections of orexin-containing neurons overlap
circuits involved in the regulation of hedonic tone and orexin administration in these areas
have been shown to affect mood and hedonic behaviours.
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Evidence for orexin in motivated and reward-seeking behaviours, as well as evidence
showing alterations in orexin signalling in mood disorders that are characterized by low
hedonic tone, suggests that the orexin system may also be involved in the maintenance
of hedonic tone. More specifically, orexin may potentiate hedonic behaviours (e.g., intake
of food or drugs of abuse) by increasing the feeling of pleasure or reward to various
stimuli [4]. Conversely, dysregulation of orexin signalling may underlie low hedonic tone
or anhedonia, such as that perceived in orexin may potentiate hedonic behaviours by
increasing the feeling of pleasure or reward to various stimuli. Conversely, dysregulation
of orexin signalling may underlie low hedonic tone or anhedonia, such as that perceived in
MDD, anxiety, or ADHD.

Neural circuits involved in the regulation of hedonic tone overlap with the projections
of orexin-containing neurons (Figure 1). Further, orexin has been shown to have direct
effects on neurons in several of these regions. Studies showing direct actions of orexin
neurons in these regions in animal models are summarized in Table 1. A large body
of evidence has shown that direct administration of orexin into the NAc, VTA, medial
prefrontal cortex, and the ventral pallidum affects neuronal activity in animal models
and elicits a wide variety of behaviours, including drug intake, fear, conditioned place
preference, and motivation for drug administration [69–72]. Evidence shows that orexin
A increases the activity of dopaminergic neurons in the VTA and dopamine release in the
NAc, indicating that VTA-NAc dopamine circuits may mediate the effects of orexin on
hedonic behaviours [70,71,73–77]. Further, orexin administration into the ventral pallidum
and mPFC has also been shown to elicit hedonic behaviours, including sucrose and drug
(i.e., opioid and alcohol) [69] intake [72,78]. Notably, a study that used a rat model of
maternal separation showed that early life stress increases the expression of OXR1 and
OXR2 levels in the PFC.

Table 1. Summary of animal studies showing behavioural effects of orexins in regions involved in
the regulation of hedonic tone.

Reference Effects of Orexin

Nucleus Accumbens

Assar et al., 2019 [79] Administration of OX1R antagonists reduced acquisition of morphine sensitization
OX2R antagonist produced a similar effect, but at a higher dose

Fartootzadeh, 2019 [80] Administration of OX2R antagonists in NAcc inhibited nicotine-induced increase in
neuronal excitation

Lai et al., 2018 [74] Activation of OX1R by orexin A facilitated sucrose-stimulated DA transmission by
increasing the basal activity of VTA DA neurons

Lei et al., 2016 [69] Administration of OX1R antagonist in the medial NAcc shell and mPFC significantly
reduced excessive alcohol intake

Castro et al., 2016 [70] Orexin enhances sucrose “liking” and intake but scopolamine in the caudal shell shifts
“liking” toward “disgust” and “fear”

Liu et al., 2020 [71] Microinjection orexin-A significantly increased palatable food intake; the effect was
inhibited by pretreatment with OX1R antagonist

Mayannavar et al., 2016 [81] Microinjection of orexin A antagonist in the NAc reduced water and alcohol intake, but did
not affect preference to alcohol

Patyal et al., 2012 [73]
Application of Orexin A increased dopamine release in the NAcc shell without altering
reuptake at dopamine terminals, indicating that locally released orexin A can modulate

dopamine release in NAcc shell
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Table 1. Cont.

Reference Effects of Orexin

Sahafzadeh et al., 2018 [82] Administration of OX1R and OX2R antagonists into the NAcc attenuated the effect of food
deprivation on morphine reinstatement

Kwok, C et al., 2021 [83] OX1R inhibition in NAcc shell altered alcohol intake in male, but not female mice. OX1R
inhibition reduced compulsion-like alcohol intake in both sexes

Lei, K., et al., 2019 [84] Activation of OX1Rs promoted alcohol intake during intermittent-access

Ventral Tegmental Area

Azizbeigi et al., 2019 [85] OX1R antagonist suppressed morphine reinstatement induced by stress or drug priming

Azizbeigi et al., 2019 [86] OX2R antagonist suppressed morphine reinstatement induced by stress or drug priming

Taslimi et al., 2012 [87] Orexin A elicited conditioned place preference; the response was inhibited by
administration of D1 and D2 receptor antagonists into the NAcc

Yazdi et al., 2015 [88]

Administration of OX2R antagonist into the VTA or NAcc dose-dependently inhibited the
development of LH stimulation-induced conditioned place preference

Co-administration of low doses of OX2R antagonist and CB1 receptor antagonist into the
NAcc reduced conditioning scores

Azizi et al., 2018 [89] OX2R antagonist inhibited the development of nicotine-induced conditioned place
preference

Bernstein et al., 2018 [90] OX1R knock-down delayed cocaine self-administration, indicating that OX1R are involved
in motivation for cocaine

Brown et al., 2016 [91] OX1R antagonist attenuated cue-induced reinstatement of ethanol-seeking

España et al., 2011 [75] Orexin 1 increased the effect of cocaine on tonic and phasic DA signaling and increased the
motivation to self-administer cocaine

Farahimanesh et al., 2017 [92] OXR1 and OXR2 antagonists attenuated morphine conditioned place preference acquisition
during the conditioning phase, and expression during the post-conditioning phase

James et al., 2011 [93] OXR1 antagonist dose-dependently attenuated cue-induced reinstatement of
cocaine-seeking

Moorman et al., 2010 [76]
Orexin (not specified if A or B) increased the activity of DA neurons and augmented

excitatory responses to mPFC stimulation
OX1R antagonist decreased tonic DA cell activity during active but not rest period

Muschamp et al., 2014 [94]

OX1R antagonism increased the threshold for intracranial self-stimulation; the response was
blocked by a dynorphin receptor antagonist

OXR1 antagonism reduced cocaine-induced impulsive behaviour
Orexin A excited DA neurons in the VTA

OX1R antagonist in the VTA reduced cocaine intake

Naghavi et al., 2019 [77] Administration of D1 and D2 receptor antagonists attenuated the acquisition of place
preference by orexin A

Olney et al., 2017 [95] OX1R antagonist reduced binge-like ethanol intake but did not affect sucrose intake

Richardson et al., 2012 [96]
OX1R antagonist administration attenuated the morphine conditioned place preference

score induced by administration of carbachol into the LGA, indicating that OX1R plays a
role in sensitization to morphine

Saferi et al., 2019 [97] OX1R and OXR2 antagonists reduced antinociceptive effect induced by carbachol
administration into the lateral hypothalamus

Srinivasan et al., 2012 [98]
Administration of a dual OX1R and OXR2 antagonist into the VTA decreased operant

self-administration of ethanol but not and sucrose
Orexin A increased firing of VTA neurons
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Table 1. Cont.

Reference Effects of Orexin

Taslimi et al., 2012 [87] Orexin A administration induced conditioned place preference; the effect was inhibited by
administration of D1 and D2 receptor antagonists

Terrill et al., 2016 [99] Orexin-A increased intake of palatable food (high-fat food and sucrose), whereas OX1R
antagonist suppressed sucrose intake

Wang et al., 2009 [100] Orexin-A administration reinstated cocaine seeking and caused release of glutamate and
dopamine in the VTA

Zarepour et al., 2014 [101] OX1R antagonist inhibited the acquisition but not expression of LH stimulation-induced
morphine conditioned place preference

Ventral Pallidum

Ho et al., 2013 [72] Orexin amplified hedonic liking for sweetness

Mohammadkhani et al., [78] OXR1 antagonist decreased motivation for remifentanil without affecting remifentanil
consumption Thus, Orexin amplifies motivation to gain reward from drugs and sucrose.

Medial prefrontal cortex

Lei et al., 2016 [69] OX1R antagonist reduced alcohol drinking

Cole et al., 2015 [102] Systemic OX1R antagonist significantly reduced cue-driven consumption in sated rats and
increased Fos expression in mPFC

Dimatelis et al., 2018 [103] Maternal separation increased OXR1 and OXR2 levels in the PFC

Lambe et al., 2005 [29] Similar to nicotine, orexin B infusion into the PFC improved accuracy under high
attentional demand

Additional evidence for orexin mediating hedonic behaviours comes from a study in
rats that evaluated the effects of orexin-A or opioid stimulation of cortical sites on “liking”
reactions and compared the ability of opioid and orexin stimulation to alter the motivation
to consume a sweet food [62]. The study identified two “hedonic hotspots”, one in the
rostral orbitofrontal cortex (OFC), and another one in the insula, where microinjection of
orexin-A increased the number of positive hedonic reactions elicited by sucrose. The effect
of orexin was specific to the positive, hedonic behaviour, as orexin microinjections had no
effect on negative “disgust” reactions elicited by bitter taste. Conversely, microinjections of
orexin in the caudal OFC suppressed the “liking behaviours in the same rats. Further, mi-
croinjection of orexin-A into the rostral OFC hedonic hotspot activated neurons in the NAc
shell, and microinjection of orexin A into the insula activated neurons in the ventral pal-
lidum and NAc shell. These findings indicate that orexin may mediate hedonic behaviour
via actions on the OFC, which, in turn, activates the NAc and the ventral pallidum.

Taken collectively, evidence indicates a strong overlap between circuits that regulate
hedonic tone and orexin-containing neurons and suggests that orexin signalling may be
involved in the modulation of hedonic tone and may contribute to disorders characterized
by low hedonic tone. Further research must look into the potential role of Orexin related
agents in the treatment resistant depression. Additionally, studies are needed to elucidate
other potential targets of the orexin system that may modulate hedonic tone. One potential
target of the orexin system is the rostromedial tegmentum, a region that provides a strong
inhibitory input to dopaminergic neurons in the VTA and plays a critical role in behavioural
inhibition [104].

5. Summary and Conclusions

In summary, orexin peptides are involved in the regulation of a wide variety of physi-
ological functions and behaviours, ranging from autonomic functions such as food intake
and cardiovascular regulation to modulation of higher cognitive functions and mood. Al-
though the role of orexin in modulating hedonic tone has not been specifically investigated,
a large body of evidence indicates that orexin may potentiate hedonic behaviours by in-
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creasing the feeling of pleasure or reward to various stimuli. Conversely, dysregulation of
orexin signalling may underlie low hedonic tone or anhedonia, such as that observed in
depression, anxiety, ADHD, and addiction. Further, orexin appears to play a key role in
regulating behaviours in motivationally charged situations, such as food-seeking during
hunger, or drug-seeking during withdrawal. Therefore, it would be expected that dysregu-
lation of orexin expression or signalling is associated with changes in hedonic tone. Further
studies investigating this association are warranted.
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