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Background and Purpose. Recent studies suggest that abnormal structure and function in the brain network were related to
cognitive and emotional impairment in hyperthyroid patients (HPs). The association between altered voxel-mirrored homotopic
connectivity (VMHC) and neuropsychological impairment in HPs remains unclear. This study is aimed at investigating the
association between the disrupted functional coordination and psychological dysfunction in hyperthyroidism. Method. Thirty-
three hyperthyroid patients and thirty-three matched healthy controls (HCs) were recruited, and they received resting-state
functional magnetic resonance imaging (fMRI) scans and neuropsychological evaluation. The VMHC value was computed to
reveal the functional coordination between homotopic regions in both groups. The neurobehavioral relevancy method was
employed to explore the relationship between the altered VMHC and emotional, cognition measures. Further receiver operating
characteristic (ROC) curve analysis was adopted to examine the power of changed regional VMHC in classifying the patients
with hyperthyroidism. Results. Compared with the HCs, the HPs exhibited significantly declined VMHC values in the bilateral
medial frontal gyrus (MeFG). The interhemispheric asynchrony in the MeFG was positively correlated with Z scores of episodic
memory. The ROC analysis further determined that abnormal VMHC in the MeFG could efficiently distinguish the HPs from
the HCs (area under the curve AUC = 0 808, P < 0 001). Conclusion. The altered interhemispheric coordination in the hub
of the default mode network may implicated in the modulation of episodic memory in HPs patients and the distinct feature
of the interhemispheric asynchrony may be treated as a potential target for the early recognition and intervention for the HPs
with cognitive impairments. Clinical Trial Registration. This is a study of the neurological basis for dysfunction of mood and
cognition in hyperthyroid patients: a resting-state fMRI study (registration number: ChiCTR-OOC-16008607).

1. Introduction

Thyroid hormones have been reported to contribute to brain
development through neurogenesis, development of glia,
myelination, synaptogenesis, and dendritic proliferation
[1–3]. Deficiency of thyroid hormone in adults can cause

cognitive impairment in a variety of cognitive domains,
even dementia [4–6]. To date, hyperthyroidism, which
refers to excessive circulating thyroid hormones, is associ-
ated with a range of specific neuropsychological impair-
ments such as nervousness, irritability, tremulousness,
depression, anxiety, lack of concentration, and cognitive

Hindawi
Neural Plasticity
Volume 2018, Article ID 9023604, 7 pages
https://doi.org/10.1155/2018/9023604

http://orcid.org/0000-0002-3566-0581
http://orcid.org/0000-0003-0083-6978
http://orcid.org/0000-0001-6496-3998
http://www.chictr.org.cn/usercenter.aspx
https://creativecommons.org/licenses/by/4.0/
https://creativecommons.org/licenses/by/4.0/
https://doi.org/10.1155/2018/9023604


dysfunction [7–11]. On account of this, it is urgent to
explore the potential neural substrate of impaired emotion
and cognition in hyperthyroidism.

Morphological, functional, and metabolic brain alter-
ations in hyperthyroidism have been revealed to be corre-
lated with the changes in mood and cognition, and the
related brain regions are mainly located in the default mode
network (DMN). Zhang et al. [12] reported that the atrophy
gray matter volume (GMV) of the bilateral hippocampus was
negatively correlated with the severity of disease in patients
with HPs. Inconsistently, another voxel-based morphometry
study observed greater GMV in the right posterior lobe of the
cerebellum and reduced GMV in the bilateral visual cortex
and anterior cerebellum in HPs relative to euthyroid subjects,
and the altered GMV was positively related to the perfor-
mance of sensorimotor functions and working memory
[13]. In addition to anatomic brain variations, resting-state
functional magnetic resonance imaging (rs-fMRI) studies
further confirmed aberrant functional connectivity in
patients with HPs. A significantly disrupted functional
connectivity between the hippocampus and bilateral anterior
and posterior cingulate cortex (ACC and PCC) and right
medial orbitofrontal cortex was found [14], and there was a
negative correlation between the altered functional connec-
tivity and severity of depression and anxiety in the HP group.
Furthermore, an enhanced functional connectivity exists
between temporal poles and DMN regions, including the
precuneus, inferior parietal lobule, medial frontal cortex, cin-
gulate cortex, ventromedial orbitofrontal cortex, and hippo-
campus in drug-induced hyperthyroid patients [15]. Our
previous study also revealed similar brain regions with
altered functional connectivity in the HPs, and the impaired
connectivity was positively related to the dysfunction of
emotion and cognition [16]. Regarding metabolic researches,
patients with HPs were proven to have reduced glucose
metabolism in the frontal lobe, temporal lobe, and parahip-
pocampal gyrus compared with HCs, and the activation foci
in the PCC and inferior parietal lobe were correlated with the
severity of anxiety and depression [17, 18]. Meanwhile, two
additional studies demonstrated a prominently decreased
concentration of glutamate in the PCC in the HP group, indi-
cating an underlying role of glutamate in the processing of
brain dysfunction [19, 20]. Above all, the above evidence
converges at one point that the abnormal regions involved
in HPs were mainly located in the DMN, and the functional
alterations were deeply implicated in dysregulation of neuro-
psychological function. Therefore, it is reasonable to specu-
late whether the impairment of the DMN can constitute the
neural substrates of emotional and cognitive dysfunction in
HP patients.

In spite of the amalgam of research collected so far,
hyperthyroidism-related changes in the functional or
structural interactions between cerebral hemispheres have
been directly examined on no occasions. Functional homo-
topy, defined as a high degree of synchrony in spontaneous
activity between geometrically symmetrical interhemispheric
regions, is one of the most prominent attributes of the brain
intrinsic architecture [21]. It considered the process of inter-
hemispheric communication to integrated brain function

underlying coherent cognition and behavior [22, 23]. A novel
measure called voxel-mirrored homotopic connectivity
(VMHC) reflects the resting-state functional synchrony
between each voxel in one hemisphere and its opposite coun-
terpart in the mirrored hemisphere [24, 25]. Alterations in
the VMHC have been discovered in depression [26], schizo-
phrenia [27], chronic tinnitus [28], psychiatric disorders
[29], and substance dependence [24], which suggests that
VMHC may be a sensitive tool to detect the alterations of
interhemispheric coordination in both normal aging and
disease states. The purpose of the present study was to char-
acterize the intrinsic difference of the interhemispheric coor-
dination between HP patients and HCs, so as to explore the
underlying mechanism of neuropsychological impairments
in hyperthyroidism.

2. Materials and Methods

2.1. Participants. A total of thirty-three right-handed hyper-
thyroid patients and thirty-three age-, sex-, and education-
matched healthy controls were recruited (age range: 18-60
years, education range: 9-22 years). All the patients had ele-
vated serum FT3, FT4, and thyrotropin receptor antibody
(TRAb) levels and inhibited TSH levels. However, the thy-
roid hormones of the control group were within normal
ranges (FT3 1.8-4.6 pg/mL, FT4 0.93-1.7 ng/dL, TRAb 0-
1.75 IU/L, and TSH 0.27-4.2μIU/mL). All the patients and
controls received MRI scanning as well as neuropsychologi-
cal assessments. The exclusion criteria and neuropsychologi-
cal tests can be seen in our previous study [16]. The thyroid
hormone levels, disease duration, height, weight, and family
history were recorded in this research. This study was
approved by the Medical Ethics Committee for Clinical
Research of Zhongda Hospital Affiliated to Southeast Uni-
versity. All the participants signed written informed consent
prior to the study.

2.2. MRI Data Acquisition and Data Analysis

2.2.1. MRI Data Acquisition. All imaging data were acquired
using a 3.0 T MRI scanner (Siemens MAGNETOM Trio,
Erlangen, Germany) with a standard head coil. In order to
reduce the head motion and scanner noise during scanning,
all subjects were instructed to lie quietly with the head fixed
by a belt and ears covered with foam padding and earplugs.
Meanwhile, they were required to close their eyes and
keep awake, and any specific thoughts were avoided dur-
ing the scan. Resting-state images were acquired using a
gradient-echo planar sequence with the following scan
parameters: repetition time = 2000ms, echo time = 25ms,
flip angle = 90°, acquisition matrix = 64 × 64, field of view =
240mm × 240mm, thickness = 3 0mm, slices = 36, gap = 0
mm, and 3.75mm× 3.75mm in-plane resolution parallel to
the anterior commissure–posterior commissure line. For
each participant, rs-fMRI scanning lasted 8 minutes and
240 volumes were obtained.

2.2.2. Image Preprocessing. Functional images were prepro-
cessed with the Data Processing Assistant for Resting-State
Function (DPARSF 2.3 advanced edition) MRI toolkit [30],
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which integrates procedures based on the Resting-State
Functional MRI toolkit (REST, http://www.restfmri.net)
[31], and statistical parametric mapping software package
(SPM8, http://www.fil.ion.ucl.ac.uk/spm). The first 10 time
points were removed to ensure stable-state longitudinal mag-
netization and adaptation to inherent scanner noise. The
remaining 230 resting-state fMRI images were sequentially
performed according to the following steps: (1) slice timing
with the 35th slice as reference slice, corrected for temporal
differences and head motion correction (participants with
head motion of greater than 1.5mm of maximum displace-
ment in any direction (x, y, or z) or 1.5 degrees of angular
motion were excluded from the present study); (2) core
registering T1 to functional image and then reorienting; (3)
for spatial normalization, segmenting T1-weighted images
into white matter, gray matter, and cerebrospinal fluid, which
are then normalized to the Montreal Neurological Institute
space by using a 12-parameter nonlinear transformation
(the above transformation parameters were performed to
the functional images, and then the functional images were
resampled with isotropic voxels of 3mm); (4) adopting a
6mm full-width at half-maximum isotropic Gaussian kernel
for spatial smoothing; (5) detrending the linear trend within
each voxel’s time series; (6) regressing out nuisance signals
(white matter, cerebrospinal fluid signals, and head-motion
parameters calculated by rigid body 6 correction) and spike
regressors; and (7) minimizing the low-frequency drift and
high-frequency noise filtered with a temporal bandpass
(0.01-0.08Hz).

2.2.3. Voxel-Mirrored Homotopic Connectivity. For the calcu-
lation of the VMHC in the geometric configuration of the
bilateral hemispheres, the preprocessed functional images
were transformed to the symmetric space with the following
procedure: (a) generating a mean image by averaging the
normalized gray matter images for all participants, (b) aver-
aging the mean image with a bilateral mirrored version to
create a symmetrical template with group specificity, and
(c) registering every individual normalized gray matter image
to the generated symmetric template and then transforming
for functional images by the nonlinear strategy. The unilat-
eral hemispheric templates of the symmetric gray matter
were used as a mask for individual-level computation of the
VMHC. Then, Pearson’s correlation analysis was adopted
between each voxel and the mirrored counterpart voxels
within the interhemispheric symmetry in each subject. The
correlation coefficients were then normalized to a z-map with
the Fisher z-transformation. The above procedures were per-
formed utilizing the DPARSF 2.3 software. Finally, the
acquired resultant values constituted the VMHC measures
for statistical analysis. The threshold of statistical maps were
set at P < 0 05 and corrected by the 3dClustSim program in
the AFNI software (https://afni.nimh.nih.gov/pub/dist/doc/
program_help/3dClustSim.html). The details of the VMHC
acquisition have been elucidated in a previous study [25].

2.2.4. Statistics Analysis. The differences in demographic and
neuropsychological performances between hyperthyroid
patients and healthy controls were determined by various

statistical methods. Two-sample t-tests and Mann-Whitney
rank tests were applied for continuous variables, and the
chi-square test was applied for categorical variables (statisti-
cal significance was set at P < 0 05) by SPSS 21.0 software
(SPSS Inc., Chicago, IL).

We separated the cognitive tests into 4 domains as above
(i.e., processing speed, executive function, visuospatial skills,
and episodic memory). To combine the cognitive variables,
the standardized Z scores of each individual test, which
were created by using control group data across all
patients, were further summed to figure out the cognitive
domain values. Variables in which good performance was
represented by lower values (e.g., TMT, Stroop Color
and Stroop Word) were adjusted for reciprocal transfor-
mation to ensure that higher Z-scores represented better
performance for all variables. The independent sample t-test
was performed to compare the mean Z-scores for each
neuropsychological test and cognitive domain in order to
compare the patterns of neurocognitive impairments
between the two subgroups.

To investigate significant differences of the regional
VMHC between the HPs and the HCs, a two-sample t-test
after correction with the 3dClustSim program (P < 0 01,
cluster sizes > 85 voxels) was performed by AFNI software
(https://afni.nimh.nih.gov/pub/dist/doc/program_help/3d
ClustSim.html). Within the hyperthyroidism group, to
detect the regional VMHC that was significantly correlated
with the neuropsychological performance in the patients, a
voxel-wise general linear model was adopted between the
zVMHC maps and the standardized neuropsychological
performance scores [32]. The statistical threshold was
defined at P < 0 05, correcting for multiple comparison
by 3dClustSim with age, education, and gender as covari-
ates in the model. In line with our previous study [26],
we determine the predictive power of the altered VMHC
values with receiver operating characteristic (ROC) curves
(area under curve (AUC): 0.9-1.0 = excellent, 0.8-0.9 =well,
0.7-0.8 = fair, 0.6-0.7 = poor, and 0.5-0.6 = fail), sensitivity,
and specificity. The optimal cut-off point was determined
by the corresponding maximized Youden’s index J
(J = sensitivity + specif icity − 1). Binary logistic regression
analysis was employed to integrate the combined discrim-
ination capacity of changed VMHC. The threshold of sta-
tistical significance was defined as P < 0 05.

3. Results

3.1. Demographic and Neuropsychological Results. There were
no significant between-group differences in age, education,
and gender regarding the demographics and neuropsycho-
logical data. The FT3, thyroid peroxidase antibody, and
thyroglobulin antibody levels of hyperthyroid patients were
significantly higher than those of HCs (P < 0 001). Com-
pared with the HC group, the hyperthyroid group showed
significantly higher scores in the HDRS (P < 0 001) and
HARS (P < 0 001), but lower scores in executive function
(P = 0 011) and visuospatial skills (P < 0 001). All the specific
figures were presented in our previous study [16].
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3.2. Voxel-Mirrored Homotopic Connectivity Data. Com-
pared with the healthy subjects, the hyperthyroidism group
showed significantly decreased VMHC values in the bilateral
medial frontal gyrus (MeFG) (Table 1, Figure 1).

3.3. Correlation Analysis within the Hyperthyroidism Group.
After controlling for age, gender, and education level, par-
tial correlation analyses were applied within the hyperthy-
roidism group. The interhemispheric asynchrony in the
MeFG was positively correlated with Z scores of episodic
memory (Figure 2).

3.4. ROC Analysis between Hyperthyroidism Group and
Control Group. The ROC analysis demonstrated that the
regional VMHC changes of MeFG (AUC = 0 808, P < 0 001)
exhibited good performance in distinguishing HP patients
from healthy controls, with sensitivity (75.8%) and specificity
(75.8%) (Figure 3).

4. Discussion

To our knowledge, this is the first study to adopt the VMHC
to identify changes in interhemispheric functional connectiv-
ity and associate these alterations with disrupted emotion
and cognition in hyperthyroid patients. The primary finding
of this work is the hyperthyroidism-related reduction of
brain homotopic connectivity in the hyperthyroid group.
As compared with the HC group, the HP group exhibited sig-
nificant reduction of VMHC in the bilateral MeFG. Further-
more, the VMHC in MeFG was correlated with the impaired
episodic memory in hyperthyroidism. Finally, in particular,

significant decreases in the VMHC of the MeFG could pro-
vide the ability to differentiate hyperthyroid patients from
healthy subjects.

Table 1: Brain regions showing significantly different VMHC between groups.

Brain regions BA
MNI coordinates

Voxel number Peak t value
X Y Z

HPs<HCs MeFG 32 6 54 0 90 -4.06

Note: A corrected threshold of P < 0 01 corrected by 3dClustSim; cluster size is in mm3; two-sample t tests with age, gender, and education level as covariates
were performed to test the VMHC differences between groups. MNI: Montreal Neurological Institute space; HPs: hyperthyroid patients; HCs: health controls;
BA: Brodmann area; MeFG: medial frontal gyrus.
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Figure 1: Significantly decreased (blue) VMHC in hyperthyroid
patients relative to healthy controls. (P < 0 01, 3dClustSim
correlated). The color bar indicates the T value from the two-
sample t test between the hyperthyroidism and healthy control
groups.
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Figure 2: Scatter diagram shows the correlation between the
psychological assessment and the VMHC values in the
hyperthyroidism group. The VMHC in the MeFG was positively
correlated with episodic memory (r = 0 635, P < 0 001). VMHC:
voxel-mirrored homotopic connectivity; MeFG: medial frontal
gyrus; r: Spearman’s correlation coefficient.
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Figure 3: The diagnostic performance of the disrupted VMHC in
classifying the HPs from the HCs. VMHC: voxel-mirrored
homotopic connectivity; HPs: hyperthyroid patients; HCs: healthy
controls; MeFG: medial frontal gyrus; AUC: area under the curve.
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The MeFG is a crucial node of the DMN, which is
substantially involved in the emotional and cognitive pro-
cessing, including the process of working memory [33, 34],
learning function [35], episodic memory [36], and coordi-
nating self-referential cognitive operations [37, 38]. Our
previous study found significant decreases in functional
connectivity, regional homogeneity, and amplitude of
low-frequency fluctuation in the MeFG [16], and the
abnormal functional connectivity was correlated with thy-
roid hormone levels, anxiety severity, and processing speed
of hyperthyroid patients, suggesting the important role of
the MeFG in regulating impaired cognition in hyperthy-
roidism. The reduced interhemispheric functional connec-
tivity in the MeFG of hyperthyroid patients, as well as
the positive correlation between the VMHC in the MeFG
and episodic memory, further proved that abnormal brain
function in the medial structure of DMN was associated
with aberrant cognitive function in hyperthyroidism.

Importantly, the noticeable effect of the changed regional
VMHC in the MeFG on differentiating hyperthyroidism was
also primarily confirmed. In the present study, the ROC
curve indicated that the VMHC change of the MeFG in the
DMN can effectively distinguish the hyperthyroid patients
from HCs. According to the results of the present study, the
MeFG in DMN [39, 40] may be involved in some neurobe-
havioral dysfunctions in hyperthyroidism. This finding is
consistent with the results of some former studies which indi-
cated functional, structural, and metabolic brain changes in
the DMN. Zhang et al. [14] found abnormalities in functional
connectivity within DMN between the hippocampus and
both posterior cingulate cortex and medial orbitofrontal cor-
tex, and the disrupted functional connectivity strength was
negatively related to the disease duration. Another research
indicated that the temporal pole is strongly connected to
brain regions comprising the DMN resting-state network,
including the precuneus, inferior parietal lobule and medial
frontal cortex, cingulate cortex, ventromedial orbitofrontal
cortex, and hippocampus [15]. In addition, reduced GMV
in the bilateral hippocampus and parahippocampal gyrus of
DMN has been observed in a voxel-based morphometry
study [12]. The positron emission tomography survey illus-
trated that hyperthyroid patients exhibited lowered brain
glucose metabolism in the DMN regions of the frontal lobe
and temporal lobe, and the severity of depression and anxiety
covaried negatively with metabolic activity in the inferior
temporal and inferior parietal gyri, respectively [17]. Our
previous investigation on hyperthyroidism also located the
brain regions with impaired functional connectivity in the
DMN, embracing the medial frontal lobe, middle temporal
gyrus, and precuneus, and the functional connectivity in
the precuneus showed a negative correlation with processing
speed [16]. All the integrative results from the current and
preexisting studies suggest that the DMN possibly plays a
pivotal role in compensating the dysregulation of the emo-
tional and cognitive dysfunction in hyperthyroidism. In
addition to the DMN, our previous research found that
abnormal functional connectivity in the attention network,
visual network, and cognitive network possibly constituted
the latent mechanism for emotional and cognitive changes

in hyperthyroidism. However, the potential association
between these networks remains unknown; for this purpose,
some novel methods, such as the independent component
analysis, can be adopted to reveal the interactions between
these networks in future works.

This study also has a few limitations. Firstly, this is a
cross-sectional study on whether the altered functional con-
nectivity is reversible after therapy remains to be discussed
by the prospective study. Secondly, the trier being unable to
control the participants’ thoughts during imaging is a com-
mon problem to resting-state studies. Although participants
were instructed not to move their heads and to rest with their
eyes closed, slight head movements and rotation are
unavoidable. However, we have inspected each image care-
fully, and patients with head movements greater than 1.5 or
1.5mm were excluded. Finally, on account of laboratory test-
ing limits in the hospital, exact figures of FT4, TSH, and
TRAb were inapplicable, so we could not compare the vari-
ance of brain activation in hyperthyroidism of different
severities. Given these limitations, future studies should be
well designed, taking these results into consideration. Future
fMRI studies could investigate these patients after recovery
from hyperthyroidism and to explore the potential brain
difference between hyperthyroidism with and without emo-
tional impairment.

5. Conclusion

The decreased interhemispheric synchrony in the MeFG
anchored in the DMN possibly constitutes the underlying
mechanism for neuropsychological changes in hyperthyroid-
ism. The findings of this study imply that the interhemi-
spheric connectivity in the DMN may compensate the
neurobiological mechanism of cognitive impairments in
hyperthyroid patients. Moreover, the altered interhemi-
spheric coordination in the hub of the default mode network
may be implicated in the modulation of episodic memory in
HP patients, and the distinct feature of the interhemispheric
asynchrony in the MeFG may be treated as a potential target
for the early recognition and intervention for the HPs with
cognitive impairments.
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