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Abstract

The hormone leptin plays a critical role in energy homeostasis, although our
overall understanding of acutely changing leptin levels still needs
improvement. Several developments allow a fresh look at recent and early
data on leptin action. This review highlights select recent publications that
are relevant for understanding the role played by dynamic changes in
circulating leptin levels. We further discuss the relevance for our current
understanding of leptin signaling in central neuronal feeding and energy
expenditure circuits and highlight cohesive and discrepant findings that
need to be addressed in future studies to understand how leptin couples
with physiological adaptations of food intake and energy expenditure.
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Introduction

The adipose tissue-derived hormone leptin plays a critical role
in whole body energy homeostasis: lack of functional leptin
or leptin receptors (Lepr) results in severe and early onset
obesity in rodents and humans, while leptin replacement in
leptin-deficient rodents and humans fully recovers energy
homeostasis'”. Leptin mediates its effect via the central nervous
system, and neuron-specific re-expression of Lepr in whole
body Lepr-deficient mice is sufficient for full recovery of all
known physiological effects of leptin and Lepr deficiency’.
Nevertheless, documented peripheral leptin action might support
several aspects of leptin functions*.

A more confusing literature addresses leptin’s role in normal
physiology and the relevance of the observed dynamic changes
in circulating leptin levels. Long-term circulating leptin levels
are positively correlated with adiposity, but short-term circa-
dian changes™ or acute changes (hours) in response to physi-
ological challenges such as fasting/refeeding”!’, cold exposure'’,
sleep restriction'", hypoxia'>'°, methionine restriction'”',
or type 1 diabetes’ are known.

Circulating leptin levels reflect leptin sensitivity with regard
to the ability of exogenous applied leptin to increase signaling
pathways and physiological function. A drop in leptin levels
sensitizes while high leptin levels blunt leptin signaling and
function, also known as leptin resistance. This resistance is
mediated via negative feedback signals in the Lepr signaling
cascade that build up with elevated leptin levels (or diminish
with low leptin levels) and suppress leptin signaling efficiency
(for detailed reviews, see 19-22).

Yet there is no consensus on how changes in endogenous
leptin levels are relevant for body weight homeostasis. High
leptin levels in obesity are particularly puzzling because
leptin seems to be unable to reduce food intake and prevent
obesity, despite appropriate induction of many early leptin
signaling events”. Some data even suggest that hyperleptine-
mia may prevent further detrimental effects on food intake,
body weight, and glucose homeostasis*~°. Weight loss that is
achieved with dieting and exercise is “sensed” as negative
energy balance and the associated drop in leptin levels enables
physiological adaptations (e.g. decreased energy expendi-
ture and increased hunger) geared to favor weight regain. These
adaptations are reversed by leptin treatment, which improves
weight loss maintenance in mice and humans*~>. Conversely,
the dramatic weight loss achieved with bariatric surgery is
surprisingly not “sensed” as an energy need state, compared to
weight-matched control animals, despite similarly decreased
leptin levels. The lack of adaptive responses enables the
stunning long-term weight loss and improved glucose home-
ostasis following bariatric surgery. A critical future task is to
understand how dynamic changes in leptin levels couple with
(or uncouple from) physiological adaptations of food intake and
energy expenditure.

This review will highlight some recent publications that are
relevant for the role of dynamic changes in circulating leptin

F1000Research 2020, 9(F1000 Faculty Rev):451 Last updated: 27 MAY 2020

levels in health and disease. We further discuss their relevance
for our current understanding of leptin signaling in central feed-
ing and energy expenditure circuits and highlight cohesive and
discrepant findings that need to be addressed in future studies to
understand how leptin couples with physiological adaptations.

Regulation of circulating leptin levels and functional
importance

Leptin levels are regulated by a feedback signal according
to the body’s energy availability’'. Inhibition of leptin gene
expression is generally associated with a negative energy
state or increased energy need states, such as fasting'', cold
exposure'’, methionine restriction'”", type 1 diabetes™”, or
exercise™. Neuroendocrine adaptations to these physiologi-
cal conditions, such as fasting (e.g. increased corticosterone and
ACTH, low thyroid hormone), can be reversed or signifi-
cantly blunted when leptin levels are restored”’””. Conversely,
increased leptin gene expression is associated with a positive
energy state, and circulating leptin correlates positively with
adipose tissue mass™.

However, the key regulatory processes that control leptin
gene expression remain unclear. Only recently, a novel
PPARYRXR binding site was identified within one of the
leptin promoter elements that also restricts leptin gene expres-
sion to adipose tissue. These data suggested the binding of
PPARy with one or more unidentified factor(s) that together
enable the suppression of leptin gene expression and adipose
tissue lipolysis may likely induce this factor”. Adipose tissue
lipolysis is a hallmark of energy need states and depends on
B3-adrenergic  receptor signaling. Similarly, leptin gene
expression is suppressed by increased sympathetic tone via
B3-adrenergic receptors'®!#6-3,

Recent work also found that low leptin levels are required to
increase the HPA axis’®”, even though this view is debated”.
This mechanism is intriguing, as increased glucocorticoids are
associated with many hypoleptinemic states like fasting, sleep
deprivation, and cold exposure™'*. This emerging role of
glucocorticoids to drive hunger and food intake in response to
decreased leptin levels”*'*> might be critical to understand the
coupling of leptin levels with physiological adaptations of
feeding and energy expenditure. However, the mechanisms
through which central circuits regulate leptin gene expression
are unclear. Such circuits will likely control sympathetic tone
in adipose tissue and have been described for brown adipose
tissue (BAT)** and are likely distinct from white adipose
tissue (WAT) based on the anatomical dissociation of pre- and
post-ganglionic inputs to BAT and WAT (44 and Huesing
et al. unpublished data). Also, some studies suggested distinct
contribution of subsets of arcuate nucleus (ARC) neurons for
differential sympathetic tone to adipose tissues, substrate fluxes,
and suppression of leptin gene expression™~"’.

Central leptin action and energy homeostasis

Central hypothalamic circuits are critical to mediate leptin
signaling and promote energy homeostasis via modulation of
food intake and energy expenditure. Within the ARC, two
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conversely acting neuronal populations are well characterized
for their interaction with leptin: anorexigenic and energy
expenditure-inducing pro-opiomelanocortin (POMC) neurons and
orexigenic and energy expenditure-suppressing agouti-related
peptide (AgRP) neurons. POMC-derived peptides have stimula-
tory and AgRP inhibitory effects on melanocortin-4 receptors
(MC4R)**, and their converse actions may involve several
levels (e.g. antagonism, Gi/Gs signaling)’’. Changes in neuronal
activation of POMC and AgRP neurons are critical for sensing
energy availability states, and both populations are responsive
to a range of orexigenic and anorexigenic signals’’. AgRP
neurons are activated during energy need states (low leptin
levels), while POMC neurons are activated in energy replete
or overfeeding states (normal/high leptin levels). Initially, this
correlation was histologically shown by expression of the
early response gene cFos, as well as POMC and AgRP, which
correlated well with neuronal activation*~”°°; recent studies
confirmed this with fiber photometry, which allowed real-time
observation of neuronal activity changes™. AgRP neuronal
activation studies further indicated that feeding behavior
dissociates into rapid (within minutes) and slow (within days)
feeding events”*. Generally, AgRP neuron-induced rapid
feeding events require the co-expressed neuropeptide NPY ¢,
while slow feeding events require AgRP or POMC signaling via
MC4R§2,(}(),(V1.

The temporal responses of AgRP and POMC neurons are
particularly relevant for leptin signaling. Recent data demon-
strated a gradual and slow leptin action in POMC and AgRP
neurons, while rapid activity changes are mediated by many gut
peptides, but not leptin’’. The slow kinetics of leptin action are
consistent with transcriptional events and in line with many
early studies demonstrating that leptin induces POMC mRNA
and suppresses AgRP mRNA (reviewed in 48). Importantly, the
weight loss achieved with bariatric surgery suppresses leptin
levels similar to what is seen in weight-matched animals,
but the increased AgRP mRNA was absent with bariatric
surgery, unlike in weight-matched animals®. Similarly, MC4R-
deficient and leptin-deficient mice are resistant or show
blunted weight loss to bariatric surgery®®, further pointing to
an important role for leptin>MC4R signaling to mediate this
effect, even though sleeve gastrectomy-mediated weight loss did
not depend on MC4R signaling®.

Thus, a better understanding of how leptin modulation of
MC4R signaling integrates into neuronal circuits that regulate
feeding and energy expenditure would be important to target
unwanted coupling of low leptin levels with physiological
adaptations in obese individuals as well as beneficial uncoupling
in bariatric surgery patients.

Energy homeostasis and food intake

Leptin levels are critical to regain energy homeostasis
following fasting or overfeeding. Leptin acts via POMC and
AgRP neurons to suppress MC4R neurons in the paraventricular
hypothalamus (PVH)****,  which can be considered the
critical circuit to couple changes in leptin levels with food intake
adaptations (Figure 1A). However, fasting-induced hyperphagia
or overfeeding-induced hypophagia cannot be explained by
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acute neuronal activation states of POMC and AgRP neurons.
The fasting-induced activity patterns in POMC and AgRP
neurons (POMC activity |, AgRP activity T) normalize within
seconds of food availability>, so that the observed long-lasting
hyperphagia must be mediated by additional mechanisms.

Low leptin causes chronic cFos expression in AgRP neurons and
is thought to reflect chronic activation of AgRP neurons. Thus,
leptin-deficient ob/ob mice might not respond properly to
refeeding and fail to normalize AgRP neuronal activity.
Surprisingly, POMC and AgRP neurons in ob/ob mice remain
fully responsive’’, concluding that acute activity changes are
not the main cause for obesity in ob/ob mice. Instead, these data
refocus our attention to earlier studies, demonstrating the
importance of transcriptional changes in AgRP and POMC
mRNA for weight gain and obesity””. Similarly, long-term
feeding and AgRP expression can be mediated independent of
neuronal activity and require at least one additional transcrip-
tion factor’”, even though it is currently unclear if slow-acting
leptin, rapid-acting gut peptides, or associated factors like
corticosterone may have the same or distinct impact on
melanocortin gene expression.

We speculate that the duration of fasting or overfeeding shifts
the ratio of POMC-derived peptides (energy surplus) versus
AgRP peptide (energy need) and has prolonged effects on MC4R
signaling. Dependent on the stability of mRNA and peptides,
this system could be active despite normalized neuronal activ-
ity and explains why physiological adaptations to favor weight
gain are long-lasting in contrast to the rapid neuronal activa-
tion changes. Indeed, the duration of AgRP neuronal activity
correlates with the amount of food ingested™, but this study
did not specifically study long-term feeding. AgRP is sufficient
to mediate long-term feeding responses™®, even though rapid
changes in feeding via NPY may contribute to overall food
intake. Conversely, rapid normalization of AgRP and POMC
neuronal activity and leptin levels would promote normaliza-
tion of POMC/AgRP ratios over time to reinstate homeostasis
(Figure 2).

In line with this concept, lack of functional POMC expression
(causing unopposed AgRP action) causes severe obesity with
increased food intake and suppressed energy expenditure’.
Conversely, prolonged treatment with an MC4R agonist was
able to promote lasting weight loss in Lepr-deficient patients’'.
Thus, re-establishing the energy surplus signal from POMC
neurons seems to be a key component for long-lasting weight
loss. Similarly, POMC neurons require chronic (24 hours)
optogenetic activation to suppress feeding, which was blocked
in Agouti mice with chronic MC4R inactivation®' and is consist-
ent with a slow buildup of POMC-derived peptides at MC4R
neurons. Earlier studies also showed that elevated POMC
expression and MC4R signaling are important mediators of the
homeostatic adaptations to overfeeding and these adaptations
were prevented by blocking MC4R with an antagonist®® or in
leptin signaling-deficient animals®’. These observations would
explain why bariatric surgery is ineffective in MC4R knockout
or ob/ob mice and suggests a prominent role for MC4R signaling
in the full beneficial effects of bariatric surgery.
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Figure 1. Lepr-centric scheme of feeding and energy expenditure circuits. Changing leptin levels act on food intake (FI, 1A) and energy
expenditure (EE, 1B) via divergent MC4R neurons in the paraventricular hypothalamus (PVH)*® and dorsomedial hypothalamus (DMH)",
respectively. Temperature sensing via the preoptic area (POA) and energy sensing via the arcuate nucleus (ARC) are both associated with
changing leptin levels and require physiological adaptations of Fl and EE. Both sensory inputs are likely to integrate via the same FI and
EE circuits. Recent data further suggest that low leptin levels enable agouti-related peptide (AgRP)-induced feeding via an increased HPA
axis’, raising awareness for a tight interaction of peripheral and central signaling systems. Dynamic changes in leptin levels are a critical
part in these Fl and EE circuits, and the central feedback mechanisms for this important link are unclear. a-MSH, a-melanocyte-stimulating
hormone; BAT, brown adipose tissue; GABA, gamma aminobutyric acid; Lepr, leptin receptor; MC4R, melanocortin-4 receptor; POMC, pro-

opiomelanocortin; WAT, white adipose tissue.

Furthermore, the role of leptin signaling in ARC neurons has
been confusing following initial work which removed Lepr from
POMC, AgRP, or both neurons’*. The observed mild effects
on body weight compared to whole body Lepr-deficient db/db
mice led to a shift away from an ARC-centric view of leptin
action, and several non-ARC Lepr neurons were discovered with
similarly mild contributions to whole body leptin function’.
However, a recent study used CRISPR technology for an
acute and AgRP-specific Lepr deletion”” and clarified that
AgRP-specific Lepr deletion explained ~80% of the obese
phenotype in db/db mice. This effect was largely independent
of direct changes in neuronal activity, again suggesting that
transcriptional events (increased AgRP mRNA) may most
prominently drive this effect. This study also deleted Lepr from
POMC neurons with only mild effects on body weight and food
intake, even though a thorough investigation of homeostatic
adaptations in response to overfeeding was not performed*.

Together, these studies again reinforce the importance of ARC
Lepr neurons in maintaining body weight homeostasis, yet the
relative contribution of POMC versus AgRP neurons needs
re-clarification, specifically since recent studies show a strong
bias towards the importance of AgRP versus POMC neurons.
New state-of-the-art methods such as fiber photometry to study
the long-term effects of leptin and melanocortin signaling on
neural activity are problematic, since this method is mainly
used to observe acute activity changes. However, long-term
activity changes were successfully observed in leptin-treated
ob/ob mice, even though these responses could not be observed
in wild-type mice. A recent fiber photometry study in PVN
MC4R feeding neurons surprisingly failed to show feeding-
induced activity changes’®, possibly because only acute responses
were evaluated. Thus, future development of experimental
paradigms that allow reliable interpretation of long-term effects
of leptin and melanocortin signaling on neuronal activity and
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Figure 2. Schematic diagram to explain how acute changes in POMC and AgRP neuronal activity can be dissociated from the dynamic
changes in leptin levels and their interaction with POMC and AgRP gene expression and melanocortin peptide ratios to stimulate
or inhibit MC4Rs in food intake and energy expenditure circuits. Note, the duration and fold change of leptin mMRNA expression as well
as release into the serum have not been fully explored, but a full suppression of leptin mMRNA within 2 hours has been reported’®. AgRP,
agouti-related peptide; EE, energy expenditure; Fl, food intake; POMC, pro-opiomelanocortin; MC4R, melanocortin-4 receptor.

feeding responses is critical to connect new technologies with
this important signaling pathway in energy homeostasis.

Energy homeostasis and energy expenditure

The role of leptin in increasing energy expenditure has
been debated”” in contrast to the well-accepted anorexigenic
leptin actions. Leptin increases the sympathetic tone to BAT,
a site of increased energy usage and thus increased energy
expenditure’*””. However, leptin injections are unable to
influence metabolic rate per se®’*'. Instead, leptin counteracts
the hypometabolism induced by energy need states in both
rodents and humans”***%*>,  Furthermore, leptin affects
thermoregulation, body temperature, and cold sensitivity in
mice®*, even though this has not been observed in humans'.

Lepr-expressing neurons are part of a thermoregulatory
circuit that connects the preoptic area (POA) and dorsomedial
hypothalamus/dorsal hypothalamic area (DMH/DHA) to the

sympathetic control of BAT*. Lepr neurons in the DMH/DHA
explain many leptin functions on energy expenditure and body
temperature. DMH/DHA Lepr neurons are activated by cold
exposure (cold-sensing neurons) and leptin*, and activa-
tion of DMH/DHA Lepr neurons is sufficient to increase energy
expenditure via sympathetic activation of BAT that depends on
B3-adrenergic signaling. Lepr expression in these neurons is
required to prevent hypometabolism and weight gain, and
DMH/DHA leptin infusion is sufficient to normalize body
temperature and improve body weight in ob/ob mice and obese
rats without affecting food intake™*®. Together, these obser-
vations suggest that DMH/DHA Lepr neurons are important
for coupling changes in leptin levels with energy expenditure
adaptations (Figure 1B).

Lepr neurons in the POA are a homogenous population of
glutamatergic neurons that are activated by warm temperature

(warm-sensing neurons), and chemogenetic activation causes a
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robust suppression of energy expenditure®. Originally, warm-
sensing POA neurons were identified as GABAergic neurons,
based on the marker glutamate decarboxylase (Gadl/2 aka
Gad65/67)°'. However, detailed single cell profiling of POA
neurons clarified its expression in both GABA and glutamater-
gic neurons and ultimately verified warm-sensing POA neurons
as a homogenous glutamatergic cluster with Lepr expression’.
Warm-sensing POA neurons innervate the DMH and inhibit
cold-sensing DMH/DHA neurons* %% likely indirectly via
GABAergic interneurons (Figure 1B).

Leptin signaling has no effect on temperature-dependent
energy expenditure changes®”’, but POA leptin action surpris-
ingly contributed to counteracting weight gain in a state of
energy surplus (high-fat diet feeding) and energy expendi-
ture adaptations in an energy need state (fasting-induced
hypometabolism)®'. This suggested that POA Lepr neurons
play a role in coupling leptin signaling with energy expenditure
adaptations. As noted above, negative and positive energy states
are classically controlled by ARC POMC (energy surplus sens-
ing) and AgRP neurons (energy need sensing), including acute
changes in neuronal activity as well as transcriptional changes
of POMC and AgRP expression. Thus, an interaction of
temperature-sensing  POA Lepr neurons with energy-sensing
mechanisms suggests that both sensory inputs merge into the
same circuits. Interestingly, a recent study demonstrated that the
MC4R agonist MTII induces energy expenditure exclusively
via DMH MC4R". Importantly, DMH MC4R had no effect on
the food intake-suppressing effects of MTII?, which is mediated
exclusively by PVN MC4R neurons®. Thus, these data further
indicate the DMH as the likely integration site for ARC and
POA neurons on energy expenditure adaptations (Figure 1B).

Warm-sensing POA neurons also suppress food intake in
response to ambient temperature, and activation of warm-
sensing POA Lepr neurons robustly reduces body weight®”.
Interestingly, leptin-deficient mice are unable to suppress their
food intake in response to warm ambient temperature, and their
food intake is maintained at levels comparable to cold-exposed
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animals”. The hyperphagia in ob/ob mice is caused by the
unopposed AgRP action at PVN MC4R neurons and is
resistant to acute POMC activation’. Thus, we speculated that
temperature-induced food intake adaptations also integrate into
the same feeding circuit as energy-sensing inputs (PVN MC4R
neurons) (Figure 1A).

An integration of temperature and energy sensing via distinct
feeding and energy expenditure circuits may further integrate
other sensory inputs associated with changes in leptin levels
(sleep restriction, hypoxia, protein restriction, etc.), even though
integration could also occur downstream to the PVN and DMH
within these circuits.

Summary and outlook

Recent work has identified leptin promoter regions that
mediate dynamic changes in leptin levels and predicts binding
factors that are activated by lipolysis to suppress leptin levels.
We further emphasized the importance of understanding the
physiological cause and function of leptin levels in healthy
individuals: to understand how we can leverage this system to
treat metabolic dysfunctions. We consider the coupling of leptin
levels with physiological adaptations of food intake and
energy expenditure as critical components to treat metabolic
dysfunction because they prevented long-term weight mainte-
nance in obese patients and their uncoupling enables long-term
weight loss in bariatric surgery patients. We make the case for
an emerging concept that couples leptin signaling with food
intake adaptations via PVN MC4R neurons and with energy
expenditure adaptations via DMH MC4R neurons. We outline
evidence indicating substantial integration of temperature- and
energy-sensing adaptations of food intake and energy expendi-
ture across these circuits. These concepts are likely relevant for
other non-metabolic leptin functions, such as reproduction,
that we did not specifically discuss in this review. Finally, we
highlight the need to develop new protocols for current state-
of-the-art technologies to accommodate the study of slower
kinetics for leptin and melanocortin signaling to ensure future
progress in this field.
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