
Data Descriptor: A collection of
intrinsic disorder characterizations
from eukaryotic proteomes
Michael Vincent1 & Santiago Schnell1,2,3

Intrinsically disordered proteins and protein regions lack a stable three-dimensional structure under
physiological conditions. Several proteomic investigations of intrinsic disorder have been performed to
date and have found disorder to be prevalent in eukaryotic proteomes. Here we present descriptive
statistics of intrinsic disorder features for ten model eukaryotic proteomes that have been calculated from
computational disorder prediction algorithms. The data descriptor also provides consensus disorder
annotations as well as additional physical parameters relevant to protein disorder, and further provides
protein existence information for all proteins included in our analysis. The complete datasets can be
downloaded freely, and it is envisaged that they will be updated periodically with new proteomes and
protein disorder prediction algorithms. These datasets will be especially useful for assessing protein
disorder, and conducting novel analyses that advance our understanding of intrinsic disorder and protein
structure.
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Background & Summary
Despite the absence of a specific tertiary structure, intrinsically disordered protein regions are now
understood to have biochemical functions, including serving as post-translational modification sites,
effectors, entropic linkers between structured domains, in addition to many others1. Furthermore,
multiple lines of evidence have shown that proteins and protein regions exhibiting intrinsic disorder
play critical functional roles in a variety of cellular processes2–11. However, intrinsic disorder continues to
pose significant experimental challenges12, and as a result, computational resources continue to serve as
valuable tools for its investigation.

Large-scale studies at the proteomic level have provided a high volume of insightful information
regarding the prevalence of disorder in multiple kingdoms of life13–17. In addition, numerous databases
containing disorder residue annotations exist, with many aiding in the organization of annotations from
multiple prediction algorithms and relevant experimental information18–24.

Although data collection and organization efforts have improved during the last decade, there remains
a large amount of variability in the format, detail, quality, and availability of proteomic disorder datasets.
In many cases it is also unclear whether algorithm-dependent sequence eligibility screening is performed,
which is necessary when uncertainty exists regarding the identity of one or more residues in a protein
sequence as the handling of this uncertainty varies greatly among disorder prediction algorithms. For
example, some algorithms truncate unsupported residue types (such as B, J, O, U, X, and Z) during
sequence processing, resulting in altered sequences and erroneous disorder annotations. Thus, inadequate
eligibility screening could jeopardize the accuracy of proteomic disorder datasets that have a substantial
number of partially defined sequences, such as the Homo sapiens UniProt reference proteome file which
contains 7,082 of 68,485 (10.3%) sequences of this nature.

Here, we release a database containing IUPred and DisEMBL disorder annotations, as well as
consensus annotations, calculated disorder parameters, and protein existence information for all
completely defined protein sequences contained in ten eukaryote reference proteome files. The database
can be used to standardize quantitative indicators of intrinsic disorder in a protein using descriptive
statistics of disorder for the proteome in which it resides. In addition, the proteomic datasets within the
database provide reliable, highly organized parameters and intrinsic disorder calculations that can be used
for subsequent statistical analyses and investigations that further our understanding of both disorder and
protein structure.

Methods
Summary
In this section we have described our data collection and processing procedures for obtaining residue-by-
residue disorder annotations, disorder descriptive statistics, and other physical parameters relevant to
protein disorder (such as hydropathy, and charge mixing). Furthermore, this information also includes
consensus disorder annotations and protein existence information. A diagram of the data collection and
processing workflow has been displayed in Fig. 1a.

Protein sequence collection and quality screening
Protein sequences for the following ten common model eukaryotic proteomes were collected from
UniProt: Arabidopsis thaliana, Caenorhabditis elegans, Chlamydomonas reinhardtii, Danio rerio,
Dictyostelium discoideum, Drosophila melanogaster, Homo sapiens, Mus musculus, Saccharomyces
cerevisiae, and Zea mays25. The UniProt proteome identifier and accession date for each proteome is
displayed in Table 1. Many disorder prediction algorithms have not been designed to predict disorder in
sequences containing undefined residues. Due to the variability in handling of undetermined/unknown,
ambiguous, and/or unique amino acids (B, J, O, U, X, Z) by disorder prediction algorithms,
proteins containing these residues were excluded from our analysis. A complete list of UniProt accession
numbers that have been deemed eligible and ineligible for each organism has been provided in the
published database.

Disorder prediction
Two reputable disorder prediction algorithms, IUPred-L (version 1.0)26,27 and DisEMBL (version 1.4)28,
were used to assess disorder in each of the ten eukaryotic proteomes included in our investigation. Aside
from the positive reputation of these algorithms, IUPred and DisEMBL were also chosen due to their
physicochemical premise and the fact that they do not rely on sequence alignment to predict disorder.
Briefly, IUPred predicts disorder from an energetics standpoint and assesses the capacity of a protein to
form interresidue contacts that would serve to provide structural stability26,27. On the other hand,
DisEMBL provides three methods based on neural networks for disorder prediction: Coils (DisEMBL-C),
Hotloops (DisEMBL-H), and REM465 (DisEMBL-R). DisEMBL-C predicts residues belonging to
coils/loops as disordered, which excludes residues belonging to α-helix, 310-helix, or β-strand secondary
structures, whereas DisEMBL-H predicts disorder by assessing the subset of the DisEMBL-C-predicted
population that have high α-carbon temperature factors28. DisEMBL-R is a neural network that has been
trained using missing X-ray crystallography coordinates from Protein Data Bank files, which assumes
disorder accounts for the missing residue information28. For additional details regarding IUPred and
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DisEMBL, please refer to the original publications in which they were released26–28. For each algorithm,
residues were marked as either ordered or disordered by comparing disorder scores to the published
default threshold values for IUPred26,27 and DisEMBL28. In addition to single predictor annotations,
consensus annotations have been provided as well. Residues were classified as disordered or ordered by
‘consensus’ if all individual prediction algorithms were in agreement regarding the disorder classification.
Lastly, disorder content was calculated as the percentage of disordered residues contained within a
protein.
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Figure 1. Workflow and database schema. (a) Data collection and processing procedures, consisting

of protein sequence preparation, computational disorder prediction, residue disorder annotation,

disorder feature interpretation and/or calculation, and storage in the final database. (b) Schema of the final

database. The primary key of each table is displayed in bold. Multiple bolded items represent a composite

primary key.
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Continuous disorder protein populations and metrics
The theoretical minimum length of a region exhibiting continuous disorder (CD) is two amino acids.
Given the absence of an objectively determined minimum length, we have chosen to use the
aforementioned theoretical minimum to define CD regions in our dataset. In many cases, a protein
contains multiple CD regions of varying lengths. Our database includes information regarding the
boundaries of each CD region predicted to exist in a protein by each individual disorder prediction
algorithm, and also includes information regarding CD regions for which there is consensus agreement.
Furthermore, it is often helpful to assess the longest CD region (CDL) of a protein, as well as the
percentage of the primary sequence length of a protein that is accounted for by the CDL. The latter metric
is referred to as the LCPL17, and it can serve as a more reliable indicator of a significantly long CD region
in proteins with exceptionally long primary sequences. Thus, our database not only includes information
regarding each CD region contained in a protein, but we have also recorded the CDL and the LCPL for
each CD-exhibiting protein in order to provide alternative metrics for gauging the significance of a CD
region. Threshold protein lengths for gauging when to use the LCPL instead of the CDL can be found in
Vincent et al., 2016 (ref. 17). Importantly, note that if none of the disorder prediction algorithms predict
CD in a given protein, then that protein will not appear in any of the CD-based tables. However, if one or
more, but not all, prediction algorithms predict continuous disorder for a given protein, ‘N/A’ will be
displayed for the algorithms doubting the existence of CD in the protein.

Collection of additional physical parameters relevant to protein disorder
To compliment the aforementioned disorder predictions, we have also provided additional parameters
relevant to protein disorder. Briefly, these parameters characterize the fraction of disorder promoting
amino acids, the hydropathy, and charge distribution for a given sequence, and have been calculated
using localCIDER version 0.1.7 (Classification of Intrinsically Disordered Ensemble Regions).
The localCIDER software was obtained from http://pappulab.github.io/localCIDER/. A brief
description of the CIDER-calculated parameters included in our database can be found below in the
Data Records section.

Code availability
Local copies of the IUPred and DisEMBL prediction algorithms are available for download at
http://iupred.enzim.hu/Downloads.php and http://dis.embl.de/html/download.html, respectively. Please
refer to the IUPred and DisEMBL websites for policies governing their use. Internal software used to
collect, process, and analyse the data was written in Python 2.7.10 and is available upon request.

Data Records
Summary
The data resulting from the collection and processing procedures described above in the methods section
have been made available as a SQLite3 file (Data Citation 1). The database consists of a total of 12 tables,
which provide both general descriptive metrics regarding the proteomic protein populations under study
as well as more detailed information including residue-by-residue disorder annotations, calculated
features (disorder content, CDL, and LCPL), and other relevant physical parameters (such as hydropathy,
and charge distribution.). Please refer to Figure 1b for a representation of the database schema.

Organism data
The database includes the following information for each of the ten eukaryotes in which disorder was
examined: the specific UniProt reference proteome FASTA file name, the date that the FASTA file
was accessed, the number of included protein sequences, and the number of excluded protein sequences.

Proteome Proteome identifier Accession date

Arabidopsis thaliana UP000006548 5/7/2015

Caenorhabditis elegans UP000001940 5/7/2015

Chlamydomonas reinhardtii UP000006906 7/6/2015

Danio rerio UP000000437 7/6/2015

Dictyostelium discoideum UP000002195 6/22/2015

Drosophila melanogaster UP000000803 5/7/2015

Homo sapiens UP000005640 5/7/2015

Mus musculus UP000000589 5/7/2015

Saccharomyces cerevisiae UP000002311 5/7/2015

Zea mays UP000007305 7/6/2015

Table 1. Proteome sequence file information.
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The UniProtKB accession ID has also been provided for all included and excluded proteins. Protein
inclusion and exclusion criteria have been discussed in detail in Methods.

Residue-by-residue disorder score annotation data
For each sequence in each of the ten proteomes selected for analysis, detailed records of the disorder score
output from each prediction algorithm have been reported for each residue in the ‘Disorder_data’ table.
The position in the sequence and residue identity has been indicated as well. Binary disorder and order
classifications can be obtained by comparing the algorithm-specific disorder scores against the
corresponding default threshold values published in the literature26–28. Nevertheless, between the ten
eukaryotes our database contains annotations for 135,302,222 residues (Fig. 2a).

In addition to single-predictor disorder score annotations, a disorder classification count (DCC) and
agreement ID has been reported for each residue as well. The DCC simply represents the number of
component prediction algorithms classifying the residue as disordered. The DCC ranges from zero to
four, with four representing the total number of disorder prediction methods and therefore represents the
maximum number of methods that can classify a residue as disordered in this study (for example, a DCC
of three indicates that three of the four prediction methods are in agreement). On the other hand, the
agreement ID is simply a string between one and four characters in length indicating the identity of the
disorder prediction methods in agreement regarding the residue-level classification of disorder.
Agreement regarding a disorder classification exists if a minimum of two of the four disorder prediction
methods classifies the residue as disordered. For example, an agreement ID of ‘ICHR’ indicates that all
four methods, IUPred (I), DisEMBL—C (C), DisEMBL—H (H), and DisEMBL—R (R) agree that the
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Figure 2. Annotation counts and example disorder feature distributions. (a) The number of annotated residues

for each proteome. (b–d) Histograms displaying example distributions of percent disorder (b) the longest

continuous disordered region (CDL) (c) and the longest continuous disordered region percentage of length

(LCPL) (d). Only IUPred predictions for the Homo sapiens proteome are shown in this figure. Note that the

continuous disorder (CD) distributions are only for the subset of the proteome exhibiting CD, as the minimum

possible length for a CD region is two amino acids and therefore proteins lacking CD must be excluded from

the CD analysis. Furthermore, although the CDL in Homo sapiens ranges from 2-4,638 amino acids, a truncated

range of 2-202 amino acids is displayed for the CDL distribution presented in (c) in order to facilitate data

visualization, as approximately 95% of the data falls within this range.
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residue is disordered. However, if only a single method classifies a residue as disordered, an agreement ID
of ‘NA’ has been assigned to the residue to indicate ‘no agreement’. Lastly, if zero of the four disorder
prediction methods have classified the residue as disordered (i.e., all four methods agree that the residue
is ordered), an ‘O’ agreement ID has been assigned to the residue indicating consensus order (it should
also be noted that an ‘O’ agreement designation corresponds to a DCC of zero, as the DCC focuses on
multi-predictor agreement regarding the classification of disorder).

Descriptive disorder feature data
While disorder scores represent the raw output from the IUPred and DisEMBL disorder prediction
algorithms, proteomic investigations of disorder typically analyse distributions of descriptive disorder
features that are derived from disorder score interpretations. Additionally, these interpreted disorder
features are also very useful for analysing disorder in individual proteins. Thus, our database also includes
information regarding the percentage of disordered residues and CD regions17. Regarding the latter,
detailed information has been included that records all CD regions (including residue position
boundaries and length) and the number of CD regions found in a protein, as well as the CDL and LCPL.
The distribution of IUPred-determined percent disorder, CDL, and LCPL has been displayed for the
Homo sapiens proteome as an example (Fig. 2b–d).

Additional physical parameters relevant to protein disorder
Aside from disorder annotations and their interpreted descriptive statistics, our database also provides
insightful parameters to further characterize protein disorder. Specifically, for each protein we have
included the fraction of disorder promoting residues29, the mean hydropathy30, the Uversky
hydropathy30,31, the fraction of charged residues (FCR), the net charge per residue (NCPR), the kappa
(κ) parameter describing the extent of amino acid charge segregation in a sequence32, the δ and
δmax parameters used to calculate κ32, and the proline content (note that as stated by the official
CIDER documentation, κ may be inaccurate for sequences with a proline content >15%). The
κ parameter ranges between zero and one, with κ approaching one indicating a greater degree of
segregation of positive and negative charges in the sequence, whereas κ values closer to zero indicate a
greater degree of mixing between positive and negative charges32. Furthermore, the number of negatively
charged, positively charged, and neutral amino acids have been reported for each sequence as well. For
details regarding each of these parameters, please refer to the official CIDER documentation located at
http://pappulab.wustl.edu/CIDER/.

Limitations and potential for expansion
As previously stated, the objective of this database is to provide a reliable collection of disorder
annotations, statistics, and relevant disorder parameters from protein amino acid sequences in common
eukaryotic proteomes. While we believe this information is highly valuable, we acknowledge that it has
limitations and room for expanding the information available in our dataset. Users are encouraged to
combine the disorder annotations and parameters provided here with external resources relevant to their
specific research investigations. Our database can be easily combined with external data sets, such as
those providing structural and/or post-translational modification annotations, in order to facilitate a
variety of computational and experimental projects.

Two limitations of the database include the number of supported disorder prediction algorithms and
the format of the CIDER-based parameters. Regarding the former, we limited our protein disorder
predictions to algorithms using physicochemical principles. While these algorithms predict disorder
using various disorder definitions, disorder predictions might be improved through the addition of a
larger number of algorithms, including algorithms predicting disorder using protein sequence alignment.
As for the limitations pertaining to the CIDER parameters, these parameters cannot be readily used to
classify intrinsically disordered protein regions in the format we provide. This is due to the fact that we
have provided these parameters as per sequence annotations, rather than per residue annotations.
Implementing algorithms with sliding window estimates from specific regions of the amino acid sequence
would be useful for the classification of disordered regions. However, calculations of this nature cannot be
practically included in a static database of this nature.

Technical Validation
Summary
Data regarding the performance and accuracy of IUPred and DisEMBL can be found in the original
publications in which these disorder prediction algorithms were presented26–28. Algorithm considerations
aside, the integrity of the datasets published in this paper largely depends on the quality of the protein
sequences included. The present data descriptor only includes proteins eligible for assessment using
IUPred and DisEMBL (our eligibility screening procedure is described below). In addition, UniProt
protein existence information has been provided for all protein populations as well.

Protein eligibility screening
To ensure that only sequences deemed suitable for analysis with the aforementioned disorder
prediction algorithms are included, an eligibility screening procedure was conducted prior to data
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collection in which proteins containing unsupported residue types were excluded from the input protein
set. Importantly, if a protein was deemed ineligible for analysis by one disorder prediction algorithm it
was excluded from the study population altogether (i.e., for inclusion in our study, a protein sequence
must be eligible for analysis by both IUPred and DisEMBL). As described in Methods, proteins
containing undetermined/unknown, ambiguous, and/or unique amino acids (B, J, O, U, X, Z) were
excluded from our analysis. The total number of included and excluded proteins for each proteome has
been displayed in Fig. 3a,b. Please note that our database includes sequences from both Swiss-Prot and
TrEMBL entries, and the latter may include additional predicted isoforms that could increase
redundancy25.
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Figure 3. Sequence eligibility screening and protein existence information. The number of proteins from each

proteome that has been included (a) and excluded (b) following eligibility screening is displayed (a log scale has

been used in (b) to facilitate visualization of the data as fewer than 100 sequences were excluded for six of the

ten proteomes). Within the included protein populations, the fraction of the population belonging to each of

the five UniProt protein existence (PE) qualifiers is presented in (c). PE 1 and PE 2 indicate experimental

evidence at the protein level and transcript level, respectively25. PE 3 indicates that the protein has been

inferred from homology25. PE 4 indicates that the protein has been predicted, but evidence required for PE 1-3

classification is absent25. PE 5 indicates uncertainty regarding the existence of the protein25. The total number

of eligible proteins for each proteome is displayed below each chart.
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Protein existence information
Information regarding the existence of the proteins has also been included in the released database and
can aid in assessing the validity of the included protein sequences. Protein existence (PE) information
provided in the header of UniProt reference proteome files has been recorded in the ‘PE_status’ table for
all proteins included in our database. Briefly, UniProt defines the PE qualifiers of one, two, and three to
indicate ‘experimental evidence at the protein level’, ‘experimental evidence at the transcript level’, and
that a protein has been ‘inferred from homology’, respectively25. Additionally, a PE four qualifier
describes a sequence that lacks evidence at either of the three aforementioned levels, whereas a PE five
qualifier indicates uncertainty regarding the existence of the protein25. Please refer to the official UniProt
documentation for additional details regarding the procedure used for assigning protein existence
qualifiers. The large majority of the eligible sequences in the ten proteomes where found to be of PE
qualifiers one through four, suggesting minimal uncertainty regarding the existence of the sequences
comprising our datasets (Fig. 3c). Furthermore, only Saccharomyces cerevisiae was found to contain a
substantial fraction of proteins with a PE five qualifier, which represents 11.7% of the entire population
(Fig. 3c).

Usage Notes
For completeness, the published database contains protein sequences from both UniProtKB/Swiss-Prot
and UniProtKB/TrEMBL. Proteins with UniProt PE qualifiers of one through five have also been
included in the database. Thus, users must take the appropriate measures to reduce the sequence
redundancy and existence uncertainty within the published database. To decrease sequence redundancy,
we encourage users to utilize information regarding the protein sequence source (UniProtKB/Swiss-Prot
and UniProtKB/TrEMBL) and the protein existence (PE 1–5) that is contained within the database, along
with external information from the UniProt Reference Clusters (UniRef).

This Data Descriptor inroduces a dataset with diverse potential applications, which include, but are
not limited to, (1) theoretical quantitative studies seeking to find correlations between properties giving
rise to intrinsic disorder, (2) structural assessments seeking to determine whether a protein of interest
contains a significant long disordered region that may hinder crystallization, and (3) population
statistics-based approaches aiming to assess whether the predicted disorder properties in a protein of
interest are significant with respect to the rest of the proteome.
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