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Abstract
When planning a Phase III clinical trial, suppose a certain subset of patients
is expected to respond particularly well to the new treatment. Adaptive enrich-
ment designs make use of interim data in selecting the target population for the
remainder of the trial, either continuing with the full population or restricting
recruitment to the subset of patients. We define a multiple testing procedure
that maintains strong control of the familywise error rate, while allowing for
the adaptive sampling procedure. We derive the Bayes optimal rule for decid-
ing whether or not to restrict recruitment to the subset after the interim analysis
and present an efficient algorithm to facilitate simulation-based optimisation,
enabling the construction of Bayes optimal rules in a wide variety of problem
formulations. We compare adaptive enrichment designs with traditional non-
adaptive designs in a broad range of examples and draw clear conclusions about
the potential benefits of adaptive enrichment.
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1 INTRODUCTION

Consider a Phase III trial in which it is believed a certain subset of patients will respond particularly well to the new treat-
ment. We wish to test for a treatment effect in both the pre-identified subpopulation and the full population. Such multiple
testing can be conducted using a closed testing procedure to control the familywise error rate (FWER).1 In an adaptive
enrichment design, if interim data suggest it is only the subpopulation that benefits from the new treatment, recruitment
in the second half of the trial is restricted to the subpopulation. This increase in recruitment from the subpopulation is
referred to as “enrichment” of the sampling rule.

We develop and assess designs which use a closed testing procedure with Simes’ method2 to test the intersection
hypothesis and a weighted inverse normal combination test3-5 to combine data from the two stages of the trial. We show
that the resulting testing procedure controls the FWER, whatever rule is used to decide when enrichment should occur.
This allows us to seek the enrichment rule which is optimal for a specified criterion. We shall follow the approach pre-
sented by Burnett,6 defining a gain function that reflects the value of the outcome of the trial and a prior distribution for
the treatment effects in the subpopulation and full population. The optimal decision at the interim analysis is that which
maximises the expected gain with respect to the posterior distribution of the treatment effects, given current data. Since
we use simulation in constructing the Bayes optimal decision rule for an adaptive design, our approach has the poten-
tial to be computationally expensive. We present an efficient algorithm for deriving this decision rule that significantly
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reduces the calculation required: using our methods, designs can be derived and tested in a matter of minutes on a laptop
or PC.

In previous work on adaptive enrichment designs, Brannath et al7 followed a Bayesian approach, assuming an unin-
formative prior for treatment effects. They determined the enrichment decision by comparing the posterior predictive
probabilities of rejecting each hypothesis at the end of the trial with certain user-defined thresholds. Götte et al8 con-
sidered families of enrichment rules defined in terms of linear combinations of the two treatment effect estimates or
the conditional power to reject each hypothesis. They defined the “correct decision” at the interim analysis for given
true values of the treatment effects and searched within their families of enrichment rules to maximise a weighted
combination of the probabilities of a correct decision. Uozomi and Hamada9 defined enrichment rules in terms of
thresholds for the treatment effect estimates or predictive power for the two hypothesis tests and set these thresh-
olds to optimize a utility function under specific values for the true treatment effects. Our methods are set in a more
complete Bayesian decision theoretic framework. The gain function is chosen to summarize the benefits of the final
decisions, reflecting the size of population in which the new treatment is proven to be effective and the magnitude of
the treatment effect in this population. The decision whether or not to enrich at the interim analysis is informed by
both the posterior distribution of treatment effects and the interim estimates or p-values that will form part of the final
hypothesis tests.

Ondra et al10 developed Bayes optimal methods in a class of adaptive enrichment designs where FWER is controlled
by a Bonferroni adjustment, assuming a 4-point discrete prior distribution for the two treatment effects. These simplifica-
tions allow the optimal enrichment decision rule to be found by maximising an integral, which is computed numerically.
The application of Simes tests in our methods reduces conservatism in the testing procedure and the continuous prior
distributions are better able to capture investigators’ prior beliefs. Although our form of problem requires the use of sim-
ulation to find an optimal design, this approach has the advantage of extending very easily to other forms of gain function
and multiple testing methods.

Through studying optimal designs, we are able to assess the potential benefits of adaptive enrichment. We have
studied a variety of scenarios, drawing comparisons in each case with two nonadaptive designs: sampling the full
population throughout the whole study or focusing on the subpopulation at the outset and only recruiting subpop-
ulation patients. We see there are plausible prior distributions for which the adaptive enrichment design is supe-
rior to both forms of nonadaptive design. Furthermore, we recognize that investigators may be reluctant to restrict
recruitment to the subpopulation from the outset and observe that in situations where this would have been the opti-
mal policy, adaptive enrichment can give substantially higher expected gain than the nonadaptive, full population
design.

Our studies also shed light on the underlying reasons for the effectiveness of adaptive designs. The good per-
formance of adaptive designs in the special case of one-point prior distributions shows efficiency gains can fol-
low from adapting to interim data and the likelihood of eventual rejection of each null hypothesis. With proper
prior distributions, one might expect increased knowledge about the true treatment effects at the interim analy-
sis to give adaptive designs a further advantage. However, we find such benefits to be modest: when the prior
variance is high, considerable uncertainty about the true treatment effects remains; when the prior variance is
low, information about the treatment effects at the interim analysis comes primarily from the prior, not the
interim data.

The paper is structured as follows. We formulate the problem in Section 2 and we present methods for controlling
FWER and combining data across stages in Section 3. We describe methods for optimising an adaptive design in Section 4,
describe two forms of nonadaptive design in Section 5 and present examples in Section 6. We conclude with discussion
of the results obtained in our examples.

2 PROBLEM FORMULATION

2.1 Patient responses

Consider a Phase III trial comparing a new therapy, Treatment A, with a control, Treatment B. Suppose a
biomarker-defined subpopulation is identified before the trial commences and it is thought that biomarker positive
patients will respond particularly well to the new treatment. We call the subpopulation of biomarker positive patients 1
and the complement of this 2.
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We suppose responses are normally distributed with a common variance 𝜎2 but note that, by large sample theory,
distributions of treatment estimates will have the same form for a wide variety of response types. Let 𝜇A1 and 𝜇B1 be
the expected responses for patients in 1 on Treatments A and B, respectively. Similarly, let 𝜇A2 and 𝜇B2 be the expected
responses on Treatments A and B for patients in 2. Letting Xij denote the response of the ith patient in subpopulation j
on Treatment A and Y ij the response of the ith patient in j on Treatment B, we have

Xij ∼ N(𝜇Aj, 𝜎
2), i = 1, 2, … , j = 1, 2,

and
Yij ∼ N(𝜇Bj, 𝜎

2), i = 1, 2, … , j = 1, 2.

The treatment effects in subpopulations 1 and 2 are 𝜃1 = 𝜇A1 − 𝜇B1 and 𝜃2 = 𝜇A2 − 𝜇B2, respectively.
Suppose 1 represents a fraction 𝜆 of the full population. Then, the overall treatment effect in the full population is

𝜃3 = 𝜆𝜃1 + (1 − 𝜆)𝜃2. We shall write 𝜽 = (𝜃1, 𝜃2), noting that 𝜽 determines the value of 𝜃3. We assume the investigators are
interested in testing H01: 𝜃1 ≤ 0 vs 𝜃1 > 0 and H03: 𝜃3 ≤ 0 vs 𝜃3 > 0. The hypothesis H02: 𝜃2 ≤ 0, is not to be tested (although
one might require some evidence of a positive treatment effect in S2 to support approval of the new treatment for the full
population when H03 is rejected). However, the approach we describe can also be applied when enrichment in either S1
or S2 is possible, or when there are more than two subpopulations; the key requirement is that the subpopulations and
enrichment options are predefined.

2.2 Adaptive enrichment trial designs

If the new therapy is beneficial to all patients, we would hope to reject the null hypothesis H03 and establish that there
is an effect in the full patient population. However, if the benefit is restricted to patients in 1, it would be advantageous
to focus on this subpopulation and increase the probability of rejecting H01. Adaptive enrichment designs aim to balance
these two objectives by using interim data to decide whether or not to restrict enrolment in the remainder of the study to
1 and test only H01.

We consider trial designs with a single interim analysis that takes place after a fraction 𝜏 of the planned sample size
has been recruited and responses from these patients have been observed. Initially, patients are recruited from the full
population. If, at the interim analysis, results on the new therapy are promising in both 1 and 2, recruitment contin-
ues across the full population. If, however, the new therapy only appears to benefit patients in 1, the remainder of the
sample size is devoted to 1. Our objective is to optimize the rule for choosing between these two options in an adaptive
enrichment design.

Let n be the total number of patients to be recruited. Assuming recruitment from 1 and 2 is in proportion to the
size of these subpopulations, sample sizes at the interim analysis are 𝜆𝜏n in 1 and (1 − 𝜆)𝜏n in 2. When recruitment
continues from the full population, an additional 𝜆(1 − 𝜏)n patients are sampled from 1 and (1 − 𝜆)(1 − 𝜏)n from 2. If
“enrichment” occurs and only patients from 1 are recruited after the interim analysis, there will be a further (1 − 𝜏)n
patients from 1. We assume that, within each stage of the trial, patients in each subpopulation are randomized equally
between Treatments A and B.

In describing the distributions of parameter estimates, it is helpful to define

̃ = n
4𝜎2 . (1)

Note that a fixed sample size trial with n patients divided equally between Treatments A and B would produce an
estimate 𝜃̂3 with Var (𝜃̂3) = 4𝜎2∕n, so ̃ = {Var (𝜃̂3)}−1 represents the Fisher information for 𝜃3 in this case.

Let m11 = 𝜆𝜏n∕2 and m21 = (1 − 𝜆)𝜏n∕2. Then, in the form of adaptive enrichment design we have described, the first
stage yields treatment effect estimates

𝜃̂
(1)
1 = 𝜇̂

(1)
A1 − 𝜇̂

(1)
B1 = 1

m11

m11∑
i=1

Xi1 −
1

m11

m11∑
i=1

Yi1 ∼ N(𝜃1, {𝜆𝜏̃}−1),
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𝜃̂
(1)
2 = 𝜇̂

(1)
A2 − 𝜇̂

(1)
B2 = 1

m21

m21∑
i=1

Xi2 −
1

m21

m21∑
i=1

Yi2 ∼ N(𝜃2, {(1 − 𝜆)𝜏̃}−1)

and

𝜃̂
(1)
3 = 𝜆𝜃̂

(1)
1 + (1 − 𝜆)𝜃̂(1)2 ∼ N(𝜃3, {𝜏̃}−1).

The joint distribution of (𝜃̂(1)1 , 𝜃̂
(1)
3 ) is bivariate normal with correlation

√
𝜆.

Suppose that after the initial analysis the trial continues in the full population. Then, setting
m12 = 𝜆(1 − 𝜏)n∕2 and m22 = (1 − 𝜆)(1 − 𝜏)n∕2, the second stage data alone yield treatment effect
estimates

𝜃̂
(2)
1 = 𝜇̂

(2)
A1 − 𝜇̂

(2)
B1 = 1

m12

m11+m12∑
i=m11+1

Xi1 −
1

m12

m11+m12∑
i=m11+1

Yi1 ∼ N(𝜃1, {𝜆(1 − 𝜏)̃}−1),

𝜃̂
(2)
2 = 𝜇̂

(2)
A2 − 𝜇̂

(2)
B2 = 1

m22

m21+m22∑
i=m21+1

Xi2 −
1

m22

m21+m22∑
i=m21+1

Yi2 ∼ N(𝜃2, {(1 − 𝜆)(1 − 𝜏)̃}−1),

and

𝜃̂
(2)
3 = 𝜆𝜃̂

(2)
1 + (1 − 𝜆)𝜃̂(2)2 ∼ N(𝜃3, {(1 − 𝜏)̃}−1).

Again, the pair of estimates (𝜃̂(2)1 , 𝜃̂
(2)
3 ) is bivariate normal with correlation

√
𝜆.

Alternatively, suppose the trial is enriched and only subpopulations 1 is sampled in the second stage. Then, setting
m̃12 = (1 − 𝜏)n∕2, the new data yield the estimate

𝜃̂
(2)
1 = 1

m̃12

m11+m̃12∑
i=m11+1

Xi1 −
1

m̃12

m11+m̃12∑
i=m11+1

Yi1 ∼ N(𝜃1, {(1 − 𝜏)̃}−1)),

and no estimate of 𝜃3 is available.

3 ACHIEVING STRONG CONTROL OF THE FAMILY-WISE ERROR RATE

3.1 Closed testing procedures

Control of the type I error rate in a confirmatory clinical trial is paramount11 and, with two null hypotheses under
consideration, the testing procedure should provide strong control of the FWER at the prespecified level 𝛼.1 Thus, we
require

P𝜽(Reject at least one true null hypothesis) ≤ 𝛼 for all 𝜽.

We shall follow the general approach presented by Bretz et al,12 Schmidli et al13 and Jennison and Turnbull14

who ensure strong control of the FWER by constructing a closed testing procedure15 in which combination
tests are carried out on the individual hypotheses. In addition to the null hypotheses H01: 𝜃1 ≤ 0 and H03: 𝜃3 ≤
0, the closed testing procedure also considers the intersection hypothesis H0, 13 =H01 ∩H03 which states that
𝜃1 ≤ 0 and 𝜃3 ≤ 0. We specify level 𝛼 tests of H01, H03, and H0, 13. Then, H01 is rejected in the overall pro-
cedure if the individual level 𝛼 tests reject H01 and H0, 13. Similarly, H03 is rejected overall if the individ-
ual level 𝛼 tests reject H03 and H0, 13. For an explanation of why such a procedure protects the FWER and
why all procedures that provide strong control of FWER can be interpreted as closed testing procedures, see
Appendix A.
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We refer to the periods of an adaptive enrichment design before and after the interim analysis as stages 1 and
2. In our closed testing procedure, we need a method for combining test statistics for hypotheses H01 and H03 to
test the intersection hypothesis H0, 13 and a method to combine data across stages, bearing in mind that the decision
about which subpopulations to recruit from in stage 2 depends on the stage 1 data. We describe these methods in the
following sections.

3.2 Simes’ test for the intersection hypothesis

Let P(1)
1 and P(1)

3 be P-values for testing H01 and H03 based on stage 1 data. Then P(1)
1 ∼ Unif(0, 1) if 𝜃1 = 0 and P(1)

1 is stochas-
tically larger than a Unif(0, 1) random variable if 𝜃1 < 0; similarly, P(1)

3 ∼ Unif(0, 1) if 𝜃3 = 0 and P(1)
3 is stochastically larger

than this if 𝜃3 < 0. We can use Simes’ method2 to create a P-value for the intersection hypothesis H0, 13,

P(1)
13 = min{2 min(P(1)

1 ,P(1)
3 ), max(P(1)

1 ,P(1)
3 )}. (2)

Since P(1)
1 and P(1)

3 are based on nested groups of patients, these p-values are positively associated and the results of
Sarkar and Chang16 imply that Simes’ test gives a valid (but conservative) P-value for testing H0, 13.

If enrichment does not take place and stage 2 continues with recruitment from the full population, we define P(2)
1 and

P(2)
3 to be p-values for testing H01 and H03 based on data from stage 2 patients alone. Then, just as for stage 1 data, we

construct the Simes p-value

P(2)
13 = min{2 min(P(2)

1 ,P(2)
3 ), max(P(2)

1 ,P(2)
3 )}, (3)

for testing the intersection hypothesis H0, 13.
If enrichment does take place, only patients from 1 are observed in stage 2 and we define the P-value P(2)

1 for H01

based on these observations. We cannot define a P-value P(2)
3 but this is not a problem as we no longer plan to test H03. In

this case we set

P(2)
13 = P(2)

1 , (4)

noting that H0, 13 implies 𝜃1 ≤ 0 and hence P(2)
13 = P(2)

1 is Unif(0, 1), or stochastically larger than this, under H0,13.

3.3 The weighted inverse normal combination test

In constructing level 𝛼 tests of H01, H03, and H0,13, we need to combine P-values from the two stages. In each case, we do
this using a weighted inverse normal combination test.3-5

Consider first the level 𝛼 test of H01. The stage 1 data give

Z(1)
1 = 𝜃̂

(1)
1
√
{𝜆𝜏̃} ∼ N(𝜃1

√
{𝜆𝜏̃}, 1),

and the associated P-value is P(1)
1 = 1 − Φ(Z(1)

1 )whereΦ denotes the cumulative distribution function of a standard normal
random variable. If the trial recruits from the full population in stage 2, we have

Z(2)
1 = 𝜃̂

(2)
1
√
{𝜆(1 − 𝜏)̃} ∼ N(𝜃1

√
{𝜆(1 − 𝜏)̃}, 1),

while, if enrichment occurs, we have

Z(2)
1 = 𝜃̂

(2)
1
√
{(1 − 𝜏)̃} ∼ N(𝜃1

√
{(1 − 𝜏)̃}, 1),

and in either case the associated P-value is P(2)
1 = 1 − Φ(Z(2)

1 ).
Suppose 𝜃1 = 0. Then, Z(1)

1 ∼ N(0, 1) and P(1)
1 ∼ Unif(0, 1). Conditional on the first stage data, Z(2)

1 ∼ N(0, 1) and P(2)
1 ∼

Unif(0, 1). Since the conditional distribution of Z(2)
1 does not depend on the stage 1 data, we conclude that Z(1)

1 and Z(2)
1
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are independent N(0, 1) random variables. Using pre-specified weights w1 and w2 for which w2
1 + w2

2 = 1, we define the
combination test statistic

Z(c)
1 = w1Z(1)

1 + w2Z(2)
1 ,

and note that Z(c)
1 ∼ N(0, 1) when 𝜃1 = 0.

Suppose now that 𝜃1 < 0. We can write

Z(1)
1 = 𝜃1

√
{𝜆𝜏̃} + 𝜀

(1)
1 ,

where 𝜀
(1)
1 ∼ N(0, 1) and

Z(2)
1 = 𝜃1c1 + 𝜀

(2)
1 ,

where 𝜀(2)1 ∼ N(0, 1), 𝜀(2)1 is independent of 𝜀(1)1 , c1 =
√
{𝜆(1 − 𝜏)̃} if enrichment does not occur in stage 2 and c1 =

√
{(1 −

𝜏)̃} if enrichment does occur. Since

w1𝜀
(1)
1 + w2𝜀

(2)
1 ∼ N(0, 1),

Z(1)
1 < 𝜀

(1)
1 and Z(2)

1 < 𝜀
(2)
1 , it follows that Z(c)

1 = w1Z(1)
1 + w2Z(2)

1 is stochastically smaller than a N(0, 1) random variable.
Hence the test that rejects H01 if Z(c)

1 > Φ−1(1 − 𝛼) has type I error rate less than or equal to 𝛼 whenever 𝜃1 ≤ 0, as
required.

We construct a level 𝛼 test of H03 in a similar way to that of H01. We have

Z(1)
3 = 𝜃̂

(1)
3
√
{𝜏̃} ∼ N(𝜃3

√
{𝜏̃}, 1),

from stage 1 data and, if enrichment does not occur, we have

Z(2)
3 = 𝜃̂

(2)
3
√
{(1 − 𝜏)̃} ∼ N(𝜃3

√
{(1 − 𝜏)̃}, 1),

from stage 2 data. In the case of no enrichment, we create the combination test statistic

Z(c)
3 = w1Z(1)

3 + w2Z(2)
3 ,

and we reject H03 if Z(c)
3 > Φ−1(1 − 𝛼). The proof that this test controls the type I error rate follows the same lines

as that for the test of H01 but, since we do not test H03 at all when enrichment occurs, this test is conservative
even if 𝜃3 = 0.

The level 𝛼 test of the intersection hypothesis H0, 13 is constructed from the P-values P(1)
13 and P(2)

13 as defined in
Equations (2), (3) and (4). Under H0, 13, the positive correlation between 𝜃̂

(1)
1 and 𝜃̂

(1)
3 implies that P(1)

13 is stochastically
larger than a Unif(0, 1) random variable, even when 𝜃1 = 𝜃3 = 0. Thus, Z(1)

13 = Φ−1(1 − P(1)
13 ) is stochastically smaller than

a N(0, 1) random variable and we can write

Z(1)
13 = 𝜀

(1)
13 − 𝛿1, (5)

where 𝜀
(1)
13 ∼ N(0, 1) and 𝛿1 is a positive random variable, not necessarily independent of 𝜀(1)13 . If no enrichment occurs,

by similar reasoning, the conditional distribution under H0, 13 of Z(2)
13 = Φ−1(1 − P(2)

13 ), given stage 1 data, is stochastically
smaller than a N(0, 1) random variable. If enrichment does occur, Z(2)

13 = Z(2)
1 and has conditional distribution N(𝜃1

√
{(1 −

𝜏)̃}, 1) given stage 1 data. It follows that, under H0, 13, we can write

Z(2)
13 = 𝜀

(2)
13 − 𝛿2, (6)
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With no enrichment

H01 H03 H0, 13

Stage 1 P(1)
1 = 1 − Φ(Z(1)

1 ) P(1)
3 = 1 − Φ(Z(1)

3 ) P(1)
13 = S(P(1)

1 ,P(1)
3 )

Stage 2 P(2)
1 = 1 − Φ(Z(2)

1 ) P(2)
3 = 1 − Φ(Z(2)

3 ) P(2)
13 = S(P(2)

1 ,P(2)
3 )

Combined P(c)
1 = W(P(1)

1 ,P(2)
1 ) P(c)

3 = W(P(1)
3 ,P(2)

3 ) P(c)
13 = W(P(1)

13 ,P(2)
13 )

With enrichment

H01 H03 H0, 13

Stage 1 P(1)
1 = 1 − Φ(Z(1)

1 ) P(1)
3 = 1 − Φ(Z(1)

3 ) P(1)
13 = S(P(1)

1 ,P(1)
3 )

Stage 2 P(2)
1 = 1 − Φ(Z(2)

1 ) — P(2)
13 = P(2)

1

Combined P(c)
1 = W(P(1)

1 ,P(2)
1 ) — P(c)

13 = W(P(1)
13 ,P(2)

13 )

T A B L E 1 Formulae for P-values used to
create level 𝛼 tests of H01, H03, and H0, 13

where 𝜀
(2)
13 ∼ N(0, 1) is independent of 𝜀(1)13 and 𝛿2 is a positive random variable that may depend on 𝜀

(1)
13 and 𝜀

(2)
13 . It follows

from Equations (5) and (6) that, under H0, 13,

Z(c)
13 = w1Z(1)

13 + w2Z(2)
13

is stochastically smaller than a N(0, 1) variable. Hence, the test that rejects H0, 13 if Z(c)
13 > Φ−1(1 − 𝛼) has type I error rate

less than or equal to 𝛼 whenever 𝜃1 ≤ 0 and 𝜃3 ≤ 0.

3.4 Summary of the overall testing procedure

Let

S(P1,P2) = min{2 min(P1,P2), max(P1,P2)},

be the function that converts P1 and P2 into a Simes P-value and and define

W(P(1),P(2)) = 1 − Φ{w1Φ−1(1 − P(1)) + w2Φ−1(1 − P(2))}, (7)

the function that gives the P-value when a weighted inverse normal combination test with weights w1 and w2 is applied
to stage 1 and 2 P-values P(1) and P(2). With this notation, Table 1 presents a summary of the closed testing procedure
described above.

In a trial where enrichment does not occur and patients are recruited from the full population in stage 2, we reject
H01 overall if P(c)

1 ≤ 𝛼 and P(c)
13 ≤ 𝛼, and we reject H03 overall if P(c)

3 ≤ 𝛼 and P(c)
13 ≤ 𝛼. If enrichment occurs, H01 is rejected

overall if P(c)
1 ≤ 𝛼 and P(c)

13 ≤ 𝛼 but it is not possible to test H03 as there is no P(2)
3 to use in the combination test of H03; this

is in keeping with the decision to enrich which implies it is no longer desired to test H03.

4 OPTIMIZING AN ADAPTIVE ENRICHMENT DESIGN

4.1 Bayesian decision framework

An enrichment design, as described in Section 2.2, that applies the closed testing procedure presented in Section 3 will
protect the FWER regardless of the decision rule that determines when to enrich in stage 2. This gives us the opportunity
to apply Bayesian decision theory17 to optimize the enrichment decision rule for our chosen criterion. This decision
theoretic approach requires the specification of a prior distribution for 𝜽 and a gain, or utility, function that assigns a
value to the final outcome of the study.
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The decision rule. We denote the sufficient statistic for 𝜽 = (𝜃1, 𝜃2) based on stage 1 data by X1 = (𝜃̂(1)1 , 𝜃̂
(1)
2 ). Note that

(𝜃1, 𝜃2) determines (𝜃1, 𝜃3) and vice versa, so X1 is also the sufficient statistic for (𝜃1, 𝜃3). We shall consider decision rules
that are functions of X1. The decision under rule d is specified through the function d(X1) taking values in {1, 2}, with

d(X1) = 1 ⇒ Enrich in stage 2,
d(X1) = 2 ⇒ Do not enrich in stage 2.

The form of the sufficient statistic X2 for 𝜽 based on stage 2 data depends on which decision is taken. If d(X1)= 1,
enrichment occurs and X2 = 𝜃̂

(2)
1 , while if d(X1)= 2 enrichment does not occur and X2 = (𝜃̂(2)1 , 𝜃̂

(2)
2 ). In either case we write

X = (X1, d(X1), X2) to summarize the full set of data at the end of the study and the decision taken at the interim analysis.
The prior distribution for 𝜽. We assume a continuous prior distribution for 𝜽 = (𝜃1, 𝜃2) is specified and we denote the

probability density function of the prior distribution by 𝜋(𝜽).
The gain function. The gain function G(𝜽,X) denotes the value assigned to the outcome of the study when 𝜽 is the

parameter vector and we observe X = (X1, d(X1), X2). Note that we can deduce from X which of the hypotheses H01 and
H03 are rejected in the final analysis.

Let 1 be the indicator variable of the event that H01 is rejected but H03 is not rejected, and let 3 be the indicator
variable of the event that H03 is rejected. Both 1 and 3 are functions of X . In this paper we shall consider the gain
function

G(𝜽,X) = 𝜆𝜃11 + 𝜃33. (8)

Here, the gain is deemed to be proportional to the size of the population for which a treatment effect is found and also
to the average treatment effect for patients in that population.

Other forms of gain function are possible: the key feature is that they are constructed based on the possible outcomes of
the trial. A general form of gain function should capture the importance of each of these possible outcomes, for example,
if we define 𝛾1(𝜽,X) to represent the benefit of rejecting H01 and 𝛾3(𝜽,X) to represent the benefit of rejecting H03, then
the gain function will be

G(𝜽,X) = 𝛾1(𝜽,X)1 + 𝛾3(𝜽,X)3.

The choice of 𝛾1(𝜽,X) and 𝛾3(𝜽,X) may reflect both the treatment effect as seen in Equation (8) and the estimates of 𝜃1
and 𝜃3 which can be constructed from X . In our formulation of the design question, the total sample size is fixed, so
we have not included a cost of treating patients in the study in the overall gain function: such a cost would be required
if we were to include the option of stopping for futility at the interim analysis. One could also consider adding other
important outcomes from the trial such as the safety profile of the treatment. The application of the methods that follow
is not particularly dependent on the choice of gain function, although the choice of gain function will influence what is
optimal.

4.2 Computing the Bayes optimal design

With the prior distribution 𝜋 and gain function G specified, we wish to find the decision rule d that maximises the Bayes
expected gain of the trial E{G(𝜽,X)}, where the expectation is over both the prior distribution for 𝜽 and the distribution
of X given 𝜽.

We denote the conditional density function of X1 given 𝜽 by fX1|𝜽(x1|𝜽), the density of the marginal distribution of X1
by fX1(x1), and the conditional density of X2 given 𝜽 and decision d(x1) by fX2|𝜽,d(x2|𝜽, d(x1)). Let 𝜋𝜽|X1(𝜽|x1) be the density
of the posterior distribution of 𝜽 given X1 = x1, so

𝜋(𝜽)fX1|𝜽(x1|𝜽) = fX1(x1) 𝜋𝜽|X1(𝜽|x1).

Then the expected gain when applying decision rule d is

E{G(𝜽,X)} = ∫𝜽∫x1
∫x2

𝜋(𝜽)fX1|𝜽(x1|𝜽)fX2|𝜽,d(x2|𝜽, d(x1)) G(𝜽, (x1, d(x1), x2)) dx2 dx1 d𝜽
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= ∫x1

fX1(x1)∫𝜽∫x2

𝜋𝜽|X1(𝜽|x1)fX2|𝜽,d(x2|𝜽, d(x1)) G(𝜽, (x1, d(x1), x2)) dx2 d𝜽 dx1. (9)

It is evident from (9) that the optimal decision rule can be found by choosing d(x1) to maximize

∫𝜽∫x2

𝜋𝜽|X1(𝜽|x1)fX2|𝜽,d(x2|𝜽, d(x1)) G(𝜽, (x1, d(x1), x2)) dx2 d𝜽 = E{G(𝜽,X) | X1 = x1, d(x1)}, (10)

for each x1. That is, we choose the enrichment decision that maximizes the conditional expected gain given the stage 1
data under the posterior distribution of 𝜽 at the interim analysis.

Given observed stage 1 data X1 = x1 = (𝜃̂(1)1 , 𝜃̂
(1)
2 ), we need to compare values of the integral (10) in the two cases

d(x1)= 1 (enrichment) and d(x1)= 2 (no enrichment). Since this integral is not analytically tractable, we evaluate it by
Monte Carlo simulation. To do this, we draw a sample {𝜽i = (𝜃i,1, 𝜃i,2), i= 1, … , M}, from the posterior distribution
𝜋𝜽|X1(𝜽|x1) and find the conditional expected gain under each 𝜽i for the two options, “enrich” and “do not enrich.” We
take the average gain over this sample of 𝜽i values as our estimate of the conditional expected gain for each option. We
conclude that the decision d(x1) giving the larger of the two values for the conditional expected gain is the Bayes optimal
decision when X1 = x1 = (𝜃̂(1)1 , 𝜃̂

(1)
2 ).

In assessing the decision to enrich, d(x1)= 1, when X1 = x1 = (𝜃̂(1)1 , 𝜃̂
(1)
2 )we apply the definitions of Section 3 to find the

critical value 𝜅(x1) such that 𝜃̂(2)1 ≥ 𝜅(x1) implies P(c)
1 ≤ 𝛼 and P(c)

13 ≤ 𝛼, so H01 is rejected in the closed testing procedure.
We compute P(𝜃̂(2)1 ≥ 𝜅(x1) | 𝜃1 = 𝜃i,1, 𝜃̂

(1)
1 , d(x1) = 1) for each i= 1, … , M and combine the results to obtain the estimate

of the conditional expected gain

Ê{G(𝜽,X) | X1 = x1 = (𝜃̂(1)1 , 𝜃̂
(1)
2 ), d(x1) = 1} = 1

M

M∑
i=1

𝜆𝜃i,1P(𝜃̂(2)1 ≥ 𝜅(x1) | 𝜃1 = 𝜃i,1, 𝜃̂
(1)
1 , d(x1) = 1). (11)

If d(x1)= 2 and the trial continues without enrichment, the possibilities in stage 2 are more complex. In this case, for
each i= 1, … , M we continue to simulate the remainder of the trial by generating (𝜃̂(2)i,1 , 𝜃̂

(2)
i,2 ) under 𝜽 = 𝜽i and evaluating

the gain (8) with 𝜽 = 𝜽i and x = ((𝜃̂(1)1 , 𝜃̂
(1)
2 ), 2, (𝜃̂(2)i,1 , 𝜃̂

(2)
i,2 )). Combining these results gives the estimate of the conditional

expected gain

Ê{G(𝜽,X) | X1 = x1 = (𝜃̂(1)1 , 𝜃̂
(1)
2 ), d(x1) = 2} = 1

M

M∑
i=1

G(𝜽i, ((𝜃̂
(1)
1 , 𝜃̂

(1)
2 ), 2, (𝜃̂(2)i,1 , 𝜃̂

(2)
i,2 ))). (12)

The value of M used in these simulations should be chosen to give the desired level of accuracy. We have found M = 105

or 106 to give sufficient accuracy in the examples we have studied.

4.3 Determining the decision rule and decision boundary

In order to find the operating characteristics of a proposed adaptive enrichment design we must be able to repeatedly
simulate the design in full. This requires repeated application of the interim decision rule that specifies the optimal design
for a given prior 𝜋 and gain function G: thus we need to know the optimal decision for all possible values of x1 = (𝜃̂(1)1 , 𝜃̂

(1)
2 ).

We present an algorithm that enables the computation of the optimal decision rule over a large square region, A, such that
P(X1 ∈A) is very close to 1. The algorithm divides this region into an array of much smaller squares and determines the
optimal decision for values of x1 in each small square. With simple extrapolation beyond the boundaries of A, this process
divides the plane into two regions, AE where the optimal decision is to enrich, and AC where it is optimal to continue
recruitment in the full population.

Experience shows that the two regions AE and AC are quite regular in shape and this fact allows us to reduce the
computation needed to find the optimal decision rule. We first divide A into four subsquares and determine the optimal
decisions at the vertices of these squares. Then, if the same decision is optimal at all four vertices we record this as the
optimal decision for all points in that square. If, however, both decisions are optimal for at least one vertex we subdivide
this square into four smaller squares. In the next iterative step, we consider the set of squares of the smallest size and for
each of these we either record an optimal decision for the whole square or subdivide the square into four smaller ones. We
continue this iterative process until we reach squares of the desired size. Further details of this method and a discussion
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of its accuracy are given in Appendix B. The results of these calculations are 2-fold. First, the list of optimal decisions for
each small square provides the information needed to implement the optimal adaptive decision rule. Secondly, the results
can be presented graphically to help visualize the optimal decision rule.

4.4 Assessing the performance of an optimized trial design

Suppose the decision rule of an optimized adaptive enrichment design is defined by regions AE and AC as described above.
We assess the overall performance of this design by simulation. For each replicate i= 1, … , N, we generate a parameter
vector 𝜽i = (𝜃i,1, 𝜃i,2) then simulate stage 1 data xi,1 = (𝜃̂(1)i,1 , 𝜃̂

(1)
i,2 ) assuming 𝜽 = 𝜽i. We determine whether xi, 1 is in AE or

AC, set d(xi, 1)= 1 or 2 accordingly, and apply this decision, still assuming 𝜽 = 𝜽i, as we generate the stage 2 data: xi,2 = 𝜃̂
(2)
i,1

if d(xi, 1)= 1 (enrichment), or xi,2 = (𝜃̂(2)i,1 , 𝜃̂
(2)
i,2 ) if d(xi, 1)= 2 (no enrichment). Finally, we determine which hypotheses are

rejected and evaluate the gain function for these outcomes when 𝜽 = 𝜽i. Averaging over the N replicates gives the estimate

Ê{G(𝜽,X)} = 1
N

N∑
i=1

G(𝜽i, (xi,1, d(xi,1), xi,2)).

The same set of simulated data can be used to estimate other properties of the design such as the probabilities of rejecting
each null hypothesis. In our simulations we have used N = 106, so sampling error for the estimates reported is negligible.

One might ask whether it would be helpful to generate multiple replicates of the stage 2 data for each 𝜽i and x1, i.
However, the distribution of 𝜽i and x1, i accounts for much of the variability of G(𝜽,X) and it is more efficient to use the
available computational effort to increase the number of replicates, N, of the first stage data. Of course, this approach
relies on our having carried out initial work to find the regions AE and AC that define the optimal decision rule, and in
doing this we will have generated multiple samples of stage 2 data conditional on particular values of X1.

5 TWO NONADAPTIVE DESIGNS

There are two further options that should be considered when an adaptive enrichment design is envisaged. The first is
a design in which patients are recruited from the full population throughout the trial, but both null hypotheses H01 and
H03 are tested at the end. We shall refer to this as the Fixed Full population (FF) design. The other possibility is a Fixed
Subpopulation (FS) design, in which subjects are only recruited from the subpopulation and only the hypothesis H01 is
tested.

The Fixed Full population design. For comparability with other designs, we assume the same total sample size, n, as
in Section 2.2. Thus, 𝜆n patients are recruited from 1 and (1 − 𝜆)n from 2. With ̃ as defined in (1), the data provide
estimates

𝜃̂1 ∼ N(𝜃1, (𝜆̃)−1)),

and
𝜃̂3 ∼ N(𝜃3, (̃)−1),

and the joint distribution of (𝜃̂1, 𝜃̂3) is bivariate normal with correlation
√
𝜆.

The P-values for testing H01 and H03 are

P1 = 1 − Φ(𝜃̂1
√
{𝜆̃}) and P3 = 1 − Φ(𝜃̂3

√̃),
respectively, and Simes’ method gives the p-value

P13 = min{2 min(P1,P3), max(P1,P3)}

for the intersection hypothesis H0, 13. Applying the closed testing procedure, we reject H01 overall if P1 ≤ 𝛼 and P13 ≤ 𝛼,
and we reject H03 overall if P3 ≤ 𝛼 and P13 ≤ 𝛼.
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There are reasons why the FF design may be more efficient than the optimal adaptive design if the prior 𝜋(𝜽) is
concentrated on values of 𝜽 under which enrichment is unlikely to occur. Suppose an adaptive design is conducted and
enrichment does not occur. With suitable weights in the combination rule (7), the adaptive design’s P-values P(c)

1 and P(c)
3 ,

as shown in Table 1, are equal to the P1 and P3 obtained when the same data are observed in the FF design. However,
P(c)

13 = W(P(1)
13 ,P(2)

13 ) differs from the P13 arising from the same data in the FF design. Since P13 in the FF design is based
on the sufficient statistics for 𝜃1 and 𝜃3 in the full data set, it provides a more powerful test of H0, 13 than the adaptive
design’s P(c)

13 . The requirement to use P(c)
13 rather than P13 to test H0, 13 is the price we pay for the adaptive design’s flexibility

to enrich on other occasions: if such occasions are not particularly likely under the prior 𝜋(𝜽), it is plausible that the FF
design will be superior.

The Fixed Subpopulation design. In the FS design, all n subjects are recruited from 1. These provide the estimate

𝜃̂1 ∼ N(𝜃1, ̃−1)),

and the P-value

P1 = 1 − Φ(𝜃̂1
√̃),

and H01 is rejected if P1 ≤ 𝛼. In this design H03 is not tested.
We can expect the FS design to perform well when the prior 𝜋(𝜽) is such that the optimal adaptive design is highly

likely to enrich. Then, the FS design has the benefit of a larger sample size from 1 and, hence, a more accurate esti-
mate 𝜃̂1. Furthermore, the FS design only tests H01 and so does not have to make a multiplicity adjustment for testing two
hypotheses.

6 EXAMPLES

6.1 One-point prior distributions

We consider a Phase III clinical trial as described in Section 2.1 where the subpopulations 1 and 2 are of equal size,
so 𝜆 = 0.5. We set the FWER to be 𝛼 = 0.025 and suppose the total sample size n would provide power 0.9 to detect a
treatment effect of size 10 when testing only the hypothesis H03 in a nonadaptive design. This leads to the total information

̃ =
(
Φ−1(0.9) + Φ−1(0.975)

10

)2

= 0.105,

which is, for example, the information provided by a total sample size n= 264 when patient responses have standard
deviation 𝜎 = 25. In adaptive enrichment designs we suppose the interim analysis occurs after half the total sample has
been observed, thus 𝜏 = 0.5. Then, with 𝜆 = 0.5, 𝜏 = 0.5 and ̃ = 0.105, the interim estimates 𝜃̂(1)1 and 𝜃̂

(2)
1 have SD 6.15.

In order to gain insight into how adaptive designs function and what they may achieve, we first consider cases where
the prior distribution for 𝜽 places probability mass 1 at a single point, 𝜽 = 𝜽0 = (𝜃0,1, 𝜃0,2). For given 𝜽0, we derived the
decision rule for the adaptive enrichment (AE) design that maximises the expected gain, using the gain function G(𝜽,X)
specified in (8). For comparison, we also computed properties under 𝜽 = 𝜽0 of the FF design, which recruits from the
full population throughout the trial, and the FS design which only recruits from the subpopulation. Results presented in
Table 2 for selected values of 𝜽0 show each type of design, FF, FS, and AE, to be optimal for certain values of 𝜽0.

We carried out further calculations on a grid of values of 𝜽0 to find the regions where each type of design is optimal.
These regions are shown in Figure 1.

We note that the FF design is optimal when 𝜃0,3 = 0.5 (𝜃0,1 + 𝜃0,2) is large or 𝜃0,1 is only a little larger than 𝜃0,2. The FS
design is optimal when 𝜃0,1 is substantially larger than 𝜃0,2 and 𝜃0,2 is small. This leaves a region of 𝜽0 values where the
AE design is optimal, offering a modest increase in expected gain over both fixed designs. The advantage of the AE design
over the FF design is largest in cases such as 𝜽0 = (10, 2) and 𝜽0 = (12, 2), where 𝜃0,2 is small and the AE design has a high
probability of enrichment and rejection of H01 only. Although the FS design has even higher expected gain in these cases,
investigators may be reluctant to make such an early decision to ignore subpopulation 2 completely, in which case the
key comparison is between AE and FF designs.
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T A B L E 2 Properties of fixed subpopulation (FS), fixed full population (FF), and optimal adaptive
enrichment (AE) designs when 𝜽 = 𝜽0 = (𝜃0,1, 𝜃0,2). Here P(1) is the probability that only H01 is rejected and
P(3) the probability that H03 is rejected. The AE design is optimized for the prior distribution with
probability 1 at the single point 𝜽 = 𝜽0. In each case, the design with the highest expected gain is highlighted

𝜽0,1 𝜽0,2 𝜽0,3 Trial design P(1) P(3) P(Enrich) E{G(𝜽,X)}

10 2 6 FS 0.90 — — 4.50

FF 0.14 0.46 — 3.48

AE 0.50 0.23 0.71 3.89

10 4 7 FS 0.90 — — 4.50

FF 0.08 0.58 — 4.46

AE 0.25 0.46 0.38 4.51

10 6 8 FS 0.90 — — 4.50

FF 0.04 0.69 — 5.68

AE 0.08 0.64 0.13 5.55

10 10 10 FS 0.90 — — 4.50

FF 0.01 0.86 — 8.60

AE 0.01 0.83 0.00 8.34

12 2 7 FS 0.97 — — 5.84

FF 0.15 0.60 — 5.15

AE 0.50 0.36 0.58 5.58

12 4 8 FS 0.97 — — 5.84

FF 0.09 0.71 — 6.20

AE 0.25 0.60 0.28 6.30

12 6 9 FS 0.97 — — 5.84

FF 0.04 0.80 — 7.44

AE 0.09 0.76 0.10 7.38

14 2 8 FS 1.00 — — 6.97

FF 0.15 0.73 — 6.83

AE 0.40 0.54 0.39 7.13

14 4 9 FS 1.00 — — 6.97

FF 0.08 0.82 — 7.90

AE 0.19 0.74 0.17 7.97

14 6 10 FS 1.00 — — 6.97

FF 0.04 0.88 — 9.10

AE 0.07 0.86 0.06 9.07

In extreme cases such as 𝜽 = (10, 10) where both 𝜃0,1 and 𝜃0,2 are high, there is a high probability that the AE design
does not enrich and so has the same final dataset as the FF design. As discussed in Section 5, the AE design uses a different
form of P(c)

13 and this leads to less efficient use of the final data when enrichment does not occur and a lower expected gain
than for the FF design.

Since the AE design is optimized with knowledge of the value of 𝜽0, its advantage when it is superior to both fixed
designs does not stem from having improved estimates of the true treatment effects at the interim analysis. Rather, the
decision to enrich or not is based on the likelihood that current data, summarized as (𝜃̂(1)1 , 𝜃̂

(2)
1 ), will lead to eventual

rejection of H01 or H03. This suggests that the AE design may have an even greater advantage in situations where the prior
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F I G U R E 1 Regions of 𝜽 values in which each of the Fixed
Full population (FF), Fixed Subpopulation (FS), and optimal
Adaptive Enrichment (AE) designs give the highest value of
E{G(𝜽,X)} [Colour figure can be viewed at
wileyonlinelibrary.com]

distribution for 𝜽 is more dispersed, since then it can also exploit the information about 𝜽 that becomes available at the
interim analysis. We shall assess the performance of designs under dispersed prior distributions for 𝜽 in the next Section.

6.2 Proper prior distributions for 𝜽

In practice, one expects there to be considerable uncertainty about the true treatment effect. We capture this uncertainty
in a bivariate normal prior distribution for 𝜽,(

𝜃1

𝜃2

)
∼ N2

((
𝜇1

𝜇2

)
,

(
𝜎2

1 𝜌 𝜎1𝜎2

𝜌 𝜎1𝜎2 𝜎2
2

))
.

Figure 2 shows the enrichment decision rule for the Bayes optimal adaptive enrichment trial when 𝜇1 = 12, 𝜇2 = 2,
𝜎2

1 = 𝜎2
2 = 25 and 𝜌 = 0.75. The sharp angles in the decision boundary arise from discontinuities in the way 𝜃̂

(1)
1 and 𝜃̂

(2)
1

determine P(1)
1 , P(1)

3 , and P(1)
13 and how these P-values appear in the criteria for the closed testing procedure to reject H01

or H03.
Enrichment occurs when there is a low conditional probability of rejecting H03, given the prior and current data. This

includes cases where both 𝜃̂
(1)
1 and 𝜃̂

(2)
1 are low so rejection of H01 is also unlikely: one could add a rule to stop for futility

in such cases. When 𝜃̂
(1)
1 is high, so that rejection of H01 is very likely, the trial is not enriched, even for lower values of

𝜃̂
(1)
2 , as long as it is feasible that H03 will also be rejected.

Table 3 shows properties of the Bayes optimal AE design, along with properties of the nonadaptive FF and FS designs,
for prior distributions centred at the values of𝜽0 considered in Table 2 but with 𝜎2

1 = 𝜎2
2 = 25 and 𝜌 = 0.75. In contrast with

the results of Table 2, the AE design has higher expected gain than the FS design in all these examples with a dispersed
prior.

The AE design has higher expected gain than the FF design in six of the ten examples — but the margin of superiority
is not great. Thus, there is not much evidence that the enrichment design profits from information about 𝜽 at the interim
analysis. The explanation for this is that, in the examples of Table 3, the posterior distribution of 𝜽 after seeing the interim
data is still widely dispersed, with the SDs for 𝜃1 and 𝜃2 equal to 3.59. This is not just a feature of our particular examples.
Suppose a study’s total sample size is chosen so that a final test of H03: 𝜃3 ≤ 0 with type I error rate 0.025 has power 0.9
when 𝜃3 = 𝛿. With no enrichment, the SD of the final 𝜃̂3 is 0.31 𝛿. If there are two equally sized subpopulations, the interim
estimates of 𝜃1 and 𝜃2 based on half of the total data have SD 0.62 𝛿. The posterior variance of 𝜃1 and 𝜃2 at the interim

http://wileyonlinelibrary.com
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F I G U R E 2 An example of a Bayes optimal decision rule for an
adaptive enrichment trial [Colour figure can be viewed at
wileyonlinelibrary.com]

analysis depends on the prior variances of 𝜃1 and 𝜃2 and, to a small degree, on the prior correlation. If, as in the examples
of Table 3, the prior has Var (𝜃1) = Var (𝜃2) = (𝛿∕2)2, the posterior SDs of 𝜃1 and 𝜃2 at the interim analysis will be around
0.36 𝛿 and a credible interval for 𝜃1 or 𝜃2 could easily contain both 0 and 𝛿. On the other hand, the lower prior variances
Var (𝜃1) = Var (𝜃2) = (𝛿∕4)2 lead to posterior SDs around 0.23 𝛿—only slightly lower than the prior SDs of 0.25 𝛿. Thus,
in cases where the prior variance is high, considerable uncertainty about 𝜃1 and 𝜃2 remains at the interim analysis, while
if the prior variance is low, the interim data have little impact on the posterior distribution of 𝜃1 and 𝜃2.

Table 4 presents results for a further selection of prior distributions for 𝜽. The examples show that the prior correlation,
𝜌, has a small effect on expected gain but very little effect on the relative performance of different designs.

In cases with (𝜇1, 𝜇2) equal to (10,2) or (12,2) and low prior variance, the FS design is best—but it is substantially
inferior to the FF and AE designs in other situations. We conclude that the FS design option should only be considered if
there is a strong prior belief that the new treatment will offer little or no benefit to subpopulation 2.

For the cases in Table 4, the AE design has higher expected gain than the FF design (with the exception of a couple of
cases where the two designs have almost equal expected gain). However, we have failed to find an example where the AE
design is vastly superior to both the FS and FF designs: the example in Table 3 with (𝜇1, 𝜇2) = (14, 2) and 𝜎2

1 = 𝜎2
2 = 25

and the examples in Table 4 with (𝜇1, 𝜇2) = (12, 2) and 𝜎2
1 = 𝜎2

2 = 16 have the highest difference in expected gains in favor
of the AE design. One may also argue from the values of P(1) and P(3) in Tables 2 and 3 that the AE design shows
greater selectivity and is less likely to conclude the new treatment is beneficial to the full population when the treatment
effect in 2 is small or absent altogether.

6.3 Adjusting other design parameters

When planning an enrichment trial it is natural to investigate all design parameters and, where possible, optimise their
values. Here we consider the timing of the interim analysis at which the decision to enrich may be taken but we note that
a similar approach can be taken in setting other design features. Suppose, with the problem formulation described above,
we wish to find the best value of 𝜏 when the prior distribution of (𝜃1, 𝜃2) is given by 𝜇1 = 12, 𝜇2 = 4, 𝜎2

1 = 𝜎2
2 = 25 and

𝜌 = 0.75. We have applied our methods to find the Bayes optimal design for different values of 𝜏. Here we used weights
w1 =

√
𝜏 and w2 =

√
1 − 𝜏 in the combination test to account for the different sample sizes before and after the interim

analysis. Table 5 shows properties of designs with values of 𝜏 ranging from 0.1 to 0.9. We see that our earlier choice of
𝜏 = 0.5 yields the highest expected gain of 6.91, but designs with 𝜏 between 0.3 and 0.6 are very close to this optimum.
As 𝜏 increases from 0.1 to 0.7, the probability of enriching the trial increases. This is in keeping with the information in
Table 3 that the FF design is superior to the FS design, so a certain amount of data is needed to show that enrichment is
the better option in a particular trial. We have seen similar results in other examples where the the FF design is superior
to the FS design: AE designs with a range of 𝜏 values perform well, as long as 𝜏 is high enough to give enough information
to make an informed decision about enrichment.

http://wileyonlinelibrary.com
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T A B L E 3 Properties of fixed subpopulation (FS), fixed full population (FF), and optimal adaptive enrichment (AE) designs when 𝜽

has the prior distribution given by (13). Here P(1) is the probability that only H01 is rejected and P(3) the probability that H03 is rejected

𝝁1 𝝁2 𝝈2
1 𝝈2

2 𝝆 Trial design P(1) P(3) P(Enrich) E{G(𝜽,X)}

10 2 25 25 0.75 FS 0.75 — — 4.42

FF 0.10 0.48 — 4.89

AE 0.25 0.38 0.53 4.98

10 4 25 25 0.75 FS 0.75 — — 4.42

FF 0.06 0.54 — 5.64

AE 0.15 0.48 0.37 5.63

10 6 25 25 0.75 FS 0.75 — — 4.42

FF 0.04 0.61 — 6.52

AE 0.08 0.57 0.23 6.43

10 10 25 25 0.75 FS 0.75 — — 4.43

FF 0.01 0.72 — 8.59

AE 0.01 0.70 0.02 8.43

12 2 25 25 0.75 FS 0.84 — — 5.57

FF 0.12 0.55 — 6.09

AE 0.29 0.44 0.49 6.23

12 4 25 25 0.75 FS 0.84 — — 5.57

FF 0.08 0.62 — 6.86

AE 0.18 0.55 0.33 6.91

12 6 25 25 0.75 FS 0.84 — — 5.57

FF 0.05 0.68 — 7.77

AE 0.10 0.64 0.21 7.72

14 2 25 25 0.75 FS 0.91 — — 6.72

FF 0.14 0.63 — 7.33

AE 0.32 0.50 0.44 7.53

14 4 25 25 0.75 FS 0.91 — — 6.72

FF 0.10 0.69 — 8.13

AE 0.19 0.62 0.29 8.21

14 6 25 25 0.75 FS 0.91 — — 6.72

FF 0.06 0.74 — 9.03

AE 0.11 0.71 0.18 9.04

A somewhat different pattern is seen in scenarios where the FS design gives a high expected gain. Suppose the prior
distribution for (𝜃1, 𝜃2) has 𝜇1 = 12, 𝜇2 = 2, 𝜎2

1 = 𝜎2
2 = 4 and 𝜌 = 0.75. We saw in Table 4 that the FS design has higher

expected gain than both the FF design and the optimal AE design with 𝜏 = 0.5. Table 6 shows results for optimal AE
designs with different values of 𝜏.

Since we have used weights w1 =
√
𝜏 and w2 =

√
1 − 𝜏 in the combination test, as 𝜏 decreases toward zero the analysis

after enrichment becomes identical to that of the FS design. This explains why the probability of enrichment is high
for small values of 𝜏 and the expected gain is very close to that of the FS design. In fact, the optimal AE designs with
𝜏 = 0.1, 0.2 and 0.3 have marginally higher expected gain than the FS design. Thus, an adaptive design with an early
interim analysis could be a suitable choice if investigators are reluctant to restrict attention to subpopulation 1 from the
outset.
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T A B L E 4 Properties of fixed
subpopulation (FS), fixed full
population (FF), and optimal adaptive
enrichment (AE) designs when 𝜽 has
the prior distribution given by (13)

Prior parameters E{G(𝜽,X)} P(Enrich)

𝝁1 𝝁2 𝝈2
1 𝝈2

2 𝝆 FS FF AE for AE

10 2 0 0 — 4.50 3.48 3.89 0.71

10 2 1 1 0 4.47 3.55 3.93 0.69

10 2 1 1 0.75 4.47 3.58 3.95 0.69

10 2 4 4 0 4.42 3.74 4.04 0.64

10 2 4 4 0.75 4.42 3.81 4.09 0.64

10 2 16 16 0 4.38 4.33 4.50 0.55

10 2 16 16 0.75 4.38 4.52 4.65 0.55

12 2 0 0 — 5.84 5.15 5.58 0.58

12 2 1 1 0 5.81 5.18 5.58 0.56

12 2 1 1 0.75 5.81 5.19 5.59 0.56

12 2 4 4 0 5.74 5.29 5.61 0.52

12 2 4 4 0.75 5.74 5.34 5.67 0.53

12 2 16 16 0 5.60 5.66 5.86 0.49

12 2 16 16 0.75 5.60 5.80 5.99 0.49

10 4 0 0 — 4.50 4.46 4.51 0.39

10 4 1 1 0 4.47 4.51 4.56 0.39

10 4 1 1 0.75 4.47 4.52 4.57 0.38

10 4 4 4 0 4.42 4.66 4.68 0.36

10 4 4 4 0.75 4.42 4.71 4.75 0.37

10 4 16 16 0 4.38 5.14 5.14 0.35

10 4 16 16 0.75 4.38 5.31 5.31 0.37

12 4 0 0 — 5.84 6.20 6.30 0.28

12 4 1 1 0 5.81 6.21 6.31 0.28

12 4 1 1 0.75 5.81 6.22 6.32 0.29

12 4 4 4 0 5.74 6.28 6.35 0.28

12 4 4 4 0.75 5.74 6.29 6.39 0.29

12 4 16 16 0 5.60 6.54 6.57 0.29

12 4 16 16 0.75 5.60 6.63 6.69 0.31

14 4 0 0 — 6.97 7.90 7.97 0.17

14 4 1 1 0 6.95 7.89 7.97 0.17

14 4 1 1 0.75 6.95 7.89 7.97 0.18

14 4 4 4 0 6.91 7.89 7.95 0.18

14 4 4 4 0.75 6.91 7.87 7.97 0.19

14 4 16 16 0 6.78 7.96 8.00 0.22

14 4 16 16 0.75 6.78 7.99 8.08 0.23
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𝝉 P(1) P(3) P(Enrich) E{G(𝜽,X)}

0.1 0.14 0.58 0.13 6.84

0.2 0.17 0.56 0.23 6.87

0.3 0.19 0.55 0.28 6.89

0.4 0.19 0.55 0.31 6.91

0.5 0.18 0.55 0.33 6.91

0.6 0.17 0.56 0.34 6.89

0.7 0.15 0.57 0.34 6.88

0.8 0.13 0.58 0.32 6.87

0.9 0.11 0.59 0.27 6.85

T A B L E 5 Properties of the optimal adaptive enrichment (AE)
design for different timings of the interim analysis 𝜏 when 𝜽 has
the prior distribution given by (13) with 𝜇1 = 12, 𝜇2 = 4,
𝜎2

1 = 𝜎2
2 = 25, and 𝜌 = 0.75. The interim analysis takes place after a

fraction 𝜏 of the total sample has been observed

𝝉 P(1) P(3) P(Enrich) E{G(𝜽,X)}

0.1 0.69 0.21 0.72 5.75

0.2 0.60 0.28 0.64 5.76

0.3 0.53 0.33 0.59 5.75

0.4 0.48 0.37 0.55 5.72

0.5 0.42 0.41 0.53 5.67

0.6 0.37 0.44 0.49 5.61

0.7 0.32 0.47 0.45 5.55

0.8 0.27 0.51 0.41 5.48

0.9 0.15 0.54 0.36 5.39

T A B L E 6 Properties of the optimal adaptive enrichment (AE)
design for different timings of the interim analysis when 𝜽 has the
prior distribution given by (13) with 𝜇1 = 12, 𝜇2 = 2, 𝜎2

1 = 𝜎2
2 = 4,

and 𝜌 = 0.75. The interim analysis takes place after a fraction 𝜏 of
the total sample has been observed

𝝀 E{G(𝜽,X)} P(Enrich)

FS FF AE for AE

0.1 1.35 2.44 2.61 0.56

0.2 2.69 3.58 3.87 0.53

0.3 4.04 4.85 5.14 0.49

0.4 5.38 6.11 6.36 0.44

0.5 6.72 7.33 7.53 0.44

0.6 8.06 8.53 8.71 0.40

0.7 9.42 9.73 9.87 0.39

0.8 10.77 10.93 11.03 0.38

0.9 12.11 12.13 12.18 0.38

T A B L E 7 Properties of fixed subpopulation (FS), fixed full
population (FF), and optimal adaptive enrichment (AE) designs for
different subpopulation sizes when 𝜽 has the prior distribution given
by (13) with 𝜇1 = 14, 𝜇2 = 2, 𝜎2

1 = 𝜎2
2 = 25, and 𝜌 = 0.75. The

subpopulation 2 represents a fraction 𝜆 of the total population

6.4 Effect of the subpopulation size

In all of our examples so far, the subpopulation 1 has represented half of the total population. The size of the specified
subpopulation is a feature of the study and not a parameter that can be controlled. Table 7 shows the effect of the sub-
population size on the relative performance of different designs. In this example, the prior distribution for (𝜃1, 𝜃2) has
𝜇1 = 14, 𝜇2 = 2, 𝜎2

1 = 𝜎2
2 = 25 and 𝜌 = 0.75, and we saw in Table 3 that the optimal AE design is the best option when

𝜆 = 0.5. The results in Table 7 show that the optimal AE design remains superior to both the FF and FS designs across
the whole range of 𝜆 values from 0.1 to 0.9.

For each design, the expected gain for all designs increases with 𝜆 as the fraction of the population in which the
treatment effect is 𝜃1 becomes larger. The margin of superiority of the AE design over the FF design is largest for 𝜆 = 0.2
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and 𝜆 = 0.3. The reasons behind this are quite complex. The potential benefits of adaptive enrichment are small when 𝜆 is
close to zero or 1 and one of the subpopulations forms a large fraction of the total population. Also, the interim estimate of
𝜃1 has a high variance when 𝜆 is small and the estimate of 𝜃2 has a high variance when 𝜆 is large, reducing the information
available when making the interim decision. Nevertheless, it is clear from this example that adaptive enrichment can be
of benefit over a wide range of subpopulation sizes.

7 DISCUSSION

We have considered adaptive trial designs for testing the efficacy of a new treatment when a prespecified subpop-
ulation is deemed particularly likely to benefit from the new treatment. The methods we have presented facilitate
calculation of the Bayes optimal rule for deciding whether to enrich in a design where the familywise type I error rate is
controlled by a closed testing procedure and combination test. Since this calculation relies on Monte Carlo simulation
to determine the optimum decision at all possible values of (𝜃̂(1)1 , 𝜃̂

(1)
2 ), efficient calculation is crucial. We achieve this by

use of an algorithm that makes intensive computations along a one-dimensional strip of (𝜃̂(1)1 , 𝜃̂
(1)
2 ) values, rather than

on a fully two-dimensional grid. The use of simulation means that this approach is highly flexible and may be applied
just as easily with other forms of closed testing procedure or combination test, or with different definitions of the final
gain function.

Our study of a wide range of examples supports clear conclusions about the benefits of adaptive enrichment designs.
If investigators are willing to use either the FF (Fixed Full population) or FS (Fixed subpopulation) design, the additional
benefits of an adaptive enrichment design are at best modest for the gain function we have considered. However, the FS
design may not be a realistic option: there could be differing opinions about the likely treatment effect in the subpopulation
2 or, within the wider development program, there may be good reasons for wanting to learn about the new treatment’s
efficacy in the full population. Then, if the FS design is not an option, there are plausible prior distributions for 𝜽 under
which the AE is clearly superior to the FF design.

A positive feature of AE design that is not captured in our gain function is its selectivity. Suppose 𝜃1 is high but 𝜃2 is
close to zero. If rejection of H03: 𝜃3 ≤ 0 leads to the new treatment being made available to the full patient population,
it would be given to patients in 2 for whom the control treatment is just as good. If 𝜃2 = 0, the term 𝜃33 in the gain
function (8) is equal to 𝜆𝜃13 and this neither rewards nor penalizes giving the new treatment to patients in 2. The
results in Tables 2 and 3 show the AE design to have higher values of P(1) and lower values of P(3) compared to the
FF design, indicating that when 𝜃2 is low the AE design is more likely to find a treatment effect only in 1.

Our results have illustrated a general weakness of adaptive designs that decisions about adaptation are based on
interim data which provide only limited information about the true treatment effects. The results in Table 2 for the FS and
FF designs show clear benefits to drawing patients from the most appropriate subgroups when the value of 𝜽 is known.
However, in the examples of Table 3 and the examples with higher prior variances in Table 4the AE designs must make
enrichment decisions under highly variable posterior distributions of 𝜽 at the interim analysis. A possible remedy to this
problem in making the enrichment decision is to use additional information from other endpoints or biomarkers that can
be assumed to respond in the same way as the primary endpoint to the treatments under investigation.

We have presented methods for a study in which there is just one subpopulation of special interest. These methods can
be generalized to the design of trials with multiple subpopulations, possibly nested with the treatment effect increasing as
the size of the subpopulation decreases. Then, given a multiple testing procedure that controls FWER, a suitably defined
gain function and a prior distribution for the vector of treatment effects, our simulation-based approach may be used to
find the optimal enrichment decision at an interim analysis. However, more computation will be needed to find the full
optimal design as the dimensionality of the problem increases with the number of subpopulations.

The gain function (8) may be adapted to reflect the process of drug approval. Suppose, for example, H03: 𝜃3 ≤ 0 is
rejected on the strength of a large positive estimate of 𝜃1 and a much smaller estimate for 𝜃2. While a regulator may not
require formal rejection of the null hypothesis H02: 𝜃2 ≤ 0 at the 0.025 significance level, some minimum threshold for
an estimate 𝜃̂2 may be required in order for the treatment to be approved for the full population, and for health care
providers to agree to pay for this treatment. Such a requirement can be reflected in the gain function G(𝜽,X), where
the data in X includes estimates of 𝜃1 and 𝜃2. Rather than stipulate a particular gain function for all applications, we
recommend that investigators determine the appropriate gain function for their specific trial, then our methods can
be used to optimize over adaptive enrichment designs and to compare the resulting design with other, nonadaptive
options.



708 BURNETT and JENNISON

ACKNOWLEDGEMENTS
The first author received financial support for this research from the UK Engineering and Physical Sciences Research
Council and Hoffman-LaRoche Ltd. The authors would like to thank to Lucy Rowell for her contributions to this project.

ORCID
Thomas Burnett https://orcid.org/0000-0001-8912-2554
Christopher Jennison https://orcid.org/0000-0002-9812-1104

REFERENCES
1. Dmitrienko A, D’Agostino RB, Huque MF. Key multiplicity issues in clinical drug development. Stat Med. 2013;32:1079-1111.
2. Simes RJ. An improved Bonferroni procedure for multiple tests of significance. Biometrika. 1986;73:751-754.
3. Bauer P, Köhne K. Evaluation of experiments with adaptive interim analyses. Biometrics. 1994;50:1029-1041.
4. Lehmacher W, Wassmer G. Adaptive sample size calculations in group sequential trials. Biometrics. 1999;55:1286-1290.
5. Hartung J. A note on combining dependent tests of significance. Biom J. 1999;41:849-855.
6. Burnett T. Bayesian Decision Making in Adaptive Clinical Trials [PhD thesis]. University of Bath; 2017.
7. Brannath W, Zuber E, Branson M, et al. Confirmatory adaptive designs with Bayesian decision tools for a targeted therapy in oncology.

Stat Med. 2009;28:1445-1463.
8. Götte H, Donica M, Mordenti G. Improving probabilities of correct interim decision in population enrichment designs. J Biopharm Stat.

2015;25:1020-1038.
9. Uozumi R, Hamada C. Utility-based interim decision rule planning in adaptive population selection designs with survival endpoints. Stat

Biopharm Res. 2020;12:360-368.
10. Ondra T, Jobjörnsson S, Beckman RA, et al. Optimized adaptive enrichment designs. Stat Methods Med Res. 2019;28:2096-2111.
11. ICH, EMEA. ICH E9: Statistical Principles for Clinical Trials. London, UK: European Medicines Agency; 1998.
12. Bretz F, Schmidli H, König F, Racine A, Maurer W. Confirmatory seamless phase II/III clinical trials with hypotheses selection at interim:

general concepts. Biom J. 2006;48:623-634.
13. Schmidli H, Bretz F, Racine A, Maurer W. Confirmatory seamless phase II/III clinical trials with hypotheses selection at interim:

applications and practical considerations. Biom J. 2006;48:635-643.
14. Jennison C, Turnbull BW. Adaptive seamless designs: selection and prospective testing of hypotheses. J Biopharm Stat. 2007;17:1135-1161.
15. Marcus R, Peritz E, Gabriel KR. On closed testing procedures with special reference to ordered analysis of variance. Biometrika.

1976;63:655-660.
16. Sarkar SK, Chang CK. The Simes method for multiple hypothesis testing with positively dependent test statistics. J Am Stat Assoc.

1997;92:1601-1608.
17. Berger JO. Statistical Decision Theory and Bayesian Analysis. 2nd ed. Springer Science & Business Media: New York, NY; 2013.

SUPPORTING INFORMATION
Additional supporting information may be found online in the Supporting Information section at the end of this article.

How to cite this article: Burnett T, Jennison C. Adaptive enrichment trials: What are the benefits?. Statistics in
Medicine. 2021;40:690–711. https://doi.org/10.1002/sim.8797

APPENDIX A. STRONG CONTROL OF FWER IMPLIES A CLOSED TESTING PROCEDURE

Suppose a multiple testing procedure  with n null hypotheses provides strong control of the FWER at level 𝛼. We shall
show that  can be represented as a closed testing procedure . Suppose the null hypotheses are stated in terms of a
parameter vector 𝜽, then strong control of the FWER implies that

P𝜽(Reject at least one true null hypothesis) ≤ 𝛼 for all 𝜽. (A1)

Suppose the ith null hypothesis is H0i: 𝜽 ∈ Ai. Denote the observed data by X and suppose  rejects H0i if X ∈ 𝜉i. We
shall use the rejection regions 𝜉i to define a closed testing procedure  which gives the same overall decisions as  .
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We first define level 𝛼 tests of the individual hypotheses H01, … , H0n. For each i∈ 1, … , n, the test of H0i rejects its
null hypothesis if and only if X ∈ 𝜉i. To see that this gives a level 𝛼 test of H0i, suppose 𝜽 ∈ Ai, then

P𝜽(Reject H0i) = P𝜽(X ∈ 𝜉i) ≤ P𝜽(Reject at least one true null hypothesis) ≤ 𝛼,

by applying (A1) with 𝜽 ∈ Ai.
Now consider an intersection hypothesis HI =∩i∈ IH0i, where I is a subset of {1, … , n}. Our level 𝛼 test of HI , rejects

HI if
X ∈ ∪i∈I 𝜉i.

To see this gives a level 𝛼 test of HI , suppose HI is true, so 𝜃 ∈ ∩i∈IAi, then

P𝜽(Reject HI) = P𝜽(X ∈ ∪i∈I 𝜉i) ≤ P𝜽(Reject at least one true null hypothesis) ≤ 𝛼,

by applying (A1) with 𝜽 ∈ ∩i∈IAi.
The closed testing procedure  is formed by combining the level 𝛼 tests of individual and intersection hypotheses in

the usual way. Thus, the null hypothesis H0i is rejected overall if the level 𝛼 tests reject H0i and every HI for which i∈ I. It
is easy to check that the procedure  rejects H0i overall if and only if X ∈ 𝜉i, and thus the two procedures  and  always
reject exactly the same set of hypotheses.

Although the above construction is quite simple, we are not aware that this result has been noted previously. An
implication in our application is that we lose no generality by restricting attention to methods based on closed testing
procedures. Of course, the choice of closed testing procedure remains. In our case, it is natural to base the level 𝛼 test
of H01 on 𝜃̂

(1)
1 and 𝜃̂

(2)
1 and the level 𝛼 test of H03 on 𝜃̂

(1)
3 and 𝜃̂

(2)
3 , so we see it is the method of testing the intersection

hypothesis H01 ∩H03 that may merit further investigation.

APPENDIX B. DERIVATION OF THE OPTIMAL DECISION RULE

We illustrate the details of our computational method in an example where the decision rule being sought is that depicted
in Figure 3A. In finding this rule we start by defining a region A in which (𝜃̂(1)1 , 𝜃̂

(1)
2 ) will lie with very high probability:

in this example we have taken A to be the square (0, 20)× (− 10, 10). We subdivide A into four smaller squares and find
the optimal decision at each of the nine vertices of these squares, giving the results shown in Figure 3B. We proceed on
the assumption that if a certain decision is optimal at (𝜃̂(1)1 , 𝜃̂

(1)
2 ) = (a, b) and (𝜃̂(1)1 , 𝜃̂

(1)
2 ) = (a, c), where b< c, then the same

decision is optimal at all points (𝜃̂(1)1 , 𝜃̂
(1)
2 ) = (a, d) with b< d< c; similarly if a decision is optimal at (𝜃̂(1)1 , 𝜃̂

(1)
2 ) = (a, b) and

(𝜃̂(1)1 , 𝜃̂
(1)
2 ) = (c, b), where a< c, we assume this decision is also optimal at (𝜃̂(1)1 , 𝜃̂

(1)
2 ) = (d, b) for all a< d< c. Applying this

assumption in our example, we see that it is optimal to enrich for all values (𝜃̂(1)1 , 𝜃̂
(1)
2 ) in the top right-hand square, so we

record this conclusion and make no further calculations for points in this square. The other three squares need further
work: we subdivide each of these into four smaller squares and find the optimal decision at each new vertex. The results
of these steps are presented in Figure 3C.

We continue the search iteratively, halving the size of the smallest squares at each step. In the next iteration for our
example, we note that five of the 12 small squares in Figure 3C have the same optimal decision at all four vertices and
we allocate this decision to the whole square. We subdivide the other seven squares and compute optimal decisions at
the new vertices. The information after this step is depicted in Figure 3D. Repeating the same steps in the next iteration
produces the results shown in Figure 4A.

If our target is to specify optimal decisions on a 16× 16, this is the final iteration. To complete the process, we find the
optimal decision associated with each of the smallest squares: if the optimal decision is the same at all four vertices this
decision is assigned to the square; if not, we find the optimal decision at the square’s center point and define this to be
the decision for the whole square. Figure 4B shows the results of this last step, while Figure 4C presents the same set of
conclusions using the full 16× 16 grid.

Analysing this algorithm in the most demanding case when the decision boundary is at an angle of 45◦, we find the
optimal decision has to be computed at about 14n points in order to determine optimal decisions on an array of n×n
small squares. A key point here is that the amount of computation is of order n, even though there are n2 small squares
at the finest level. Since we need to conduct a large number of simulations in finding the optimal decision for each value
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(A) (B)

(D)(C)

F I G U R E 3 Computation of an optimal decision rule [Colour figure can be viewed at wileyonlinelibrary.com]

of (𝜃̂(1)1 , 𝜃̂
(1)
2 ), the computational load can still be high—but it is feasible. In our examples we found optimal decisions on a

28 × 28 or 29 × 29 array, using samples of size 105 or 106 from the posterior distribution of 𝜽 in finding the optimal decision
at each x1 = (𝜃̂(1)1 , 𝜃̂

(1)
2 ).

In the examples we have studied, it has usually been clear from the results that the optimal decision function has the
assumed monotonicity property. However, it is possible for this assumption to fail. In that case, the decision boundary
may cross one edge of a square twice, then having the same optimal decision at all four vertices of that square does not
necessarily mean this decision is optimal throughout the square. In a more conservative version of our algorithm, which
guards against this eventuality, we require the same decision to be optimal at all 16 vertices of a 3× 3 grid of squares before
concluding this decision to be optimal over the whole of the central square. The additional computations needed when

http://wileyonlinelibrary.com
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this approach is followed in our example are illustrated in Figure 4D. In general, this conservative approach requires
approximately twice the total computation time.

http://wileyonlinelibrary.com

