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1  | INTRODUC TION

Naturally occurring DNA damage accounts for up to 200  000 
lesions per cell per day, and is caused by various intrinsic and 
extrinsic factors.1,2 Extrinsic or environmental sources of DNA 
damage include UV light, IR and exposure to genotoxic agents. 
For example, UV light from the sun can induce up to 100  000 
DNA lesions per cell per day.2,3 Intrinsic factors mostly stem 

from metabolic by-products, such as ROS. Mammalian cells 
have evolved some signaling pathways and mechanisms to en-
gage the DDR. Mildly damaged cells may repair the DNA lesions 
and recover. However, if the damage is irreparable, it will trig-
ger the cell death response to eliminate damaged cells. Aberrant 
genetic and epigenetic changes of DDR regulators may cause 
human diseases. A plethora of studies illustrates that DDR is 
inactivated in the early stage of carcinogenesis.4 If DNA dam-
age is not correctly repaired or stays unrepaired, DNA lesions 
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Abstract
Cancer cells are often characterized by abnormalities in DNA damage response includ-
ing defects in cell cycle checkpoints and/or DNA repair. Synthetic lethality between 
DNA damage repair (DDR) pathways has provided a paradigm for cancer therapy by 
targeting DDR. The successful example is that cancer cells with BRCA1/2 mutations 
are sensitized to poly(adenosine diphosphate [ADP]-ribose)polymerase (PARP) inhib-
itors. Beyond the narrow scope of defects in the BRCA pathway, “BRCAness” pro-
vides more opportunities for synthetic lethality strategy. In human pancreatic cancer, 
frequent mutations were found in cell cycle and DDR genes, including P16, P73, APC, 
MLH1, ATM, PALB2, and MGMT. Combined DDR inhibitors and chemotherapeutic 
agents are under preclinical or clinical trials. Promoter region methylation was found 
frequently in cell cycle and DDR genes. Epigenetics joins the Knudson's “hit” theory 
and “BRCAness.” Aberrant epigenetic changes in cell cycle or DDR regulators may 
serve as a new avenue for synthetic lethality strategy in pancreatic cancer.
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will be induced, including mutations, deletions, insertions, and 
others. Cancer is regarded as a disease of accumulating driver 
mutations.5 For cancer treatment, the purpose of chemothera-
peutic agents is to induce DNA damage. It is a major challenge of 
toxic effect and chemo-resistance in the clinic. Defects of DDR 
in cancer cells increase their sensitivity to DNA damage agents.4 
The concept of synthetic lethality originates from studies in 
Drosophila modal systems in which a combination of mutations 
in 2 or more separate genes leads to cell death.6 There is applica-
tion of synthetic lethality approaches in dysfunction of BRCA1 
and BRCA2 sensitized cells to poly(adenosine diphosphate[AD-
P]-ribose)polymerase (PARP) inhibitors in various cancers.7,8 The 
tumor-specific genetic defects serve as therapeutic markers to 
target human tumor-induced tumor cell death without damaging 
normal cells. Beyond BRCA1/2 mutations, there are more ab-
errant genetic or epigenetic changes in human tumors. The key 
genes involved in cell cycle checkpoints and DDR are actionable 
under synthetic lethality. Accumulation of aberrant epigenetic 
changes, including DNA damage signaling, plays an important 
role in cancer development.9,10

Pancreatic cancer is a very malignant disease, the overall 5-y 
survival time is <10%.11 Pancreatic cancer-related death is in-
creasing and by 2030 is predicted to be the second leading cause 
of cancer-related death.12 Although c. 10% cases of PC have a fam-
ily history, the genetic basis for familial aggregation has not been 
identified in most cases.13,14 Despite the vast genetic information 
gathered from PC genomic sequencing, biomarker-based tailored 
therapies account for <1% of the total patient population. Targeting 
the DDR in tumors with defective DNA repair is a successful clinical 
example, but c. 4%-7% of patients with PC have germline BRCA1/2 
mutation.15 Discovering more DDR-related markers will promote 
the development of novel synthetic lethality strategies in pancreatic 
cancer. This review is mainly focused on aberrant DDR in genetics 
and epigenetics, the microenvironment and immune system are not 
discussed.

2  | CELL CYCLE AND DDR

Loss of the normal controls of cellular replication is a fundamen-
tal defect in cancer. Thus, understanding the mechanisms of cell 
cycle control may lead to the development of novel strategies for 
cancer treatment. The cell cycle consists of the G1, S, G2, and M 
phases. Cyclins and CDKs are important regulatory components 
that are required for cell cycle progression. Human cells possess 
20 CDKs and 29 cyclins.16 G1-phase cells are preparing for DNA 
synthesis. DNA is replicated during the S phase and cells enter into 
G2 phase for a period of growth. Then, cells enter the M phase and 
DNA is divided equally into 2 daughter cells. Most non-dividing 
cells exit the cell cycle at the G1 phase into quiescence (G0 phase). 
Progression from 1 phase to another in the cell cycle is tightly 
regulated by CDKs. The integrity of the cell cycle is governed by 
surveillance mechanisms known as checkpoints, including G1/S, 

intra-S, G2/M and mitotic checkpoints (M) in mammalian cells.17 
These checkpoints are important for DNA repair, replication, and 
spindle assembly. Cells rely on these checkpoints to prevent them 
from progressing into a new phase before they complete their cur-
rent phase. In response to DNA damage, cell cycle progression is 
blocked by these checkpoints, giving cells time to repair damage 
before the next cell phase.

In early G1 phase, CDK4 and/or CDK6 are activated by cyclin 
D and phosphorylated retinoblastoma protein (Rb), releasing E2F 
transcription factors and resulting in the activation of E2F respon-
sive genes for cell cycle progression. In the late G1 phase, CDK2 is 
activated by binding to cyclin E and completes the phosphorylation 
of Rb, leading to further activation of E2F-mediated transcription. 
Then, cells pass through the boundary of the G1/S checkpoint and 
enter S phase. In S phase, CDK2 plays an important role by binding 
to cyclin A. During G2/M transition, CDK1, cyclin A, and cyclin B are 
required for completing mitosis.18

One of the most harmful forms of DNA damage is the DSB. There 
are 2 major pathways to repair DSBs: NHEJ and HR. NHEJ takes part 
in DDR throughout the entire cell cycle, and it is preferably repair-
ing during G0, G1, and early S phase.19 HR is generally restricted to 
the late S and G2 phase, as it usually uses the intact sister chroma-
tin as a template for synthesis-dependent repair in mitotic cells. HR 
is regarded as an error-free pathway. Interestingly, DSBs in verte-
brate cells are predominantly repaired by NHEJ rather than HR.20 
DSBs are sensed by the heterotrimeric Mre11/Rad50/NBS1 (MRN) 
complex.21 The MRN complex is recruited to DSBs and serves as an 
activation platform for the DNA damage checkpoint kinase, ATM. 
ATM is directly involved in DSBs repair by HR.22 DSBs also activate 
another DNA damage responsive kinase DNA-PK to initiate NHEJ 
signaling. NHEJ is more error-prone, as the ends of DNA breaks are 
directly ligated without the need for a homologous template. When 
cells encounter SSBs or replication errors, ATR (ATM and Rad3-
related), another kinase, is activated. ATM is activated in response 
to DSBs, and ATR acts in response to SSBs. However, as cross-talk 
between these pathways, both ATM and ATR are involved in repair 
of DSBs.

3  | DDR INHIBITORS

A well recognized sensor of DNA damage is the protein PARP, which 
is best known for its role in DNA BER and repair of DNA SSB. Here, 
30 y ago, small molecule nicotinamide analogs were shown to inhibit 
PARylation and to enhance the cytotoxicity of dimethyl sulfate, a DNA-
damaging agent.23 More modified PARP inhibitors (PARPi) have been 
developed, including olaparib and niraparib. All these PARPi interact 
with the binding site of the PARP enzyme cofactor, β-nicotinamide 
adenine dinucleotide (β-NAD+), in the catalytic domain of PARP1 and 
PARP2.24 Both BRCA1 and BRCA2 proteins are critical for the repair of 
DSBs by HR. In HR-deficient cells, including defects in BRCA1, BRCA2, 
or other pathway components, the preferentially used mechanism is 
NHEJ. This may lead to DNA deletions or mutations.25,26
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In 2005, 2 groups described the synthetic lethal interaction 
between PARP inhibition and BRCA1 or BRCA2 mutation, and de-
veloped a novel treatment strategy for BRCA-mutant tumors.7,8 

BRCA-mutant tumor cells were more sensitive to PARPi than 
BRCA wild-type cells, by as much as 1000 times. In addition to 
causing persistent SSBs by inhibiting PARP, it may create a DSB 

TA B L E  1   DDR inhibitors

DDR pathway Genes DDR inhibitors Application Ref

BER PARP Olaparib (AD2281) Germline BRCA-mutated metastatic pancreatic cancer (NCT02184195) (97)

Combination with irinotecan, cisplatin, and mitomycin C in pancreatic 
cancer (NCT01296763)

(98)

Combination with gemcitabine in pancreatic cancer (NCT00515866)

Metastatic pancreatic cancer with a BRCAness somatic profile 
(NCT04348045)

Veliparib (ABT-888) Combination with gemcitabine, cisplatin pancreatic cancer with 
BRCA1/2, PALB2 mutation (NCT01585805)

Combination with folinic acid, fluorouracil and irinotecan (FOLFIRI) in 
pancreatic cancer (NCT02890355)

Combination with modified FOLFOX6 in pancreatic cancer 
(NCT01489865)

Combination with gemcitabine and intensity modulated radiation 
therapy in pancreatic cancer (NCT01908478)

Niraparib (MK-4827) Pancreatic cancer with BRCA1, BRCA2, PALB2, CHEK2 or ATM 
mutations (NCT03601923)

Pancreatic cancer after previous chemotherapy (NCT03553004)

Talazoparib (BMN 673) Advanced or recurrent solid tumors, including pancreatic cancer with 
BRCA mutations (NCT01286987)

(99)

Rucaparib (AG-014699) BRCA1, BRCA2 or PALB2 mutated pancreatic cancer (NCT03140670)

Pancreatic cancer with BRCA mutations (NCT02042378)

APE1 TRC102 Combination with pemetrexed in advanced solid tumors 
(NCT00692159)

(100)

NER RPA HAMNO HAMNO was shown to act synergistically with etoposide to kill cancer 
cells (UMSCC38 and UMSCC11B) in vitro and slow tumor growth in 
vivo

(101)

TDRL-505 TDRL-505 prevented cell cycle progression and acted synergistically 
with cisplatin in non–small-cell lung cancer (NSCLC) cells

(102)

MCI13E MCI13E showed chemotherapeutic promise in ovarian and lung cancer 
cell lines when used in combination with cisplatin, or as a single agent

(43)

XPA NERI01(AB-00026258) NERI01 significantly sensitized human colon cancer cells to UV 
irradiation

(103)

XPF F06/
NERI02(NSC130813)

F06 was shown to act synergistically with cisplatin and mitomycin C in 
NSCLC cells and human colon cancer cells

(104)

HR Mre11 Mirin Mirin abolished the G2/M checkpoint and homology-dependent repair 
in mammalian cells (U2OS, TOSA4)

(105)

RAD51 IBR2 IBR2 was shown to overcome imatinib resistance in chronic myeloid 
leukemia (CML) cells and murine models

(106)

NHEJ DNA-PK M3814 Advanced solid tumors (NCT02516813)

Locally advanced rectal cancer (NCT03770689)

VX-984 Advanced solid tumors (NCT02644278)

CC-115 Castration-resistant prostate cancer (NCT02833883)

(Continues)
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when SSBs encounter a replication fork, resulting in collapse of 
the fork. A recent study has suggested that some PARPi “trap” 
PARP1 on DNA, preventing auto-PARylation and PARP1 release 
from the site of damage and therefore interfere with the catalytic 

cycle of PARP1. Thus, PARP1-defective cells are resistant to 
PARPi.24

Cancer cells often harbor a defect in DNA repair compared with 
normal cells. Therefore, cancer cells are more susceptible to DDR 

DDR pathway Genes DDR inhibitors Application Ref

DDR 
checkpoints

ATM AZD0156 Monotherapy or combination with other anticancer treatment in 
advanced solid tumors (NCT02588105)

AZD1390 Combination with radiation therapy in brain cancer (NCT03423628)

KU-60019 PTEN-deficient breast cancer cells are sensitive to KU-60019 when 
combined with cisplatin

(107)

TP53 mutant glioblastoma (GBM) cells are sensitive to KU-60019 under 
the ionizing radiation

(108)

Combination with sunitinib, pazopanib, temsirolimus in human renal 
tumors (NCT03571438)

Combination with avelumab in DDR-deficient advanced solid tumors 
(NCT04266912)

ATR VX-970 (M6620) Combination with Irinotecan in TP53-mutant gastric or 
gastroesophageal junction cancer (NCT03641313)

Advanced solid tumors (NCT03718091)

AZD6738 Combined AZD6738 and olaparib potentiates genome instability and 
cell death in ATM-deficient cancer cells

(109)

Combination with olaparib in advanced solid tumors including ATM-
deficient/proficient gastric cancer, lung cancer, breast cancer 
(NCT02264678)

Combination with olaparib in pancreatic cancer, renal cancer, urothelial 
cancer (NCT03682289)

Combination with olaparib in gynecological cancers with ARID1A loss 
(NCT04065269)

BAY1895344 Advanced solid tumors and lymphoma (NCT03188965)

Combination with niraparib in DDR-deficient advanced solid tumors 
(NCT04267939)

CHK1 Prexasertib (LY2606368) Prexasertib synergizes with olaparib in triple-negative breast cancer 
cells

(110)

Small cell lung cancer (NCT02735980)

BRCA1/2 mutation associated breast cancer, ovarian cancer and 
prostate cancer (NCT02203513)

Combination with olaparib in advanced solid tumors (NCT03057145)

Rabusertib (LY2603618) Combination with gemcitabine in pancreatic cancer (NCT00839332) (111)

Combination with pemetrexed/cisplatin in non–small-cell lung cancer 
(NCT01139775)

(112)

CHK1/2 AZD7762 Monotherapy or combination with gemcitabine in advanced solid tumors 
(NCT00413686)

WEE1 AZD1775 Combination with gemcitabine and radiation therapy in pancreatic 
cancer (NCT02037230)

(113)

Combination with gemcitabine and nab-paclitaxel in pancreatic cancer 
(NCT02194829)

Small cell lung cancer with MYC family (MYC, MYCN, MYCL) 
amplification or CDKN2A mutation combined with p53 mutation 
(NCT02688907)

Combination with paclitaxel, in gastric cancer harboring p53 mutation 
(NCT02448329)

Combination with carboplatin in p53 mutated ovarian cancer 
(NCT01164995)

TA B L E  1   (Continued)
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inhibition than normal cells. Faulty cell cycle checkpoint activation 
in cancer cells also results in replication stress and subsequent ac-
cumulation of DNA damage. DNA-PKcs activity is essential for ef-
fective repair by classic NHEJ, which is the predominant DNA repair 
pathway of DSBs in human cells, occurring through all phases of the 
cell cycle. Classic NHEJ plays crucial roles in the repair of exogenous 
and endogenous DSBs. DNA-PK inhibition sensitizes cells to repli-
cation-independent DSB-inducing agents such as topoisomerase 2 
inhibitors.27 Some novel DNA-PK inhibitors have been developed, 
including MSC2490484A.28 Similar to DNA-PK, ATM promotes 
DNA DSB repair in cells and responds to DSBs generated through-
out the cell cycle. The activation of CHK2, a well recognized sub-
strate of ATM, is important for the G1/S checkpoint. AZD0156, an 
ATM inhibitor, is currently under clinical trials.28 ATR is activated by 
replication protein A (RPA)-bound ssDNA, which can arise as a result 
of stalled replication forks and also occurs following DNA end re-
section during the early stages of HR.29 CHK1 is the best described 
substrate of ATR and, once activated by ATR, CHK1 inhibits CDK 
activity through phosphorylation of CDC25A.30 CHK1 is a critical 
regulator of the G2/M and intra-S cell cycle checkpoints.30 VX-970, 
an ATR inhibitor, is reported to increase antitumor activity in com-
bination with cisplatin in vivo.31 MK8776 is one of the CHK1 inhib-
itors. CHK1 inhibitors have a strong synergy with antimetabolites 
(such as gemcitabine), which generate replication-dependent DNA 
damage.32 A synthetic lethal relationship has now been established 
between ATR and CHK1 inhibition, with combination blockade lead-
ing to replication fork arrest.33 The WEE1 protein kinase also plays 

a critical role in the activation of the G2/M checkpoint. WEE1 is not 
directly regulated by DNA damage, but is required for physiologic 
cell cycle progression. WEE1 inhibits CDK1 activity by phosphor-
ylating CDK1 Tyr15, resulting in G2/M checkpoint activation.34 A 
WEE1 inhibitor, AZD1775, has been shown to have cytotoxic effects 
in preclinical models.35 As shown in Table 1, more DDR inhibitors 
have been studied in different cancers.

4  | COMBINED DDR INHIBITORS AND 
CHEMO -R ADIOTHER APIES

The major effect of chemotherapy and radiotherapy is to induce 
DNA damage. Activated DDR may induce resistance to chemo-
radiotherapy. Therefore, it is reasonable to combine DNA damage 
checkpoint protein inhibitors and chemo-radiotherapy to block this 
resistance. Targeting the compensatory DDR pathway may sensitize 
cancer cells that harbor a defect in DDR signaling to chemo-radio-
therapy. ATM inhibition has been demonstrated to sensitize cells to 
IR and DNA DSB-inducing agents, including etoposide, camptoth-
ecin, and doxorubicin.36

The loss of G1 checkpoint control is almost ubiquitous in cancer, 
making cancer cells more reliant on the S and G2/M checkpoints. 
Inhibition of ATR sensitizes cancer cells to various DNA-damaging 
anticancer agents, such as combined VX-970 with cisplatin or gem-
citabine.28 ATRi sensitizes PARPi to BRCA wild-type breast cancer 
cells.37 The combination of ATR inhibitors (ATRi) with IR is another 

F I G U R E  1   Epigenetic-based synthetic lethality. HR, homologous recombination; SSB, single-strand breaks. : Defects of DDR
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promising strategy.38 Prexasertib is a small ATP-competitive selec-
tive inhibitor of CHK1 and CHK2. The combination of prexasertib 
with antimetabolites, PARPi or platinum for solid tumors has been 
included in preclinical studies.39 Combinations of a Wee1 inhibitor 
(MK1775) and cisplatin, paclitaxel, and other agents are undergo-
ing testing.40 The combination of CDK4/6 inhibitors with endocrine 
therapy exhibited much more effective results in breast cancer com-
pared with endocrine alone. LB100, a CDC25 inhibitor, sensitized 
cancer cells to chemo-radiotherapy.41 NU7026 is a novel DNA-PK 
inhibitor and has been shown to inhibit NHEJ.42 In combination with 
topoisomerase II poisons, NU7026 significantly sensitized K562 cells 
to radiation and etopside.42 The nucleotide excision repair (NER) 
pathway is an incredibly versatile pathway and remedies DNA bulky 
adduct damage. The RPA protein is involved in essential interactions 
with DNA to support NER catalyzed repair of bulky adduct DNA 
damage. MCI13E, a RPA inhibitor, decreased cell viability, induced 
apoptosis, and in lung cancer showed a synergistic interaction with 
cisplatin.43 KU-55933, an ATM inhibitor, sensitized cancer cells to IR, 
camptothecin, doxorubicin, and etoposide.44

5  | THE R ATIONALE OF COMBINING 
DDR INHIBITORS AND CHEMO -
R ADIOTHER APIES IN HUMAN C ANCERS 
WITH DDR DEFEC TS

The ability of cancer cells to repair DNA damage induced by chemo-
radiotherapies has reduced therapeutic efficiency. Deficiency 
of DDR is one of the characteristics of human cancer cells. This 

deficiency increases the sensitivity of cancer cells to chemo-radio-
therapies. Conversely, defects in one of the DDR pathways may sen-
sitize cancer cells to inhibitors of the compensatory DDR signaling. 
BRCA1/2 mutation cancer cells sensitization to PARPi is a paradigm. 
In conventional chemotherapy, both cancer cells and normal cells 
are killed indiscriminately, while combining synthetic lethality with 
chemotherapy overcomes the limitation of chemotherapy by specifi-
cally killing cancer cells. Thus, it is rational to obtain more specific 
and stronger therapeutic effects by a combination of DDR protein in-
hibitors and chemo-radiotherapies in cancer cells with DDR defects 
caused by mutation or epigenetics. PALB2 and HDAC2 have been re-
ported to have a synthetic lethal interaction with PARPi.45,46 Mateo 
et al47 reported that sensitization of metastatic, castration-resistant 
prostate cancer to olaparib is associated with PALB2 or HDAC2 de-
fects. Combining carboplatin and the Wee1 inhibitor, AZD1775 in-
creased the sensitivity of patients with platinum-resistant ovarian 
cancer with the TP53-mutant, with a partial response rate of 38% 
and a complete response rate of 5% in clinic.48 SLFN11 is silenced 
by frequently methylation in human cancers.49,50 Using a treatment 
combining olaparib and VE-821, an ATR inhibitor, the sensitivity was 
increased in SLFN11 defect cancer cells.51 DDR genes have multi-
ple roles in the promotion of cancer cell growth via accumulation 
of driver mutations and abnormal epigenetic changes, generation 
of tumor heterogeneity and evasion of apoptosis.9,10 It is important 
to identify the predictive biomarkers of response and/or resistance 
to DDR inhibitors.52 “BRCAness” means a HR defect phenotype be-
yond the narrow scope of BRCA1 or BRCA2 mutations.53 E-cadherin 
has been predicted in preclinical models to be a sensitive marker 
for platinum and PARPi, and has been selected for a clinical trial.54 

F I G U R E  2   Synthetic lethality beyond BRCAness. A, Synthetic lethality induced by combining DDR inhibitors and epigenetic activation 
of cell cycle progression. B, Synthetic lethality induced by different HR inhibitors. CHFR: checkpoint with forkhead and ring finger domains; 
HIN-1: high in normal-1; p15, p16: cell cycle regulators; RAD52: homologous recombination repair gene; SOX17: SRY-box-transcription factor 
17. ●: DNA methylation. : Silencing of gene expression
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Preclinical studies have shown that actionable onco-proteins can di-
rectly or indirectly regulate DDR and cell cycle checkpoint pathways 
by driving HR gene expression.52 For example, the RAS, PI3K and 
androgen receptor signaling pathways can promote HR repair.55,56 
Thus, targeting of these onco-proteins together with DDR pathway 
components may lead to synthetic lethality in other DDR inhibitor 
resistant cells.57,58 Inhibition of PI3K in BRCA1/2 wild-type breast 
cancer cells suppressed BRCA1/2 expression and induced sensitivity 
to PARPi.59 A phase I trial, combining PI3K inhibitor buparlisib with 
olaparib in ovarian and breast cancer, is being undertaken.60 Another 
example is the combined inhibition of MYC and PARP inhibitor in HR 
defect cancers.52 In addition to oncogene activation, epigenetic si-
lencing of tumor suppressor expression may play similar roles in the 
regulation of DDR and the cell cycle.9 However, epigenetic-based 
synthetic lethality has not been extensively studied.4,10

6  | PANCRE ATIC C ANCER-REL ATED 
SIGNALING AND DEFEC TS OF DDR 
REGUL ATORS

Normal pancreatic ductal epithelium cells progress to PanIN-1, 
PanIN-2, PanIN-3 to pancreatic ductal adenocarcinoma (PDAC), 
there is accumulation of mutations in KRAS, TP53, CDKN2A, SMAD4, 
RNF43, and GNAS.61 More than 90% of PDACs harbor a KRAS driver 
mutation. KRAS may trigger proliferation in PC, but its presence in 
PanIN1 lesions shows that it alone is not sufficient to support a ma-
lignant phenotype. The signaling network in PC cells is very complex 
and involves KRAS. KRAS has 5-8 downstream signaling pathways, 
including MAPK, ERK, PI3K, JNK, P53, and P16. Thus, inhibition of 
the KRAS pathway has a limited impact on PC cells.62 GNAS is fre-
quently mutated in intraductal papillary mucinous neoplasm (IPMN) 
and PDAC. Activated GNAS signaling, along with KRAS mutation, 
induces IPMN.63 Epidermal growth factor receptors (EGFRs) (EGFR 
also known as HER) are known to be activators of KRAS, PI3K, and 
STATs. These pathways promote cancer cell growth, invasion, and 
prepare the cell for the next phase of cell cycle progression.64 HER2 
is expressed in 30%-40% of PDAC. In patients with HER2 overex-
pression, combined trastuzumab and capecitabine does not result 
in improved PFS and OS.65 P53 has been identified to be mutated in 
40%-75% of PDAC.66 Germline P53 mutations result in Li-Fraumeni 
syndrome. Somatic P53 mutations occur at the late stage of tumor 
development, unlike early KRAS oncogene activation.66 P53 in-
duces cell cycle arrest at the G1 phase by inhibiting CDK2 through 
upregulation of P21. P53 is also involved in DDR.67,68 The complex 
roles of P53 include cross-talk with other signaling pathways and 
synthetic lethality strategies based on P53 mutations and need to 
be further explored. TGF-β signaling is a very complex signaling net-
work and the role of the TGF-β pathway in cellular homeostasis var-
ies in cancer cells. TGF-β signaling may act as a tumor suppressor 
to induce cell differentiation, and can also promote EMT in cancer 
cells.69,70 Thus, development of synthetic lethality strategies based 
on a SMAD4 mutation is more complex. The CDKNA gene encodes 2 

cell cycle regulators, P16 and P14. CDKN2A is mutated in more than 
50% of PC.71 CDKN2A is also frequently methylated in pancreatic 
early lesion and cancer tissue samples.72 RNF43 is mutated in 10% 
of PDAC, and RNF43 is regarded as a tumor suppressor through in-
hibiting Wnt signaling to involve the cell cycle.73 Driver mutations 
were reported to take part in PC initiation and progression, includ-
ing KDM6A, RBM10, MLL3, TGFBR2, ARID1A, STK11, PRSS1, and 
SF3B1.74-76 These aberrant changes of cell cycle regulators open 
new windows for synthetic lethality in PC.

It is estimated that c. 10% of all cases of PC have a hereditary 
component, involving DDR pathways and cell cycle regulatory 
genes.77 The major known family PC susceptibilities include BRCA2, 
ATM, PALB2, CDKN2A, PRSS1, MLH1, MSH2, STK11, and P53.78 
The most common germline mutations are BRCA2 (1.4%-7.4%) and 
ATM (1.2%) gene mutations in PC.79,80 The lifetime risk of BRCA2 
germline mutation carriers is approximately 4.9% for PC.81 A recent 
study has suggested that germline BRCA mutations together with 
germline PALB2 mutations accounted for 7%. Inclusion of somatic 
mutations in BRCA1, BRCA2 and PALB2 doubled that number to 
14% of patients, all of which were associated with an unstable ge-
nome or a BRCA mutational signature.82 However, an unstable ge-
nome or BRCA mutational signature was present in 24% of patients, 
suggesting that DDR deficiency occurs in up to 24% of PDACs.82 
In addition, a significant proportion of patients with PDAC harbor 
heterozygous mutations in DDR pathways, with unknown functional 
consequences. The benefit of targeting heterozygous somatic or 
germline mutations with synthetic lethality strategies is yet to be de-
termined and is complicated by our lack of knowledge on the func-
tional consequences of many observed mutations in DDR genes. 
There is no consensus on whether the loss of the second allele is 
required to predict therapeutic sensitivity for the majority genes in-
volved in DDR for present clinical trials. BRCA1 and BRCA2 germline 
carriers are known to respond to platinum and PARP inhibitor in mul-
tiple tumor types, including PDAC.53 Novel targeted DDR agents, 
such as ATR and ATM inhibitors, offer significant potential in early 
preclinical studies. However, there is an urgent need to investigate 
patient selection markers.

“BRCAness” may be caused by aberrant epigenetic changes. As 
shown in Figure 1, promoter region methylation silenced BRCA1/2 ex-
pression, and offered an opportunity for a synthetic lethality strategy. 
Unlike genomics, epigenetics is not extensively studied in PC. Aberrant 
epigenetic changes play important roles in PC, including key compo-
nents of cancer-related signaling and DDR genes. Some genes were 
found frequently by our group and others to be methylated in human 
PC and early lesions. During carcinogenesis from IMPN to invasive can-
cer, there is a progressive tendency for gene methylation of which cell 
cycle regulators and DDR genes, including P14, P15, P16, P73, CHFR, 
APC, MLH1, BRCA1, GSTpi, MGMT, RASSF1A, play an important part.83-

88 Many tumor suppressors are frequently methylated in pancreatic and 
other cancers, including SOX17, HIN-1, DACT2, and NKD2. Epigenetic 
silencing of these genes activated different cancer-related signaling 
pathways to promote cell cycle progression, and further caused replica-
tion stress. Beyond classical “BRCAness,” epigenetic silencing of tumor 
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suppressor genes in different signaling pathways may provide new op-
portunities for cancer synthetic lethality therapy (Figure 2A).89-92 In the 
same DDR signaling pathway, different components may play alterna-
tive roles, for example RAD52 and BRCA1/2 are alternative compo-
nents in RAD51-mediated HR. Thus, inhibition of RAD52 in BRCA1/2 
defect cells may cause synthetic lethality (Figure 2B).93 However, syn-
thetic lethality based on aberrant epigenetic changes need to be stud-
ied extensively in human PC.

7  | THE APPLIC ATION OF GENETIC AND 
EPIGENETIC MARKERS IN COMBINING 
DNA-DAMAGING AGENTS AND DDR 
INHIBITORS IN HUMAN PC

It is well known that mutations may activate oncogene and inactivate 
tumor suppressor in PC. Epigenetics joins the Knudson's “hit” theory 
by silencing gene expression, including cell cycle regulators and DDR 
genes. DNA methylation is the most frequent epigenetic change in 
human cancers, including PC.10,83 The epigenome is at the intersection 
of environment and genome, and genetics interacts with epigenetics. 
Disruption of a key epigenetic regulator by a mutation may lead to an 
altered transcriptome, including cell cycle regulators and DDR genes. 
DNMT3A is recurrently mutated in acute myeloid leukemia.10 Histone 
modification modifiers were also found to be mutated in PC and pre-
cancerous lesions. These mutations may cause loss of, or increased, 
gene expression, and further influence drug sensitivity.94 Miller et al95 
found that the bromodomain and extra-terminal (BET) inhibitor JQ1 
attenuated DSB repair and sensitized models of PC to PARPi. The 
exact mechanism of synthetic lethality needs to be further explored. 
Epigenetic silencing of DNA repair genes, such as MLH1, MGMT, and 
BRCA1, can lead to gene mutation and genomic instability in cancers, 
including PC.87 In PC, the limited preclinical and clinical studies com-
bining DNA-damaging agents and DDR inhibitors have been based on 
BRCA1/2 mutation markers, and mainly focused on patients with ger-
mline mutation.96 It is unclear if these patients had 1 allele or 2 allele 
mutations. The methylation status of BRCA1/2 and other DDR genes 
was not detected either. There is much room to improve treatment 
strategies of combined DNA-damaging agents with DDR inhibitors.

8  | PERSPEC TIVE CONCLUSION AND 
CHALLENGES

Treatment of BRCA1/2 mutated cells with PARPi is a perfect model 
for synthetic lethality therapy in human cancer. However, mutations 
in BRCA1/2 are relatively rare, including in PC. Defects of any DDR 
regulator may serve as a synthetic lethality therapeutic marker, in-
cluding for ATM, ATR, PALB2, MGMT, SLFN11, FANCC, and GSTpi. 
Several DDR inhibitors are undergoing testing in preclinical or clini-
cal trials, however the application of these inhibitors in synthetic 
lethality needs to be extensively investigated. Clear pictures of the 
DDR pathway compensatory network remain to be produced. The 

rationale of “BRCAness” broadened the application of synthetic le-
thality therapy in human cancer. Some cancer-related signaling path-
ways, including PI3K, AKT, Wnt and SMAD4, are involved in DDR 
by influencing the cell cycle. The efficiency of or deficiency in these 
cancer-related signaling pathways regarding synthetic lethality has 
not been extensively studied. Almost all synthetic lethality studies 
have been based on gene mutations, even though DNA methylation 
occurs more frequently than gene mutations in human cancers, in-
cluding in PC. Epigenetics has not been well studied in PC compared 
with other cancers. The exploration of synthetic lethality strategies 
based on epigenetic defects in PC is urgently needed. The interac-
tion of genetics and epigenetics makes it more complex when aiming 
to determine the regimen of synthetic lethality based on available 
biomarkers. Techniques to discriminate single allele or double allele 
defects both through genetics and epigenetics are urgently need to 
be developed for clinical application. For precision medicine, evalu-
ating genetic and epigenetic heterogeneity is necessary.
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