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Abstract

Functional genomics screens using multi-parametric assays are powerful approaches for identifying genes involved in
particular cellular processes. However, they suffer from problems like noise, and often provide little insight into molecular
mechanisms. A bottleneck for addressing these issues is the lack of computational methods for the systematic integration of
multi-parametric phenotypic datasets with molecular interactions. Here, we present Integrative Multi Profile Analysis of
Cellular Traits (IMPACT). The main goal of IMPACT is to identify the most consistent phenotypic profile among interacting
genes. This approach utilizes two types of external information: sets of related genes (IMPACT-sets) and network
information (IMPACT-modules). Based on the notion that interacting genes are more likely to be involved in similar
functions than non-interacting genes, this data is used as a prior to inform the filtering of phenotypic profiles that are similar
among interacting genes. IMPACT-sets selects the most frequent profile among a set of related genes. IMPACT-modules
identifies sub-networks containing genes with similar phenotype profiles. The statistical significance of these selections is
subsequently quantified via permutations of the data. IMPACT (1) handles multiple profiles per gene, (2) rescues genes with
weak phenotypes and (3) accounts for multiple biases e.g. caused by the network topology. Application to a genome-wide
RNAi screen on endocytosis showed that IMPACT improved the recovery of known endocytosis-related genes, decreased
off-target effects, and detected consistent phenotypes. Those findings were confirmed by rescreening 468 genes.
Additionally we validated an unexpected influence of the IGF-receptor on EGF-endocytosis. IMPACT facilitates the selection
of high-quality phenotypic profiles using different types of independent information, thereby supporting the molecular
interpretation of functional screens.
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Introduction

Genome-scale functional genetics screens using technologies

such as RNA interference (RNAi) have recently started to generate

high-dimensional datasets by measuring either the same parameter

in different cell lines [1,2] or different features in the same cell line

[3–5].

Such high-dimensionality improves the phenotypic specificity

but, at the same time, increases the complexity of the analysis: the

knock-down of two genes may have a similar phenotype on one

parameter but yield different results on another. This poses a

substantial challenge for the mechanistic interpretation of such

screens [6,7].

Furthermore, it has been noticed that targeting the same gene

with different siRNAs can lead to conflicting results [3]. This

ambiguity is caused by the additive influence of noise in the assay

and off-target effects (OTEs). OTEs occur when the detected

phenotype is due to interactions between the silencing molecules

and genes other than the intended target [8,9]. Thus, OTEs

complicate the functional interpretation of RNAi screens and may

lead to spurious gene annotation. Even though OTEs can be

reduced in small-scale studies (e.g. by gene rescue experiments), it

is very difficult to completely avoid them in large-scale genomic

screens [10]. Consequently, it is often impossible to unambigu-

ously assign the assay readout to a target gene without considering

additional information. Note that frequently even replicate

measurements using the same siRNA can be inconsistent, which

is not necessarily an indication of bad experimental skills, but

rather a problem intrinsic to the complexity of genome-wide

screens [11,12].

Previous work has shown that integrating independent infor-

mation, such as protein interaction networks with RNAi screening

data removes noise and improves the elucidation of molecular

mechanisms [7,4,13–18]. These approaches exploit the fact that
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phenotypes that are observed consistently across a set of

interacting genes are less likely to be noise. Hence, interaction

data can be used to filter for genes that are more likely true

positives. However, existing studies have not sufficiently addressed

the problem of high-dimensional phenotypes nor the ambiguity of

results from different siRNAs [7,13–16]. The issue of multiple

profiles per gene is relevant for studies performing replicate

measurements with the same siRNAs, using different siRNAs per

gene, as well as studies conducting functional assays on cells from

multiple individuals/different cell lines.

Further, published studies often rely on first defining an

arbitrary cut-off value for selecting ‘hit genes’ and subsequently

interpreting their phenotypes using prior information [15,16,19].

Such approach is problematic because genes falling just below the

threshold may be rejected even though their phenotype is

consistent with interacting genes. Instead, it has been suggested

to infer sets of relevant genes by first integrating the phenotype

data with network information without any threshold and then

simultaneously accounting for strength of the phenotype and its

consistency in the network [20]. Two classes of such methods exist:

methods of the first class assume one phenotype score per gene

(e.g. the strength of the phenotype) and search for network regions

enriched for high-scoring genes [16,17,21,22]. The second class

works on multi-dimensional phenotypic profiles, and assesses the

similarity of them between genes being close in the network

[7,23,24]. In these cases, multiple measurements are available to

describe the loss of function phenotype, such as the number of

objects, their average size, the average intensity of a marker

protein and so on. We could not find a method integrating

multiple phenotype vectors per gene with interaction data.

Thus, there is a need for new computational methods allowing

for the integration of multi-parametric phenotypic data with

molecular interaction information.

Here, we present a computational framework called IMPACT

(Integrative Multi Profile Analysis of Cellular Traits) that

integrates high-dimensional, quantitative phenotypic profiles with

independent data like protein interactions. We devised two

algorithms operating on two different types of prior information:

sets of related genes (IMPACT-sets) and network information

(IMPACT-modules). This framework offers several advantages:

first, it can handle multiple phenotypic profiles per gene; second it

avoids a priori definition of ‘hit genes’ based on score thresholding;

third, it allows to rescue genes that do not have a significant

phenotype based on the RNAi data alone, but show a behavior

consistent with their interacting partners. Further, it can cope with

many potential biases, e.g. caused by the different frequency of

phenotype patterns in the screen, by the structure of the network,

or due to variable numbers of knock-down experiments per gene.

We validated both methods using a multi-parametric genome-

wide RNAi screen on endocytosis [3] leading to new insights into

the underlying molecular pathways.

Implementations of IMPACT-sets and IMPACT-modules as

well as the data used in this publication are freely available at

http://cellnet.cecad.uni-koeln.de/impact.html.

The source code is available at https://github.com/

SimeoneMarsico/IMPACT.

Results

Overview of the computational methods
We designed a general framework that combines data from

quantitative multi-parametric measurements with protein interac-

tion information (Figure 1). We refer to the set of parameters

measured after each knock-down experiment as ‘phenotypic

profile’. Given several profiles from different si-/esi-RNAs

targeting the same gene, our aim was to identify the most likely

‘authentic’ profile, i.e. selecting those profiles that are least affected

by noise and OTEs. IMPACT exploits that profiles being similar

across interacting genes/proteins are more likely true (Figure S1).

For this filtering process, we developed two methods using two

types of gene-gene relationships: sets of genes and binary network

information (Figure 1 b).

Gene set-based analysis (IMPACT-sets). The first method

utilizes pre-defined sets of genes with common properties (e.g.

genes encoding components of a multi-protein complex or

common pathway). The aim is to identify an enriched phenotype

that is shared by a maximum number of genes/proteins in the set.

We achieve this goal using an approach that is similar to common

cluster analysis, but constrained on the members of a given set: the

algorithm identifies the largest group (cluster) of profiles spanning

a maximum number of genes in the set (see Methods for details).

The advantage compared to standard cluster analysis is that the

use of prior information (set membership) forces the method to

select common profiles for genes that are known to operate

together. Once protein complexes with coherent phenotypic

profiles are identified, they are scored with respect to how likely

such consistency might occur by chance (p-values). Empirical p-

values are computed by permuting the gene labels across

complexes many (e.g. 5,000) times (Figure S16). Importantly, this

permutation keeps together sets of profiles that were obtained for

the same gene. For this set-based analysis, we used 1930

complexes with phenotype information from a database of more

than 2000 experimentally verified mammalian protein complexes

[25].

Network-based analysis (IMPACT-modules). The second

method combines the RNAi screening data with binary interaction

data, such as physical protein binding data. In this case the aim is

to screen the network for sub-networks (modules) enriched for a

common phenotypic signature. The components of such network

modules are assumed to be involved in the same or related

pathways or biological processes. This approach is based on a

Author Summary

Genome-scale functional genomics screens are important
tools for investigating the function of genes. Technological
progress allows for the simultaneous measurement of
multiple parameters quantifying the response of cells to
gene perturbations such as RNA interference. Such multi-
dimensional screens provide rich data, but there is a lack of
computational methods for interpreting these complex
measurements. We have developed two computational
methods that combine the data from multi-dimensional
functional genomics screens with protein interaction
information. These methods search for phenotype patterns
that are consistent among interacting genes. Thereby, we
could reduce the noise in the data and facilitate the
mechanistic interpretation of the findings. The perfor-
mance of the methods was demonstrated through
application to a genome-wide screen studying endocyto-
sis. Subsequent experimental validation demonstrated the
improved detection of phenotypic profiles through the
use of protein interaction data. Our analysis revealed
unexpected roles of specific network modules and protein
complexes with respect to endocytosis. Detailed follow-up
experiments investigating the dynamics of endocytosis
uncovered crosstalk between the cancer-related EGF and
IGF pathways with so far unknown effects on endocytosis
and cargo trafficking.
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greedy search for sub-networks consisting of genes with at least k
profiles that are correlated with a given ‘seed profile’. This search

iteratively expands a network module around a seed gene using

similarity with the seed profile as a selection criterion. See

Methods for details on how to select the seed profiles. The

probability (p-value) of obtaining the observed sub-network by

chance is subsequently computed by taking into account (1) the

number of genes in the sub-network, (2) the number of profiles

(knock-downs) per gene, (3) the number of neighbours per gene in

the expanding module, and (4) the frequency of the seed profile in

the entire network (Figure 1c). This algorithm computes the

probability of finding the observed number of correlated neighbor

genes at each expansion step by accounting for the exact

neighborhood at that iteration (i.e. the number of interacting

genes and the number of profiles per gene; see Methods for

details). This strategy accounts for the potential biases introduced

by different numbers of profiles per gene. Further, we noticed that

some phenotypic patterns are shared by more genes than others,

which affects the probability of observing such profile in a random

set of genes (see Methods). Hence, IMPACT also corrects for that

potential bias. For the network-based analysis we combined binary

protein-protein interaction data from three databases reporting

experimentally verified interactions: HPRD [26], IntAct [27], and

KEGG [28]. The final network contained 9,642 genes and 49,827

non-redundant interactions.

Both approaches require the definition of thresholds (e.g. a

similarity threshold for phenotypic profiles). However, it is not

necessary to decide on a list of ‘hit genes’ before integration with

the interaction data. Instead, the algorithms consider all genes and

all of their profiles, provided the genes are part of the network (or

Figure 1. Pipeline and schematic illustration of the integrative analysis. (a) Overview of the analysis. (b) Schematic of the two integrative
methods. They combine phenotypic information from RNAi screening data (heatmaps) with either known protein complexes (top) or binary
interaction networks (bottom). Each gene (A through G) has been assayed with several different siRNAs, i.e., several profiles are obtained. The
heatmap thus shows the different profiles per gene using a color code (deviation from average); each column represents a phenotype parameter
(such as number or size of endosomes). In the case of sets (top) our method assesses all profiles associated with all genes in the set and identifies an
over-represented profile. In the case of network data (bottom) the method searches for network modules (sub-networks) enriched for a common
profile. In both cases the algorithm determines a ‘references’ profile representing the common profile of the set or network module. Note that in the
network case we also consider anti-correlated profiles, as genes might have opposing effects on the readout. For the set-based analysis, significance
is determined through appropriate randomizations that take into account the number of genes and profiles in each complex (c). For the network-
based analysis, the significance of each module is estimated by a semi-analytical approach that takes into account the composition of the module at
any expansion step and the probability of observing specific patterns in the dataset (see Methods for details).
doi:10.1371/journal.pcbi.1003801.g001
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sets, respectively). Our framework can also deal with multiple

knock-down experiments per gene without having to combine

(‘average’) the profiles before the integration with external data.

Selected profiles and reference profile. A major goal of

IMPACT is to select those phenotypic profiles that are least

affected by noise and OTEs by using external, independent

information. These ‘selected profiles’ are subsequently used to

define a representative profile called ‘reference profile’, computed

as the median of all selected profiles belonging to a given module

or set (Figure S1b; see Methods). The reference is not used during

the module/set search procedure: it is an output that provides

summarized information of the phenotypic effect for each module

or set identified.

In the case of networks, selected profiles include both positively and

negatively correlated phenotypes within the same module. This

approach accounts for the possibility of inhibitory (negative)

interactions between members of the same pathway. However, in

the case of protein complexes we require that all selected profiles have

a positive correlation with each other. These decisions might have to

be adapted when IMPACT is applied to other data. Because of the

consensus among interacting partners, both, the selected profiles and

the reference profiles are thought to better reflect the ‘true’ phenotype

of the genes. We operationally define the ‘true phenotype’ of a gene as

the phenotypic profile that would be obtained if the assay was perfect

(i.e., no noise, identical knock-down efficiency across all genes, no

OTEs, etc.). Of course, we do not know the ‘true’ phenotype of any

single gene. However, below we provide multiple lines of evidence

suggesting that the selected profiles are indeed closer to that ideal

scenario than the discarded profiles.

An important assumption underlying our analysis is that

physically interacting genes are more likely to show a similar

(i.e. positively or negatively correlated) phenotype. Indeed, genes

that are linked in our network have significantly more similar

phenotypic profiles than random pairs of genes (p-value of

7610211 and 261027 with the Kolmogorov-Smirnov test and

Mann-Whitney U test, respectively).

Classification performance on known endocytosis-related
genes

We applied our methods to an image-based, genome-wide

RNAi screen assessing the role of genes in transferrin (TF) and

epidermal growth factor (EGF) endocytosis in human HeLa cells

[3] (Figure 1a and Input Data in Methods). Forty quantitative

parameters describing various aspects of cargo uptake and

propagation along the endocytic pathway, such as endosome

number, size and intracellular distribution, were extracted by

image analysis [3,29] (Table S1). On average about 7 si-/esi-RNA

per gene were screened. Ideally, one would expect a high

correlation between the phenotypic profiles of different siRNAs

targeting the same gene. However, those profiles were often not

significantly correlated (Figures S1 & S2). Such inconsistency is

neither caused by technical or biological variation in the screen,

nor by different silencing potency of the siRNAs [3], but mainly

due to siRNA-specific OTEs [3,8,30,31].

In order to systematically and quantitatively assess the

performance of recovering genes involved in endocytosis, we

compiled a set of known endocytosis-related genes as positive

Figure 2. ROC, Precision Recall and Balanced Accuracy analysis. Validation of the combined results obtained with the set- and network-
based analyses using known endocytosis-related genes as a positive reference set. The first column shows Receiver Operator Characteristic (ROC)
curves, the second column displays Precision-Recall curves and the third column contains Balanced Accuracy curves (BACC). Row (a): comparison
IMPACT-sets (T = 0.7) to a method based on the Chi-square statistics scoring genes exclusively using RNAi data (‘Chi-square mode’, ‘Chi-square avg’).
Row (b): comparison of the IMPACT-modules (T = 0.7, k = 3) to two published methods (JActiveModules and MATISSE) and to the Chi-square method
(‘Chi-square mode’, ‘Chi-square avg’).
doi:10.1371/journal.pcbi.1003801.g002
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controls (Figure 1a). This selection is based on relevant Gene

Ontology (GO) terms and exclusively using experimentally

inferred gene annotations (in total 387 genes annotated for the

terms reported in Table S2). The negative control set (21,585

genes) was assembled considering genes that are annotated with

functions other than endocytosis (i.e. genes without any annotation

were excluded from this analysis).

We ranked the genes based on the p-values of the protein

complexes or network modules they belong to, and tested whether

known endocytosis related genes (i.e. genes from the positive set)

rank higher than the negative set genes. We used Receiver

Operator Characteristic (ROC), precision-recall (PR) curves, and

balanced accuracy (BACC) [32] curves (Figure 2) for visualizing to

what extent IMPACT distinguishes known endocytosis-related

genes from the negative set. We also computed the Area Under the

ROC Curve (AUC, [33]) to quantitatively compare the overall

performances of different search parameters and across different

methods.

Comparison of algorithm search parameters. Since our

integrative approach requires the definition of a ‘similarity

threshold’ T (based on the Pearson correlation coefficient R) for

calling two profiles ‘similar’, we tested several values of T for the

set-based (Figure S6 a) and network-based analysis (Figure S7 c).

We obtained the best performance for both the set- and network-

based approaches using cutoff values of T = 0.7 (AUC-IMPACT-

sets T = 0.7: 0.619; AUC-IMPACT-modules T = 0.7: 0.648). In

case of the network-based analysis one has also to choose the

minimum number (k) of profiles that have to be similar per gene to

include a gene in the current network module. We obtained the

best result with k = 3 and k = 2 (AUCs 0.648 and 0.553

respectively (Figure S7 a). All the following tests have been carried

out with T = 0.7 and k = 3 for modules (AUC = 0.648) and T = 0.7

for sets (AUC = 0.619), unless explicitly stated otherwise. Since

IMPACT-sets requires positive values of correlation above the

threshold T for the searching, we tested the effect of allowing also

negatively correlated profiles to be included, i.e. similarity is the

absolute value of correlation as in IMPACT-modules (see

Methods). Allowing for anti-correlation in IMPACT-sets reduced

the AUC from 0.619 to 0.567, suggesting that by-and-large

phenotypic profiles of genes whose products participate in the

same complex are positively correlated. Additionally, enforcing

positive correlation in IMPACT-modules slightly decreased

performances (AUCs from 0.648 to 0.627 for T = 0.7, k = 3 and

from 0.553 to 0.539 for T = 0.7, k = 2; Table S13).

Effects of seed selection, network coverage, and

parameter subsets on module search. We tested how seed

selection affects final estimates of significance: relaxing the seed

selection threshold T_s (see Methods) from 0.8 to 0.5, i.e. allowing

for the inclusion of less correlated phenotypic patterns as starting

point for the search, reduced the algorithm’s performance (AUC

for T_s = 0.8: 0.648; AUC for T_s = 0.5: 0.571). Reshuffling the

selected seed profiles to random positions within the network

lowered the performance (for T = 0.7, k = 3: AUC = 0.59 and 65%

less modules; for T = 0.7, k = 2: AUC = 0.507 and 50% less

modules than the respective real cases), suggesting that seed

profiles are indeed specific for their network context (Table S13).

We investigated the effect of network coverage and parameter

subsetting on the classification outcome, to test respectively the

effect of prior information or phenotypic readout on module

identification. For evaluating network coverage sensitivity, we

tested IMPACT-modules on modified networks obtained by

random removal of 33% and 50% of the interactions. A sparser

network leads to lower classification performances

(AUC = 0.6260.076 and 0.5560.085, respectively; n = 7 random

tests each), but the performance is still better than the random case

with AUC = 0.5 (p-values of 0.05 and 0.28, respectively). Thus,

even an incomplete network improves the detection of correct

phenotypes.

Next, we evaluated the importance of using the complete 40-

parameter profiles by comparing the results obtained when using

only a sub-set of the parameters. Here, we grouped the parameters

into 7 groups (G1 to G7) according to their biological similarity

(Table S1) and compared the results after systematic removal of

each group of parameters. In general, we noticed that removal of

parameters reduces the performance to different extent depending

on the parameters removed (AUCs in the range [0.5034, 0.63]

versus 0.648 of the full parameter set; Table S7). The fact that the

performance is reduced in all 7 cases suggests that all parameters

are informative.

Effects of network permutation and phenotypic noise on

module search. We also explored the effect of randomly

permuting: 1) network topology (i.e. shuffling edges); 2) gene

assignment (i.e. shuffling genes with all their profiles on the same

network structure); 3) profile assignment (i.e. shuffling profiles

across genes on the same network structure) and 4) network and

profile assignment (i.e. shuffling profiles and edges). In all cases the

performance went down, with AUCs of 0.52960.070 (p = 0.34),

0.51560.087 (p = 0.43), 0.51060.081 (p = 0.45) and 0.43360.067

(p = 0.78) versus 0.648 (p = 0.01) of the real case (values are

averaged for 3 independent randomizations; method parameters

always set to T = 0.7 and k = 3).

We further investigated the role of overall noise in the screening

data by adding various levels of noise to the phenotypic profiles.

To do this, we added to each parameter of the original phenotypic

data normally distributed values N(m, s) with mean m = 0 and

standard deviation s = 0.05, 0.1 and 0.2 (i.e., we perturbed each

parameter with random noise of 5, 10 and 20% of the original z-

normalized data variance). After repeating IMPACT-modules

(T = 0.7, k = 3) on n = 4 independent random cases, we obtained

average AUCs of 0.54260.073, 0.56160.077 and 0.55660.073,

respectively, worse when compared to 0.648 of the real case, but

still better than random (p-values of 0.28, 0.21 and 0.22). Also, the

number of identified modules decreased progressively to 63%,

57% and 37% with increasing noise added, i.e. also the sensitivity

is affected. The fact that the AUCs stay above the background

level underlines the robustness of IMPACT-modules.

Comparison to screen analysis. Using external informa-

tion for the profile selection clearly improved the recovery of

known endocytosis genes compared to not using such information.

This is shown by comparing our results (IMPACT-sets and

IMPACT-modules) to a method based on the phenotypic strength

as measured by the Chi-square test, which was used in the initial

publication of the RNAi screen [3] (Figure 2). Specifically, we used

two versions of the Chi-square test: the first using the average

profiles and the second the mode profiles, the latter being used in

the previously published analysis [3]. Our results show improved

selection of endocytic genes (higher AUCs) for both, protein

complexes (Figure 2a, Table S9) and network modules (Figure 2b,

Table S8). We also compared the true and false positive rates of

our two methods with the values from the hit list of the original

publication, where a combined approach assessing phenotypic

strength (Chi-square on mode profile) and phenotypic specificity

(Phenoscore on mean-shift clustering) was used to define scoring

genes. Our results show better performances (Figure S9).

Further, we compared the counts of endocytosis genes (based on

GO annotation) selected as significant by IMPACT (p-value,

= 0.1) to the count in the hit list based on the Chi-square of the

mode profile. To perform a balanced comparison, we selected the

High-Dimensional Functional Genomics Screens
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2,720 significant genes from IMPACT-sets and IMPACT-modules

(Table S5) and the top 2,720 genes from the sorted Chi-square list

(Figure S10). The endocytic genes recovered specifically by

IMPACT (79) are more than the ones missed (36, of which only

26 map on the interaction data), showing that our method has a

better sensitivity/specificity trade-off, as also highlighted by the

AUC analysis.

An important feature of IMPACT is that alternative phenotypic

profiles per gene do not have to be collapsed to a single profile

prior to the analysis. In order to investigate the relevance of this

feature, we applied the IMPACT to single profiles per gene

computed either (i) as the average, single-avg, or (ii) as the multi-

parametric mode, single-mode (representing the most probable

profile [3]). In both cases, all performance measures (ROC, PR

and BACC curves) went down for the module-based approach

(Figures S7b) and the AUCs decreased to 0.528 and 0.496 for

single-mode and single-avg (Table S4, right). For the set-based

approach, we observed AUCs of 0.636 and 0.571 for single-mode
and single-avg (Figure S6b; Table S4, left). Thus, using single-
mode for IMPACT-sets slightly improved the AUC compared to

the standard analysis (AUC = 0.619). However, the number of

genes in significant complexes decreased to 16% (for single-mode)

and 18% (for single-avg) of the total number of significant genes

detected when considering all profiles prior to averaging. This

underlines the importance of considering all available profiles

separately for maximizing accuracy and sensitivity.

Comparison to other methods. We compared our net-

work-based approach to two published network-based methods,

JActiveModules [21] and MATISSE [23]. JActiveModules is a

representative for the class of methods assuming one score per

gene and then searching for sub-networks that are enriched for

high-scoring genes. MATISSE represents methods operating on

single multi-dimensional profiles per gene. None of the methods

can cope with multiple profiles per gene. We used each gene’s

mode-profile as input for MATISSE and the p-value of the Chi-

square statistic calculated on the mode profile as input for

JActiveModules. Our network analysis performed better than

both, JActiveModules and MATISSE (AUCs of 0.507 and 0.518;

Figure 2b and Table S8). We previously performed parameter

tuning to choose the best performing parameters (T = 0.7, k = 3)

by analyzing the classification of endocytosis GO terms. In order

to ensure a fair comparison we also tested the method

performances on an independent list, selected according to

different criteria. We used the merged list of Rab5 effectors [34]

and of proteins containing domains that are known to be related to

endocytosis (PX, FYVE, BAR, TBD and VPS9, [3]), comprising

of 306 members, of which 213 are present in the interaction

network (the overlap with the endocytosis GO annotation gene list

was just 62 genes). IMPACT-modules (both for T = 0.7, k = 2 and

T = 0.7, k = 3) out-performed the other approaches on this new list

as well as on the union of the two, the GO terms list and the RAB5

effectors and proteins with endocytic domains list (Table S10 and

Figure S15). Also IMPACT-sets performed better on this new list

of positives (AUC = 0.624) when compared to Chi-square on mode

and average profiles (AUCs of 0.571 and 0.518 respectively).

The degree of a gene in the network (the number of its

neighbors) is an indicator of pleiotropy. Thus, genes with a high

degree are more likely to be involved in many cellular functions,

potentially leading to inflated performance estimates when using

networks to predict gene function [35]. We therefore tested if the

improved enrichment of known endocytosis genes among high

scoring network modules might be an artifact of the degree

distribution, but this was not the case (Figure S8, Table S8).

In summary, these analyses demonstrate that including protein

interaction information improves the filtering of relevant pheno-

types from high-dimensional functional screens and it underlines

the importance to maximally exploit the information contained in

the several, multi-dimensional profiles obtained per gene.

Most of the above analysis required at least three profiles per

gene to be similar with interacting genes for inclusion in a network

module (k = 3). Such stringent threshold led to very good recovery

of known endocytosis genes. In order to improve the potential for

new discoveries we subsequently lowered the required number of

consistent profiles from 3 to 2. This value still yields a better

performance compared to other methods (Table S8), while

increasing the number of newly predicted genes in network

modules 10-fold.

Rescreen confirms profile selection
In order to also experimentally validate that our approach

improves the phenotype selection, we rescreened 468 genes from

the most significant protein complexes and network modules

(Table S5) using an improved set of 4 siRNAs per gene (see

Methods). The siRNAs used for this rescreen represented a new,

independent set of reagents from a different provider, produced

with newer technology, which improves the knock-down efficien-

cy, induces less toxicity, and lowers off-target effects [36]. In order

to independently confirm the improved quality of the new siRNAs

we validated that both, individual parameters as well as

phenotypic profiles are more reproducible using the new set of

siRNAs (Figures S3 & S4). Importantly, profiles of different

siRNAs targeting the same gene are more similar in the rescreen

compared to the primary screen. Therefore, the new profiles are

expected to be closer to the true phenotype.

The profiles selected by IMPACT are thought to be closer to

the true phenotype of the genes than the rejected ones and, thus,

should also be more similar to the rescreen data. Indeed, we

observed that the pairwise correlation of the selected profiles to the

new profiles is significantly higher than the correlation between

rejected and new profiles (Figure 3). Furthermore, the reference

profiles (i.e., the median of selected profiles per set or network

module) are even more similar to the rescreen data than the

selected profiles (Figure 3). Although being significant, the

improvement is not dramatic: this is partly due to the fact that

the phenotypic data for the new set of oligonucleotides are better

but still noisy (Figure S3 and S4). To confirm this notion, we

selected a few strong examples where the set of new oligo profiles

show high intra-similarity within the rescreen (suggesting low

noise). The similarity of the profiles selected by IMPACT is much

higher to this new set than to the old ones for the same gene.

Among those, we had some genes important for endocytosis

(PDPK1, Furin, MLC1) and for signaling (ERBB2, IGF1R)

(Figure S19).

These data demonstrate that our analysis successfully selected

profiles that are more reproducible in the rescreen and likely better

reflect the true function of the genes. Furthermore, the reference

profiles, representing the consensus phenotype of a protein

complex or network module, were even less affected by noise.

Phenotyping endocytosis core machineries
In order to visualize the phenotypes of the analyzed complexes

and network modules we created a ‘phenotype map’ representing

the strength and specificity of the phenotype for transferrin or

EGF (Figures 4 & 5). This visualization groups phenotypically

related complexes and network modules and it also shows

simplified representations of the profiles, thus, facilitating the

interpretation of the findings. Even though the analysis above

High-Dimensional Functional Genomics Screens

PLOS Computational Biology | www.ploscompbiol.org 6 September 2014 | Volume 10 | Issue 9 | e1003801



already showed that our method improved phenotype selection, we

also verified the validity of our results by focusing on proteins and

protein complexes with known functions related to endocytosis. Our

analysis rescued several genes that did not score in the initial analysis

[3], like RAB4A, SARA (ZFYVE9), APPL1, RAB11FIP1, VPS28,

VAMP8, VIT1A, STX2 and SNX1 (see Table S12 for full list of 91

endocytic genes selected by IMPACT and missed in the previous

analysis). Genes selected by IMPACT were enriched also for other

endocytosis-related functional terms from the KEGG and GO

annotations (DAVID analysis, [37,38]), such as endocytosis

(p = 1.9e-3, modified Fisher’s Exact Test), phosphatidylinositol

signaling system (p = 1.3e-14) and inositol phosphate metabolism

(p = 1.4e-8) for KEGG; membrane enclosed lumen (p = 1.7e-26)

and membrane bounded vesicle (p = 1.5e-5) for cellular compart-

ment (GO CC); membrane fusion (p = 1.8e-3), invagination

(p = 6.5e-2) and docking (p = 9e-2) for GO biological processes

(GO BP). Moreover, our method selected expected phenotypes for

several known cellular machineries. The AP2 complex, for instance,

is known to be primarily involved in transferrin endocytosis [39].

Even though phenotypic profiles of individual AP2 subunits were

ambiguous, our method correctly identified the transferrin-specific

phenotype as being enriched in this complex (Figure 4 and S1).

The integrative analysis allowed us to reveal subtle phenotypic

differences between closely related machineries. Two examples are

the families of SNARE and ESCRT complexes (Figure 4 and

S13). The reference profiles extracted for those complexes through

our method again suggest possible insights into molecular

mechanisms, therefore posing the basis for focused experimental

testing (Text S1).

Impact of signaling pathways on endocytosis
Internalization and trafficking of signaling molecules such as

membrane receptors is crucial for many signaling pathways.

Whereas the importance of endocytosis for signaling is well

established, much less is known about how signaling pathways

control endocytosis [40,41]. The network analysis allowed us to

gain insights into this process by identifying several signaling

pathways over-represented in statistically significant network

modules, such as the ErbB and Insulin signaling pathway, the

focal adhesion and actin pathway and pathways involved in

diseases, particularly cancer (Table S11). Also, our analysis further

elucidated how the position of a protein in a pathway relates to its

phenotype.

For example, we detected two transforming growth factor beta

(TGF-beta) related network modules with distinct phenotypic

profiles (‘‘Activins’’ and ‘‘SMADs-Notch’’, Figure 5). Consistent

with the fact that Activins and SMADs act in the same pathway,

our algorithm assigned related phenotypes to them, both showing

a reduction of transferrin and EGF uptake, as already reported [3]

with a stronger impact on transferrin than EGF (Figure 5).

However, our analysis also uncovered significant differences

between these two parts of the TGF-beta pathway. The first

module contains several Activin receptors (ACVR1B, ACVR2B,

ACVR2A, ACVR1 and AXVRL1) that are known to modulate

and transform signals for the TGF-beta superfamily of ligands.

The second module links the TGF-beta and Notch pathways [42].

This SMADs-Notch module has a core consisting of SMAD2,

SMAD3 and NOTCH1, which in turn are associated with several

transcriptional regulators (Figure 5). SMAD3 and NOTCH1 were

missed in the initial screen hit list and have been rescued by the

integrative analysis. Knock-down of genes in both, the Activins

and SMADs-Notch sub-networks, significantly reduced the

number of endosomes (G1), underlining the importance of these

pathways for endocytosis. However, knock-down of the Activin

module reduces cargo uptake (G2), whereas knock-down of the

SMADs-Notch module increases cargo uptake for transferrin

endosomes.

The difference between the Activins and SMADs-Notch

modules underlines that upstream and downstream components

of the same signaling pathway (i.e. the TGF-b pathway in this

case) can have different effects on endocytosis. Thus, the position

of proteins in the pathway seems to critically affect the impact on

the assay’s readout.

Crosstalk between EGFR and IGFR impacts on EGF

endocytosis. Another network module related to cell signaling

contains the EGF receptor (EGFR) together with huntingtin

(HTT), catenin delta 1 (CTNND1) and the IGF-1 receptor (IGFR,

Figure 5). This module was of particular interest because of the

importance of IGF-EGF crosstalk in signaling and cancer [43,44].

Our analysis suggested a specific effect of this interaction on EGF

endocytosis (and not transferrin). Moreover, the Insulin signaling

pathway was one of the most enriched among the ones identified

by IMPACT-modules. IGF1R was specifically rescued by our

analysis as a weak but specific phenotype and the results were

confirmed by our rescreen. Taken together all these facts lead us to

investigate the EGFR-IGFR interaction more in detail.

All proteins in this module, except for EGFR, share a

phenotypic profile in which EGF endocytosis is up-regulated.

Whereas knock-down of EGFR causes a decrease in EGF

endocytosis, as expected, silencing of the other genes in the

module leads to an anti-correlated profile, consisting of increase in

the number of EGF-positive endosomes, endosomal EGF concen-

tration and distance of EGF endosomes from the nucleus. In

contrast, the transferrin related parameters did not show relevant

changes. We were particularly interested in the crosstalk between

IGFR and EGFR, because the constitutive activity of these

signaling pathways is characteristic of many tumors and chemo-

Figure 3. Independent experimental validation of the selected
profiles. Selected profiles (‘sel-prof’, green), rejected profiles (‘rej-prof’,
blue) and reference profiles obtained by averaging selected profiles
(‘sel-ref’, red) are compared to respective profiles from a rescreen using
improved siRNA oligonucleotides. Cumulative distributions of the
Pearson correlation coefficients (R) between profiles obtained for the
same gene are shown (468 genes were rescreened). Selected profiles
are significantly better correlated with rescreen profiles than rejected
profiles (p = 8.5161025 MW test; p = 8.94610213 KS test); reference
profiles are even more strongly correlated with the rescreen profiles
(p = 1.48610218 MW test; p = 1.1610232 KS test). Note that the
correlation of rejected profiles (‘exc’) is not better than random. MW
test = Mann–Whitney U test, KS test = Kolmogorov-Smirnov test.
doi:10.1371/journal.pcbi.1003801.g003
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therapy resistance [43–48]. Our analysis suggests that IGFR exerts

a specific regulation on EGFR trafficking, an observation that has

not been reported so far. We reasoned that this crosstalk might be

mediated either by a direct interaction between the two receptors

[44] or by a modulation of EGFR trafficking by IGFR signaling.

To test this possibility, we measured the effect of IGF-1

stimulation on the cellular uptake kinetics of EGF and transferrin

by confocal fluorescence microscopy. For this, HeLa cells were

pulsed with EGF and transferrin for 10 minutes (see Methods) and

chased for different periods of time, in the absence or presence of 50

and 250 ng/ml IGF-1. We found that IGF-1 significantly acceler-

ated the kinetics of EGF internalization (integral vesicular intensity,
Figure 6 a), whereas transferrin uptake was unaffected (Figure 6 b).

After an initial accumulation phase of approximately 20 minutes,

intracellular vesicular EGF decreased monotonously following first-

order kinetics, consistent with endosomal degradation [49].

Transferrin total intensity (integral vesicular intensity, Figure 6 b)

showed a rapid monotonous decay after pulse, in agreement with its

recycling kinetics [50]. The decay of EGF (i.e. degradation) was

specifically accelerated in the presence of IGF whereas that of

transferrin (i.e. recycling) was unchanged, as quantified by the

estimation of the rate constants after fitting a decaying exponential

function to the experimental data (Figure S11).

To better visualize the changes induced by IGF-1, we

subtracted the total cargo vesicular intensity distributions between

the control and stimulated conditions for each time point. This

representation (Figure 6 c) emphasizes the changes in cargo

content in different sub-populations of endosomes out of the total

endosomal network. The results indicate that IGF-1 exerted two

main effects. First, it caused the appearance of a higher number of

endosomes containing EGF, as shown by the positive values in

vesicular intensity differences (Figure 6 c, panel above). Second,

stimulation caused a faster endosomal accumulation of EGF (note

the shift over time of the peak toward higher vesicular intensity

values, Figure 6c, panel above). In contrast, the transferrin was re-

distributed between endosomes only at the initial time points

(Figure 6 c, panel below), without alterations in the total amount

of intracellular transferrin (note that the positive and negative

values of vesicular intensity differences neutralize each other,

Figure 6 c, panel below).

Figure 4. Selected protein complexes with enriched phenotypes. Each complex is represented by its reference profile, which is computed as
the most consistent signature across all members of the complex. The analysis is based on 19 parameters for each channel (EGF and transferrin, TF)
and two co-localization parameters (TF with EGF and EGF with TF). The x-axis shows the difference between the Euclidean (or L2) norm of the
transferrin and the EGF parameters TFk k{ EGFk kð Þ the y-axis represents the strength of the phenotype computed as the sum of the norm of both
the transferrin and the EGF signals TFk kz EGFk kð Þ. Each protein complex is shown as a circle, its color reflecting the primary direction of the
phenotype (value on x-axis). Inset bar-plots show summary versions of the reference phenotypic profiles by projecting them from 40 to
14 dimensions (red: response on EGF channel, green: response on transferrin channel). See Table S1 for details on the parameters. More details about
complex membership are shown in Supplementary Figure S13.
doi:10.1371/journal.pcbi.1003801.g004
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In conclusion, our analysis was able to uncover a novel aspect of

the crosstalk between IGF-1 and EGF, through acceleration of

EGF uptake and transport along the degradative pathway. These

results demonstrate the ability of IMPACT to reveal novel

interactions between functional modules and to assist the

molecular interpretation of genetic screens.

Application of IMPACT to other data sets
We evaluated the general applicability of IMPACT in three

different ways: first, we applied IMPACT-modules to the same

RNAi screening data, but using a different network as a prior.

Second, we ran it on another siRNA screen with autophagy as an

endpoint [51] and finally, we used IMPACT to analyze a

CRISPR-Cas9 knockout screen in human cells [52] (see respective

paragraphs in Text S2).

We run IMPACT-modules for the endocytosis screen on

different interaction networks derived from the STRING database

[53]. STRING incorporates diverse types of information, such as

co-expression, experimentally validated protein binding, and text

mining, to predict the functional relationships between genes.

Importantly, it can be used to evaluate the importance of these

individual feature types for the phenotype prediction. This analysis

revealed that the choice of the network strongly affects the quality

of the phenotype prediction. Specifically, we noticed that 1) the

performance deteriorates when considering co-expression data

only (AUC = 0.505); 2) experimentally validated interaction

networks yield better classification (AUC = 0.6483 for the

HPRD-Intact-KEGG combined network and 0.603 for STRING

experimental) than networks allowing also non-experimental

interactions such as database and text mining predictions

(AUC = 0.553). See paragraph Other sources of prior information,

Text S2. Thus, this analysis confirmed that using high-quality,

experimentally confirmed protein interaction data maximally

reduced noise from the RNAi data. Importantly, both experimen-

tal networks (our combined and STRING-experimental) gave

results that were better than random.

Next, we run IMPACT-modules on a siRNA autophagy screen

in the human HEK293 cell line [51] where 3 replicates of the entire

screen were acquired and 3 different image-based parameters were

measured. We analyzed the recovery of the known autophagy genes

reported in the human autophagy database (www.autophagy.lu,

[54]). The original screen analysis identified 25 known genes (out of

the 175 autophagy genes screened) among the 1’000 reported hits

(enrichment p-value = 0.04); IMPACT-modules identified 1’332

significant genes, of which 46 were autophagy annotated (out of the

161 mapping on the network; enrichment p-value = 2e-3). Also,

IMPACT performed better than the ranking measure considered in

the screen for classifying the known autophagy genes (AUC = 0.563,

p = 2e-4 for IMPACT; AUC = 0.4949, p = 0.59 for hit ranking). See

paragraph Analysis of the siRNA autophagy screen in Text S2.

Figure 5. Selected network modules with enriched phenotypes. See Figure 4 legend for more details. The topology of the extracted sub-
networks is shown in Figure S14. Note that genes in the same module (as opposed to protein complexes) can have anti-correlated profiles, but
selected profiles of the same gene must be positively correlated. The profiles shown represent the direction taken by the majority of the genes in the
module. E.g., the phenotype of EGFR is anti-correlated to the reference profile shown for the EGFR-IGFR module.
doi:10.1371/journal.pcbi.1003801.g005
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Finally, we run IMPACT-modules on a CRISPR-Cas9

knockout screen in the human melanoma cell line A375 [52],

where the authors investigated the effect of gene loss upon

treatment with vemurafenib, a therapeutic drug inhibitor of

BRAF, by measuring cell viability in 4 different conditions (vehicle

versus drug, 7 and 14 days). IMPACT identified 1’659 significant

genes (p,0.05). Gene enrichment analysis of over-represent GO

biological processes and KEGG pathways (DAVID [37,38])

revealed interesting insights into the mechanism of action of the

drug. Pathways involved in cancer and related to BRAF activity,

such as ‘‘Melanoma’’, ‘‘MAPK’’, ‘‘Pathways in cancer’’ were

strongly enriched (fold enrichment of 2.35, 1.84, 2.06; p-value of

3e-7, 8e-11, 2e-20 respectively). Also, biological processes related

to phosphorylation, kinase activity, cell migration, cell prolifera-

tion and cell death were strongly enriched (p-values ranging from

1e-12 to 1e-6). The screen hit list derived using RIGER [55]

identified overall GO and KEGG terms with higher p-values and

lower fold enrichment (i.e. less significant), related mainly to

‘‘Oxidative phosphorylation’’ (p = 1e-4), transcription (2e-4) and

histone modification (1.2e-3). See paragraph Analysis of the

CRISPR-Cas9 knockout screen in Text S2. Thus, we conclude

that IMPACT improves the analysis of functional genomics

screens beyond RNAi screens.

Discussion

Multi-parametric phenotyping is becoming increasingly impor-

tant for understanding basic biological processes and disease

mechanisms. Such high-dimensional phenotyping is being con-

ducted in RNAi screens, (conditional) knock-out screens, quanti-

tative trait loci (QTL) studies, chemical genomics and gene editing

screens. In this study, we developed a novel approach for

analyzing multi-dimensional functional genomics screens in

combination with external information in order to facilitate the

Figure 6. IGF-1 co-stimulation experiments. Pulse-chase experiment of labeled EGF and transferrin in presence of IGF-1. The 10 minutes pulse
lasts from time point 2109 to 09. (a) Temporal profile of the total vesicular intensity calculated for the EGF-positive endosomes, with different
concentration of IGF-1 (dark red: 250 ng/ml; light red: 50 ng/ml; black: no IGF-1 (0 ng/ml), or control). (b) Temporal profile of the total vesicular
intensity calculated for the TF-positive endosomes, with different concentration of IGF-1 (dark green: 250 ng/ml; light green: 50 ng/ml; black: no IGF-
1 (0 ng/ml), or control). The insets within panels (a) and (b) show the estimated time constants obtained by fitting a decaying exponential function to
the last part of each curve, for the corresponding concentrations (see Figure S11 for details). Asterisks (*) and plus sign (+) above individual time
points indicate significant deviation from the control assessed by t-test (p#0.0001 and p#0.01, respectively). (c) Time course analysis for different
chasing times: each mini-plot represents the difference of distributions (y-axis) of the total cargo content in endosome sub-populations of different
mean content (bins in the x-axis) for EGF-positive endosomes (upper row) or TF-positive endosomes (lower row). All mini-plots show the difference
between the distribution of the IGF-1-stimulated case (250 ng/ml, IGF250 in the label) and the control (contr in the label) for the corresponding time
point and cargos. See Figure S9 and S10 for more details.
doi:10.1371/journal.pcbi.1003801.g006
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mechanistic interpretation and to cope with noise in phenotype

detection. Our approach provides significant methodological

advantages, because it integrates (1) set-based and network-based

prior information, (2) high-dimensional (multi-parametric) pheno-

typic profiles, and (3) multiple profiles per gene. Further, it handles

several potential biases, e.g. due to the network topology (number

of neighbors) or the frequency of phenotypic profiles. This data

integration of course critically relies on existing interaction

information, which is still sparse and noisy. However, our study

demonstrates that the impact of noise and OTEs could be

drastically reduced for those genes that are part of a network. A

broad range of novel insights into the function of both known and

new cellular machineries could be gained, only some of which

could be addressed in this study. The use of two methods obviously

increased the scope of prior information that could be used for the

analysis (protein complexes and protein-interaction networks).

Alternative approaches
We chose to use only protein interaction data to support

mechanistic interpretation of the phenotypes in terms of molecular

machineries. Co-expression and co-functionality data have a

broader coverage of the genome, however they do not necessarily

imply molecular interactions and would therefore not satisfy the

purpose.

Instead of using IMPACT-sets, one may also transform protein

complexes into interaction networks by considering all pairwise

interactions instead of protein sets. In this case, one could use

IMPACT-modules to perform the analysis. We tested this

possibility (IMPACT-modules on sets) and calculated the classi-

fication performance (AUC) in identifying known endocytic genes.

Running IMPACT-modules on sets still performs better than the

other approaches considered in this study, but its performance is

worse compared to IMPACT-sets (Table S6). Two reasons may

explain this phenomenon: first, the statistical analysis of IMPACT-

sets may be better suited for the analysis of sets. Second, the

conversion of sets into networks is questionable. Thus, considering

set information, when available, rather than splitting it into binary

interactions can be advantageous.

The complexity of our approach arises in part from the fact that

we considered all phenotypic profiles separately and selected the

profiles with an enriched pattern among other genes in the set or

interacting genes in the network. A simpler approach would have

been to combine all profiles of a gene first (e.g. averaging) and then

assessing the consistency in the networks. However, this method

would not take into account that different siRNAs often produce

very different profiles due to their heterogeneous off-target

signatures. In fact, sometimes less than half of the siRNAs yield

profiles resembling the correct phenotype (Figure S18) and

averaging would result in profiles that are more strongly affected

by OTEs and noise. We indeed observed that applying IMPACT

after averaging either decreases performances (Figures S6b and

S7b; Table S4) or reduces the number of selected genes (Table S5),

with a stronger effect on network module identification.

Method assessment
The classification analysis showed improvements relative to

other approaches, both considering (JAM, MATISSE) and

ignoring (Chi-square) prior information. However, we were

hoping for an even better performance: using IMPACT the

AUCs never exceeded 0.65 for endocytosis GO terms and 0.67 for

the Rab5 effectors and proteins with endocytic domains. Our

analysis showed that noise in both, the RNAi screening data and

the network can significantly compromise the performance.

However, using a network-prior improves the signal-to-noise

ratio, which is even more important when data is noisy. Also,

reducing network coverage led to lower performances, suggesting

that IMPACT or related methods relying on prior information can

further improve as new protein-protein interactions will be

discovered. Importantly, whichever method is used, the quality

of the results is always limited by the quality of the input data.

Thus, all method assessment should be regarded as relative

comparisons of alternative approaches.

One concern when comparing methods relying on prior

information (such as IMPACT, JAM, Matisse) to methods relying

on phenotypic data only is that the performances of these methods

may be inflated by the fact that interacting genes tend to share the

same annotation used for evaluation, which may result in circular

reasoning. This problem cannot be completely solved since equally

annotated, connected genes could be at the core of molecular

machineries, which makes it difficult to distinguish a circularity

bias from the reality of the underlying biology. We have tried to

address this problem in two ways: first, we evaluated the

enrichment of not just any GO term among top-scoring genes,

but terms specific for endocytosis. A network-based method

running on random data may still identify sub-networks or protein

complexes that are enriched for certain functions, but not

necessarily for the functions relevant for the screen. Second, we

have performed extensive new experimental validation, which is

independent of any reported annotation in public databases.

Application of our two methods to an endocytosis RNAi screen

led to improved recovery of known endocytosis-related genes

compared to the analysis of the primary screen data alone.

Further, based on several performance measures, our network-

based method performs better than published methods that are

either mono-parametric or do not assume multiple profiles per

gene. Importantly, using only one (averaged) profile per gene also

reduces the performance of our method, which demonstrates that

considering multiple profiles is crucial. The importance to assess

sets and modules based on individual-siRNA profiles was also

confirmed by the rescreen, which showed that the selected profiles

were significantly better correlated with the new independent data

than the rejected profiles. Moreover, the partial coverage that

prior information based approaches can offer (in our case, 9,715

out of the 17,730 genes in the screen were mapped on the

interaction network) suggests as a sensible solution the use of

IMPACT as a complement rather than an alternative to other

methods relying only on phenotypic information, to combine the

strengths of both, i.e. identifying protein machineries and

elucidating their function with IMPACT, while still assessing the

effect of genes without interaction information.

The computation of the significance of network modules

controls for potential biases, such as the topology of the sub-

networks, that were ignored in previous work [16,21,23,56]. To

address this, our approach takes into consideration the number of

neighbors (degree) and the number of profiles (siRNAs) of each

gene, as well as the frequency of the enriched phenotypic profile

across all genes in the network. Not considering these factors may

lead to inflated or deflated significance estimates. Note that global

permutation testing [16,56] would neither account for the

specificities of a given phenotypic profile nor for the local

topology of the network. Whereas our network search is based on

a heuristic greedy search, other methods [57,58] provide exact

solutions using constraint programming for module search.

However, these approaches can only deal with a single score

per gene; further development will be necessary to devise similar

strategies for multi-parametric measurements and multiple

profiles per gene.
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Pathway analysis
Recent work already suggested feedback regulation of signaling

pathways onto endocytosis [40,59][3]. The findings in this study

(Table S11) underline the tight bonds between the endocytic

machinery and signaling networks. Additionally, our network

analysis revealed that different modules within the same signaling

pathway can exert diverse effects on trafficking (e.g. Activins- and

SMADs-containing modules within the TGF-beta pathway),

whereas components of different signaling pathways (e.g. TGF-

beta and Notch) can have similar effects on endocytosis. Thus,

there is no trivial relationship between a gene’s membership in a

signaling pathway and effects on cellular machineries.

Our computational analysis suggested that IGFR might impact

specifically on EGFR trafficking, an observation that has not been

described so far. This effect might be mediated by direct binding

between activated IGFR and EGFR [44] or by the IGFR signaling

pathway. Our experiments confirmed that IGF stimulation

induced faster endosomal accumulation of EGF, probably by

accelerating early endosome fusion. The redistribution of trans-

ferrin was not surprising, since the two cargos extensively

colocalize in endosomes at early time points [60]. However,

IGF-1 stimulation affected specifically EGF trafficking kinetics by

inducing both faster uptake and decay (consistent with degrada-

tion) without affecting the overall uptake and recycling kinetics of

transferrin. Importantly, since these effects were relatively weak,

IGFR was not detected as a hit gene in the initial analysis [3].

Only the integrated analysis exploiting the network context

revealed its effect on EGF endocytosis.

Other mechanisms of crosstalk among IGFR and EGFR

involving receptor cross-activation and heterodimerization [44]

or cross-transcriptional regulation [43] have previously been

proposed. Our findings extend those reports by uncovering novel

aspects of the integration of these signaling pathways at the level of

the trafficking system.

Application to other data sets
The application of the screen to other sources of prior

information and other phenotypic data revealed important aspects

of the presented method. First, the choice of prior information can

significantly affect the quality of the results. Molecular interaction

data (as opposed to functional relationships such as co-expression)

helped best to reduce noise and improve the mechanistic

interpretation of the results.

For the CRISPR screen application, it is difficult to compare the

performance of our method to the RIGER screen analysis due to

the absence of a positive set. However, we have shown that our

method can be successfully applied to diverse kinds of data and

can lead to interesting hypotheses to further explore. IMPACT did

not reveal modules of genes involved in drug resistance (i.e.

increasing cell viability), because they either lack network context

or the phenotypic effect is not conserved among interactors.

However, it succeeded in identifying molecular machineries

responding to the drug (i.e. decreasing cell viability), which could

have potential therapeutic applications for the design of co-

inhibitors of other genes in the pathway to overcome drug

resistance in melanoma.

Despite the aforementioned advantages, there are limitations to

this approach. Our network covers less than half of the human

protein coding genes. Genes outside the network are ‘inaccessible’

to our analysis. We anticipate that future projects will use other

information (such as predicted protein-protein interactions) and

also improve the statistical framework. This work therefore just

represents the beginning of a gradually more integrated analysis of

high-dimensional functional screens in conjunction with network

data.

Methods

Input data
Both IMPACT-sets and IMPACT-modules work on a high-

dimensional dataset generated by functional screens (e.g. knock-

down, knock-out, gene editing screen). Here, the phenotype of

each gene g is measured m times, as for instance after knock-down

with m different oligonucleotides. (Alternative scenarios are for

instance targeting the same gene in different individuals or cell

lines.) For each single knock-down experiment, the phenotype is

described quantitatively by the phenotypic profile p, which is an

N-dimensional vector where each element is a parameter

measured. The parameters measured (and thus also the dimen-

sionality of p) must be the same for all genes, whereas the number

of measurements per gene (m) can vary between genes.

The phenotype information D is therefore represented as a PxN
matrix, where rows represent different perturbations (e.g. siRNAs)

and columns the different parameters. N is the number of

parameters and P is the total number of phenotypic profiles for all

genes, with P~
PNg

i~1 mi, where mi is the number of different

perturbation experiments (e.g. oligonucleotide knock-downs) for

the ith gene and Ng is the total number of genes screened.

Importantly, both methods can work with single phenotypic

profiles per gene (mi = 1) as well as with multiple oligo profiles per

gene (mi. = 1). Genes in the same data set can have different

number of profiles. The screen data D needs to be normalized (e.g.

z-score or similar), so that parameters have similar impact on the

similarity metric during the method search.

The endocytosis screen
We considered as phenotypic data for our analysis a high-

dimensional image-based RNAi screen performed in human HeLa

cells [3]. This screen aimed to characterize the loss of function

phenotype of each gene involved in the endocytosis of two cargo

molecules, transferrin (TF) and the epidermal growth factor (EGF).

To this purpose, 40 parameters (Table S1) were quantitatively

measured to assess the effect of multiple oligonucleotide knock-

downs per gene, with an average of about 7 different si-/esi-RNA

reagents per gene. The prior information we used to guide the

method search is detailed in the paragraphs ‘‘Protein Complexes’’

and ‘‘Protein-Protein Interaction Network’’.

Gene-set-based approach (IMPACT-sets)
The gene-set-based approach tests for the enrichment of a set of

related genes for a specific phenotypic profile. The set of genes can

be defined based on functional relationships (e.g. pathway co-

membership) or physical association (protein complexes). The

algorithm consists of two main steps: First, the algorithm identifies

a ‘common’ phenotypic pattern that is shared by a maximum

number of genes in the set. Then, the statistical assessment is

performed via randomizations: for each set with an enriched

profile, we generate random sets of the same size and with the

same number of profiles per gene in each set. The resulting

empirical distribution is used for computing p-values.
Enriched pattern estimation. Let us consider a gene set G

as a set of multiple genes gi. We denote the number of genes in the

set with ng and the total number of profiles in the whole set with

np. IMPACT-sets builds the squared similarity matrix S of size

np|np representing the pair-wise similarity between all the

profiles P present in set G. In principle, any similarity measure

can be used; here we use the Pearson correlation coefficient. All
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profiles with correlation scores above a threshold T are considered

‘similar’. Only positively correlated profiles are considered. The

searching heuristic selects the row (i.e. profile) in S having the

largest number of genes nT similar above T. If two subsets have

equal nT, the heuristic selects the subset with the maximal sum of

correlation values. Note that IMPACT-sets choses the profile with

the maximum number of genes having similar profiles. Just

maximizing the number of similar profiles in the set may bias the

results in favor of genes with large numbers of profiles. Profiles

belonging to the selected profiles define the enriched pattern and

are used to calculate the reference profile of the set G as the

median of all selected profiles.

Statistical assessment for IMPACT-sets. The statistical

assessment is done comparing the number of similar profiles in the

observed (real) set to a respective empirical background distribu-

tion. The random distributions are computed using random sets

that have the same structure (same number of genes ng and the

same number of phenotypic profiles per gene np_g) as the real sets.

Genes are shuffled between sets, but profiles of the same gene are

kept together. In this way we maintained the inherent correlation

between profiles of the same gene also in the background

distributions. Since the probability of observing n similar genes

by chance depends on ng and np_g, we generated specific

background distribution for each tested complex. Given a set G,

we performed N_rand (5000 in our case) randomizations by

assembling complexes with the same structure, i.e. ng genes and

np_g profiles per each gene. We then applied the searching step on

each of the N_rand complexes and we compared the result from

the real case to the distribution of results obtained from the

randomizations. The p-value is estimated as the fraction of times

the same or more profiles are selected as with the observed data.

Network-based approach (IMPACT-modules)
For the network-based analysis of the phenotypic data, we have

implemented a greedy search algorithm (Figure S17). This search

method may operate on any network representing genes as nodes

and any kind of relationship between genes as (undirected) edges.

The method can be applied to phenotypic data where either

multiple profiles are available for each gene or when there is a

single profile per gene.

The algorithm works in three main steps:

1.seed selection: selection of genes (network nodes) as starting

points for performing the search;

2.module expansion: identification of sub-networks with

homogeneous phenotypic profiles;

3.module assessment: determination of statistical significance

via computing the module p-value.

Seed selection. Seed selection iteratively tests each node with

at least k_s profiles as a potential seed node. The procedure

assesses all direct neighbours of a node and the centre-node itself

as a ‘gene set’. It then searches for an enriched phenotypic profile

in this set using a procedure similar to the method IMPACT-sets

described above. We keep as seed nodes only those genes having

an enriched phenotypic pattern in the set, i.e. profiles showing a

similarity (absolute value of Pearson correlation coefficient) above

a threshold T_s between each putative seed node and its network

neighbours. If such enriched profile exists and if at least one profile

of the neighbours is selected, the centre-node will be used as a seed

node and the profiles selected in the enriched pattern will be used

to calculate the seed profile. Such seed profile is the median of all

the selected profiles, where the sign of the profile is taken into

account for each neighbour node by swapping the anti-correlated

profiles within the node. If any node has profiles both correlated

and anti-correlated above the threshold T_s, the heuristic selects

the profiles that maximize the sum of negative or positive

correlation values. In our analysis, we set k_s and T_s to 2 and

0.8, respectively.

Alternatively, the list of seed nodes can also be created using

genes of interest or genes satisfying other properties (e.g. genes

exhibiting very strong phenotypes).

Module expansion. The module expansion starts from the

seed nodes. Neighbours of the current module are assessed by

comparing their phenotypic profiles to the seed profile (Pearson

correlation). At each step all neighbours having at least k
phenotypic profiles that are similar above a threshold T are

added to the module. k can either be the minimal number or the

minimal fraction of profiles with similarity above the threshold T
required for the inclusion of the gene in the expansion step. The

method requires that the absolute (i.e. negative and positive)

correlation between profiles must be equal or above the defined

threshold T. Different profiles obtained for the same gene must

always be positively correlated. Note that, during the module

expansion, the seed profile is not changed, i.e. it is not updated

after including new genes in the module. This is done to ensure

that the seed profile does not start to gradually deviate from the

initial profile. The module expansion stops when there are no

neighbours satisfying the similarity condition or the maximum

module size exceeded 50 expansion steps. Similarly to the set-

based analysis, a phenotypic signature for the detected module is

computed as the reference profile. This consists of the median of

all the selected profiles belonging to the genes in each module. Due

to the search strategy this reference profile may deviate slightly,

but not strongly, from the seed profile. Since modules can contain

both positively and negatively correlated profiles, we accounted for

profile sign when computing the median for the reference profile

i.e. if the majority of profiles are positively correlated to the seed

profile, all the negatively correlated ones are swapped (multiplied

by 21), or vice versa.

Module assessment. The statistical significance of modules

detected is assessed in a semi-analytical way. Our approach

computes the probability of observing a specific module by

chance, by viewing the module expansion as a stochastic process.

At each step of the expansion we compute the probability of

including the given number of neighbours under the null-

hypothesis that genes (and thus their profiles) are randomly

distributed on the network. For this procedure we utilize profile-

specific empirical probability distributions that take the inter-

dependency of profiles for each gene into account.

Profile-specific distributions are needed to correct for the fact

that certain phenotypic profiles are more frequent in the dataset

than others. We noticed that certain types (clusters) of profiles are

more frequent than others (Figure S5b), which may bias the

selection in favor of more frequent profiles. (For the set based

approach we did not observe such a frequency bias; Figure S5a).

Hence, we created profile-specific background distributions for

each seed profile, i.e. the probability of observing a correlated pair

of profiles is dependent on the specific phenotypic pattern of the

seed profile ps and the number of profiles per gene. In our case, the

number of profiles per gene was very variable and only few genes

had many (.7) profiles measured. Thus, it was not possible to

generate a background distribution for each possible number of

profiles per gene. Instead, we grouped genes with similar (though

not identical) numbers of profiles into n_bin bins and subsequently

randomly drew genes from these bins to generate the background

distributions. For each seed node s and each of the n_bin groups

(i.e., b1, b2, … bn), we counted how many times we selected at least
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k profiles where the correlation of the seed profile with the profiles

of N_rand genes extracted from the bin bi exceeds the similarity

threshold T. Therefore, the profile-specific probability for the

inclusion of a node belonging to the bin bi (i.e. with a specific

number of profiles) during seed expansion is

pbi
~

Nbi

Nrand

,

where i is the bin index, Nrand is the desired number of random

node extractions and

Nbi
~
X

k
# Abs Corr ps,pg

� �� �
§T

� �
~~k

� �
:

Here, #(:) is the function that returns the number of occurrences, k
is the minimal number of occurrences, T is the minimal similarity

value required, ps and pg are respectively the seed profile and the

profile of the gene g randomly extracted from the current bin bi.

The module expansion is considered as a stochastic process made

of consecutive states. Each state (i.e. expansion step) consists of the

direct neighbors of the current module that contains both, nodes

that satisfy the similarity criterion (e.g. minimum 2 profiles similar

above threshold) and nodes that do not satisfy it. Consequently, we

consider the current neighbors as a set of Bernoulli experiments

leading to a binomial distribution for expressing the probability

associated with each state of the system. The probability mass

distribution and the cumulative distribution function are thus:

Pr(K~k)~
n

k

� �
pk(1{p)n{k ð1Þ

F (x,n,p)~Pr(Xƒx)~
Xx

i~1

n

i

� �
pi(1{p)n{i ð2Þ

where:

N n is the number of Bernoulli experiments i.e. the number of

current neighbors in a given state;

N k is the number of successful experiments i.e. the number of

similar neighbors;

N n-k is the number of unsuccessful experiments i.e. the number

of not similar neighbors.

For each step of the module expansion we estimate the

probability of observing it, i.e. the probability associated with

the event of having the current module together with k similar and

n-k dissimilar neighbors. For instance, at the initial step we have a

state x0 for which we can compute a probability p’0; after the

inclusion of the first set of similar neighbours, the module is in the

state x1, which occurs by chance with a probability p’1 and so on.

The probability of a state p’i depends on the direct neighbors of

the module and on the number of profiles that each of those

neighbors has, and it is calculate as:

p0i(x)~

X
x0vxƒg(x0) Px[g(x0)§thrp(u(x)):Px[g(x0)vthr(1{p(u(x)))

� � ð3Þ

where:

N p(:): profile-specific probability distribution pbi
as defined

above i.e. probability of observing a correlated pair of profiles,

for the number of profiles in bin bi;

N x: is the generic node that is a direct neighbor of x9; 2x9: is the

current state of the module and therefore the starting point for

evolving into the next state;

N g(x9): is the function that returns the set of all module neighbors

at state x9;

N u(x9): is the function that returns the number of profiles of each

node included in the set produced by g(x9).

Once the searching procedure has finished, the module p-value

is computed combining together the state probabilities:

p{value~PS
i~1 p’i ð4Þ

where S is the total number of states of a module (i.e. total number

of module expansion steps). Equation (4) rests on the assumption

that the module expansion steps are independent under the null

hypothesis.

Protein complexes
Protein complexes were taken from CORUM [25], which

contains 2,083 experimentally verified mammalian protein com-

plexes (Table S3) of which 1930 had phenotype data from our

RNAi screen. Orthologous complexes from non-human species

were mapped using the ENSEMBL orthology information.

Protein-protein interaction network
We assembled an interaction network combining experimen-

tally validated protein-protein interactions from three public

sources: HPRD [26] in vivo interactions (interactions that are

validated in in vivo assays), IntAct [27] and physical protein

interactions from KEGG [28]. After removing genes without

phenotype information the combined network contains 9,642

nodes and a total of 49,827 interactions.

Performance curves and AUC
ROC (Receiver Operating Characteristic) curves report the true

positive rate (TPR, y-axis) as a function of the false positive rate

(FPR, x-axis). TPR~
TP

p
~

TP

TPzFN
, where TP is the number of

true positives and P is the total number of positive, i.e. the sum of

true positives plus false negatives (FN). FPR~
FP

N
~

FP

FPzTN
,

where FP is the number of false positives and N is the total number

of negatives, i.e. the sum of false positives and true negatives (TN).

Sensitivity is a synonym for TPR; specificity is 1{FPR.

Precision recall (PR) curves report precision (y-axis) versus recall

(x-axis). Precision is defined as
TP

TPzFP
(see definition above).

Recall is another name for true positive rate (TPR, see above).

Balanced accuracy is defined as
FPRzTPR

2
. In presence of

unequal sized classes and different classification performance on

positive or negative sets, the balanced accuracy is a better measure

than accuracy [32]. In case of balanced classes it reduces to

conventional accuracy
TPzTN

PzN

� �
. The balanced accuracy

curve shows the balanced accuracy value (y-axis) as a function of

the p-value threshold (x-axis).

The Area Under the Curve (AUC) is the integral under the ROC

curve, calculated by the trapezoidal numerical approximation
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method. The standard error (sem) was estimated as reported in [33].

To test if the AUC is significantly better than the random case (i.e.,

AUC = 0.5), we performed the z-test on the quantity

z~
AUC{0:5

sem
, as in [61]. The statistical assessment of the

comparison between two AUCs (Table S10) was performed through

stratified bootstrapping (N = 1000) by calculating the quantity

z~
A1{A2

sd(A1 r{A2 r)
, where A1 and A2 are the two AUCs and A1_r

and A2_r are the bootstrapped AUC values, described in [62].

Rescreen comparison
A subset of genes (n = 468) selected with the integrative analysis

have been rescreened with 4 new, independent siRNAs (Stealth

Select RNAi from Invitrogen) and compared to the primary screen

data. All the genes considered for the analysis belong to statistically

significant modules and complexes. We used exactly the same cell

line and conditions as in the primary screen [3] and we assayed the

knock-downs in the same way.

For each gene, four groups of profiles have been considered: (1)

the module reference profile, (2) the oligo profiles selected by our

method, (3) the oligo profiles excluded by our method, and (4) the

new oligo profiles in the rescreen. We computed the distribution of

the pairwise Pearson correlations between each one of the groups

(1)-(2)-(3) and group (4) and compared the three cumulative

distributions of the correlation values. Two different non-

parametric tests, the Kolmogorov-Smirnov and the Mann-

Whitney U test, were used to assess the statistical significance of

the differences between pairs of distributions.

IGFR stimulation experiments
HeLa cells were grown in DMEM supplemented with 10% FCS

and 24 h prior to the experiment cells were plated in 96 well plates

to reach approximately 80% confluence on the day of the

experiment.

Each experimental condition was repeated twice in the plate

layout, and each experiment was repeated 4 and 5 times for the

co-pulse-chase and the co-pulse, respectively.

Continuous pulse experiments. In step co-pulse experi-

ments 100 ng/ml A488-EGF and 5 mg/ml A647-TF were co-pulsed

with (50 ng/ml or 250 ng/ml) or without IGF-I (Peprotech) for the

indicated time points (0-1-3-5-7.5-10-15-20-25-30-60 minutes).

Pulse chase experiment. In co-pulse-chase experiments

100 ng/ml A488-EGF and 5 mg/ml A647-TF were co-pulsed

with (50 ng/ml or 250 ng/ml) for 10 minutes and then chased in

medium containing 50 ng/ml or 250 ng/ml of IGF-I for the

indicated time points (0-10-20-30-45-60-90-120-180 minutes).

Cells were then washed 2 times with PBS fixed and stained as

previously described [3].

Image acquisition and analysis. Triple color images were

collected in a fully automated and unbiased manner using a spinning

disk confocal microscope (OPERA, Evotec Technologies-Perkin

Elmer) as previously described [3]. For the co-pulse-chase experi-

ment, 14 images per well, containing in average 25 cells, were

collected to have more than 160 images and 4200 cells analyzed per

condition. For the co-pulse experiment, 14 images per well,

containing in average 28 cells, were collected to have more than

240 images and 6700 cells analyzed per condition. Image and data

analysis were performed [3] with the Motiontracking software [3,29].

Supporting Information

Figure S1 Ambiguity of phenotypic profiles for different
siRNA oligonucleotides. X-axes show deviation of channel 1

(EGF) parameters (x-labels ‘C1’, left part) and channel 2

(transferrin, TF) parameters (x-labels ‘C2’, right part) from average

in terms of z-scores. A large deviation from zero suggests a strong

effect of the RNAi knock-down on the respective readout. See

Table S1 for details. Left: Profiles obtained for different siRNAs

targeting components of the AP2 complex. Right: Profiles selected

by utilizing co-complex membership information. Bold red line

shows ‘reference profile’ obtained as the median of the selected

profiles. One would expect that knock-down of any component of

the AP2 complex results in similar phenotypic signatures.

However, observed profiles are inconsistent due to assay noise

and off-target effects. After selecting the most enriched signature

across all components of the complex (right) a consistent profile is

obtained with strong changes of channel 2 parameters (transferrin)

and no significant effects on channel 1 (EGF).

(PDF)

Figure S2 Correlation of profiles targeting the same
gene. Distribution of Pearson correlation coefficients between

profiles obtained from siRNAs and esiRNAs targeting the same

gene. In the ideal case, where noise and OTE are low, phenotypic

profiles obtained with different oligos should be highly correlated.

(PDF)

Figure S3 Parameter reproducibility in the primary
screen and rescreen data set. The Pearson correlation

coefficients between each parameter composing the multi-paramet-

ric profiles have been computed for the primary screen (black bars)

and the rescreen (red bars). Upper panel: bar graph showing the

correlation value on the y-axis for each one of the 40 parameters on

the x-axis (Suppl. Table S1). Lower panel: cumulative distribution

function of the correlation values shown in the upper panel. The

comparison has been done on a subset of more than 1000 different

genes where multiple runs of the experiment have been acquired.

The difference between the two curves (black and red cumulative

distributions in the lower panel) is statistically significant (p-value of

0.0017 with the Mann-Whitney U test).

(PDF)

Figure S4 Distribution of Pearson correlation coefficient
for all oligo pairs of the same gene. Above: normalized

histograms. Below: cumulative distributions of the histograms above.

Red curves are distributions for all genes in the re-screen subset. Black

curves are distributions for all genes in the primary screen total set.

(PDF)

Figure S5 Heat maps after hierarchical clustering of
reference profiles. Hierarchical clustering (Pearson correlation

used as distance measure and average linkage method for

computing the distance between clusters) of protein complex

reference profiles (a) and network seed set profiles (b). Rows are

multi-parametric profiles; columns are different parameters

labeled with different numbers from 1 to 40 (Suppl. Table S1).

(PDF)

Figure S6 ROC, PR and BACC curves for IMPACT-sets.
Row (a): comparison of different searching thresholds. Row (b):

comparison IMPACT-sets to the analysis done using a single

profile (average and mode of the original oligo profiles).

(PDF)

Figure S7 ROC, PR and BACC curves for IMPACT-
modules. Row (a): comparison of different minimal number of

profiles k. Row (b): comparison of our integrative analysis to the

same analysis done using a single profile. Row (c): comparison

between different searching thresholds (T).

(PDF)
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Figure S8 ROC, PR and BACC curves for the gene
degree analysis. Comparison of classification performances of

the topological information alone e.g. gene degree versus

IMPACT-modules (T = 0.7, k = 3).

(PDF)

Figure S9 Comparison of IMPACT-modules with the
published endocytosis screen analysis. ROC, PR and

BACC curves showing an improved detection of endocytosis genes

(GO terms, n = 289) for network modules when compared to the

previously published analysis based on the chi-square statistics

(chi-mode in the legend). The red asterisk (*) reports the

performance using the hit-list definition of the previous analysis

[1], which was based on a combined evaluation of the phenotypic

strength (chi-square) and phenotypic specificity (Phenoscore). The

values are calculated by the true and false positive rates based on a

significance threshold of 0.05, as in the published hit list. IMPACT

can recover a higher number of true positives (ROC curve) at the

same false positive rate as the previous analysis.

(PDF)

Figure S10 Recovery of known endocytosis genes by
IMPACT versus the original publication. Venn diagrams

reporting counts of endocytosis genes (based on GO annotation)

selected as significant by IMPACT (blue circle) and previously

published as screen hits [1] based on the Chi-square of the mode

profile (red circle). To perform a balanced comparison, we selected

the 2,720 significant (p-value, = 0.1) genes from IMPACT-sets

and IMPACT-modules (Table S5) and the top 2,720 genes from

the sorted Chi-square list. Out of the 36 genes found in the top

Chi-square list and not detected by IMPACT, 26 could be

mapped on our interaction data. The higher number of endocytic

genes recovered specifically by IMPACT (79) compared to the

ones missed (36, of which 26 mapped), shows that it has better

sensitivity/specificity trade-off, as also highlighted by the AUC

analysis.

(PDF)

Figure S11 IGF-1 co-stimulation experiments: pulse-
chase experiment of labeled EGF and transferrin in
presence of IGF-1. (a) Temporal profile of the total vesicular

intensity calculated for the EGF-positive endosomes, with different

concentration of IGF-1 (dark red: 250 ng/ml; light red: 50 ng/ml;

black: no IGF-1 (0 ng/ml), or control), normalized by the time

point 309-chase to better visualize the monotonously decaying

phase. (b) Temporal profile of the total vesicular intensity

calculated for the TF-positive endosomes, with different concen-

tration of IGF-1 (dark green: 250 ng/ml; light green: 50 ng/ml;

black: no IGF-1 (0 ng/ml), or control), normalized by the time

point 09-chase to better visualize the monotonously decaying

phase. Normalized experimental points (dots plus error bars) and

the fitted curves (dashed lines), obtained by fitting the decaying

exponential function f(x) = A*e2t/t, are shown in both panels (a)

and (b). The insets display the estimated time constants of the

respective fitting.

(PDF)

Figure S12 Distribution analysis for the IGF-1 co-
stimulation experiment. (a) The integral intensity (i.e., the

integral of the intensity of the fitted object, representing per-

endosome cargo content) is calculated per-each endosome. From

here, a histogram is built showing how many endosomes are

counted (y-axis) for each bin of mean vesicular integral intensity (x-

axis). The two curves (black and red) represent two arbitrary

conditions to be compared. (b) Starting from the mean integral

intensity distribution shown in panel (a), it is possible to calculate

the total vesicular intensity distribution shown here, by multiplying

each bin of mean integral intensity (x-value) by the number of

counts in that bin. This distribution displays how much cargo is

contained in different sub-population of endosomes, that contain

different mean cargo amount. (c) Bin count difference of the two

distributions shown in panel (a): it is here visible that low cargo

containing endosomes are depleted in the ‘‘red’’ condition,

whereas bigger endosomes containing more cargo are enriched.

The continuous grey line represents smoothing by moving

average. (d) Distribution of the total vesicular intensity difference

per bin, calculated subtracting the two curves in panel (b): it is here

visible that endosomes from the ‘‘red’’ condition contain more

cargo than the ones from the ‘‘black’’ condition, especially for high

bins (.104) of mean integral intensity (i.e., big endosomes

containing a lot of cargo). The continuous grey line represents

smoothing by moving average. The visualization depicted in panel

(d) is what has been used in Figures 6.

(PDF)

Figure S13 Details of the phenotypic space figure for
complexes. Proteins being part of the complexes are shown in

the respective insets. Asterisks (*) indicate genes having at least one

profile correlated with the profile shown in the insets in Figure 4.

(PDF)

Figure S14 Details of the phenotypic space figure for
modules. Here we report the graphic representations of the

modules of Figure 5. We used Cytoscape for the module

visualization.

(PDF)

Figure S15 Comparison of IMPACT-modules with other
methods on an independent list of genes. ROC, PR and

BACC curves for the direct comparison of IMPACT-modules with

other methods in classifying an independent list not used for

parameter tuning, to account for potential overfitting. We used the

merged list of Rab5 effectors [2] and of proteins with endocytic

domains related to endocytosis (PX, FYVE, BAR, TBD and

VPS9, [1]), comprising of 306 members, of which 213 are present

in the interaction network (the overlap with the endocytosis GO

annotation gene list was just 62 genes). IMPACT-modules (both

for T = 0.7, k = 3 and T = 0.7, k = 2) out-performed the other

approaches on this new list (shown here) as well as on the union of

the two, the GO terms list and the RAB5 effectors and domains list

(not shown). The red asterisk (*) in all three panels indicates single

values relative to the hit list definition of the previous analysis [1],

which was based on a combined evaluation of the phenotypic

strength (chi-square) and phenotypic specificity (Phenoscore). The

values are calculated by the true and false positive rates based on a

significance threshold of 0.05, as in the published hit list. At equal

false positive rate value as the hits list from the previous analysis,

IMPACT can recover a higher number of true positives (ROC

curve).

(PDF)

Figure S16 Assessment of statistical significance for the
set-based analysis. For the set-based analysis, significance is

determined through appropriate randomizations that take into

account the genes and profiles number in each complex: 1) gene

labels are permuted across the entire dataset keeping together

profiles belonging to the same gene; 2) complexes subunits are

reshuffled only with random subunits having a comparable

number of profiles.

(PDF)

Figure S17 Visual description of IMPACT-modules
pipeline. A) Flowchart of the network-based approach. Parallel-
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ograms Indicate input/output steps, rectangles describe processing

steps. Different sections described in the main text (Methods) are

indicated on the left. The pipeline takes two input files, the

phenotype data and the prior information (interaction data), see

Input Data in Methods. B) Description for the parameters

reported on the right of the flowchart. A similar flowchart applies

to the IMPACT-set module, with the only following difference

that there is no seed selection step, as each set (i.e. protein

complex) is considered for the analysis.

(PDF)

Figure S18 Distribution of pairwise similarity for
oligonucleotides of the same gene. a) Distribution of the

number of profiles similar above T = 0.7 within the same gene

(n_s). b) Distribution for the fraction of profiles similar above

threshold T = 0.7 within the same gene, calculated as n_s/n_tot,
with n_tot the total number of profiles per gene.

(PDF)

Figure S19 Reference profiles better match re-screen
profiles than original phenotypic profiles. Profiles selected

by IMPACT (blue curves) compared to all the oligonucleotide

profiles in the old screen data (left) and the new rescreen data

(right). Three examples are shown (top to bottom): PDPK1,

MLC1, IGF1R. X-axes: parameter index as described in Table

S1. Y-axes: normalized parameter value. For further description of

plots see Figure S1.

(PDF)

Table S1 List of parameters used in the RNAi screen
assay [1] (prev. page). The first two columns describe

respectively the label and the description for the parameter groups

used as summarized graphical representation (Figures 4 and 5).

The third column enumerates all the parameters constituting each

group. The numbers in parentheses indicate the parameter index

for EGF and TF, respectively. All 40 parameters have been used in

the integrative analysis; but the parameters ‘‘background intensi-

ty’’ and ‘‘colocalisation’’ at the end of the table have not been used

for the summarized graphical representation.

(PDF)

Table S2 GO terms related to endocytosis. GO terms used

for assembling the positive reference set. Genes annotated for one

or more of these terms were considered as positives (387). The

negative set was assembled considering genes that are annotated

with functions other than endocytosis (21,585). Of those, 293

positive and 9,929 negative genes are represented in the network

and 133 positive and 2,735 negative ones are in the sets.

(PDF)

Table S3 CORUM complexes. CORUM database compre-

hends manually curated protein complexes from Human and from

other mammalian organisms. In the table the number of

complexes per organisms is reported. The total number from all

species is 2,083.

(PDF)

Table S4 Results of IMPACT-sets on CORUM complex-
es and IMPACT-modules on the combined interaction
network. Classification performances are reported in terms of

AUCs (of the ROC curves) of IMPACT-sets (left) and IMPACT-

modules (right) applied on CORUM complexes and on the

combined interaction network respectively. AUCs are reported for

different similarity thresholds (T) and for the analysis based on a

single profile (i.e. average of the original oligonucleotide profiles

and mode of the original oligonucleotide, cases single-avg and

single-mode). The table on the right shows AUCs obtained by

using IMPACT-modules with different similarity thresholds (T)

and different minimum number/percentage of profiles (k), labeled

as T - k. Legend: AUC = area under the ROC curve;

sem = standard error of the mean; p-values = p (AUC).0.5.

(PDF)

Table S5 Number of genes selected by IMPACT. Number

of unique genes identified by both IMPACT-sets (T = 0.7) and

IMPACT-modules (T = 0.7, k = 2). Left column: total numbers

of genes selected by IMPACT in any module/set. Right column:

number of genes in modules/sets with p-values, = 0.1. 0.7-single-

mode and 0.7-single-avg represent the analysis done by consid-

ering a single profile i.e. mode and average profile computed out

of the original oligo profiles of each gene.

(PDF)

Table S6 Classification results obtained considering
protein complexes as interaction network. The table

summarize the results obtained by running IMPACT-sets and

IMPACT-modules on protein complexes, with k = 3 (minimal

number of similar profiles). Isolated network: protein complexes

are converted to binary protein interactions with the matrix model

(all interacting with all) and they constitute an interaction network

on their own. Other network context: as in isolated network, but

the complex interaction network is added to the whole combined

network used for IMPACT-modules.

(PDF)

Table S7 Classification results obtained considering
different subsets of parameters in the phenotypic
vector. Different groups of parameters (left column, Table S1

for details) were removed one by one from the original phenotypic

data. G1 and G2 parameter groups were combined together

because: 1) they represent linked biological features (endocytic

uptake); 2) to have the same number of excluded parameters as the

other cases (6 each). IMPACT-modules was run (T = 0.7, k = 3)

and the AUC on the selected modules was measured for each case

(right column).

(PDF)

Table S8 Comparison of classification performance of
IMPACT-modules with other methods. In the table are

reported Area Under the Curve (AUC) and standard error of the

mean (sem) values relative to the analysis conducted with

IMPACT-modules (grey rows) and relative to analysis performed

using alternative methods (MATISSE, JActiveModules) that

integrate network information with phenotypic data and are

based on single profile (MATISSE) or on single values (JActive-

Module). Chi-mode and Chi-avg denote the classification of the

chi-square statistic calculated on the mode and average profile.

Degree denotes the classification performances obtained by

ranking the degree of network nodes.

(PDF)

Table S9 Comparison of classification performances of
IMPACT-sets with other methods. Comparison of classifi-

cation performances of IMPACT-sets with a different approach

that uses only phenotypic information (e.g. chi-square statistic

calculated on the mode and average profile of the oligo profiles of

each gene).

(PDF)

Table S10 Classification performances of IMPACT-
modules and other methods on different positive sets.
Classification performances of IMPACT-modules measured on

different lists and compared to other methods. Lists: 1) endocytosis

GO terms list (yellow); 2) RAB5 effectors and proteins with
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domains related to endocytosis (red); 3) same as 2), excluding genes

common to GO (cyan); 4) the union of both 1) and 2) (green).

Legend: AUC = area under the ROC curve; sem = standard error

of the AUC estimation; p(AUC) = probability that the AUC is

higher than the random 0.5 case (z-test); p(diff) = probability that

difference between AUCs of the reference method (0.7–3 or 0.7–2)

and the compared case is significant (z-test of differences of

stratified bootstrapped values).

(PDF)

Table S11 Enrichment list for network modules. List of

molecular pathways (KEGG) enriched among the modules with

low p-value,0.1. The enrichment was evaluated with the

hypergeometric test by using the DAVID web-based Bioinfor-

matics resources [3,4]. The background distribution was built

considering the entire network.

(PDF)

Table S12 Complete list of endocytosis significant
genes rescued by IMPACT. 92 endocytic genes (GO

annotation) were found in significant modules and/or protein

complexes (p-value, = 0.1) by IMPACT-sets (T = 0.7) and

IMPACT-modules (T = 0.7, k = 2) and were not hits in the

previous screen analysis [1]. * indicates genes in significant

modules/sets.

(PDF)

Table S13 Comparison of classification performance of
IMPACT-modules depending on similarity measure and
seeding. In the table are reported Area Under the Curve (AUC),

standard error of the mean (sem) and p-values (probability that the

AUC is higher than the random 0.5 case; z-test) relative to the

analysis comparing different similarity measures for both modules

and sets (absolute versus positive correlation) and different seeding

for modules only. When not indicated, IMPACT-modules is run

with default seeding parameters T_s = 0.8 and k_s = 2, as reported

in the main text. The cases in bold are the ones chosen for the

follow-up analysis in the main text.

(PDF)

Table S14 Comparison of different networks used as
prior information in IMPACT-modules. Different networks

used as prior information for IMPACT-modules. For STRING,

different evidence levels (experimental, all and co-expression) and

different confidence levels (400, 700 and all (. = 0), respectively)

were used. Network features and module seeding/searching

summary are reported.

(PDF)

Table S15 Classification performance of IMPACT-mod-
ules with different interaction networks on the endocy-
tosis GO terms. Legend: AUC = area under the ROC curve;

sem = standard error of the AUC estimation; p(AUC) = probability

that the AUC is higher than the random 0.5 case (z-test).

(PDF)

Table S16 Enrichment analysis for the autophagy
genes. Legend for columns, from left to right: scoring method;

number of autophagy genes in the scoring list; total number of

autophagy genes assessed by the scoring method (175 for the entire

screen, of which 161 mapping on the interaction network);

number of genes selected as significant by the scoring method;

total number of genes assessed by the scoring method; p-value of

enrichment of autophagy genes in the scoring hit-list, calculated

through Fisher’s exact test. # gene sig. = gene in significant

modules (p-value, = 0.1).

(PDF)

Table S17 Classification performance for the autopha-
gy genes. Legend: AUC = area under the ROC curve;

sem = standard error of the AUC estimation; p(AUC) = probability

that the AUC is higher than the random 0.5 case (z-test).

Abbreviation: avg. = average of profiles from different replicates.

(PDF)

Table S18 Gene Ontology biological process annota-
tions enriched in the CRISPR-Cas9 screen analysis.
Column legend (left to right): name summarizing the different GO

categories in the cluster; enrichment score, calculated as 2Log (p-

value), where p-values is the one in the next column; geometric

mean of enrichment p-values for terms in the same cluster;

geometric mean of the fold enrichment of different terms in the

same cluster; geometric mean of the p-value corrected for multiple

hypothesis (Benjamini correction).

(PDF)

Table S19 KEGG pathways annotations enriched in the
CRISPR-Cas9 screen analysis. Column legend (left to right):

name summarizing the different GO categories in the cluster;

enrichment score, calculated as 2Log (p-value), where p-values is

the one in the next column; geometric mean of enrichment p-

values for terms in the same cluster; geometric mean of the fold

enrichment of different terms in the same cluster; geometric mean

of the p-value corrected for multiple hypothesis (Benjamin

correction).

(PDF)

Table S20 Genes in the Melanoma KEGG pathway
selected by IMPACT for the CRISPR-Cas9 screen
analysis. Full list of the 35 genes selected by IMPACT belonging

to the Melanoma KEGG pathway annotation.

(DOCX)

Table S21 Genes in the MAPK KEGG pathway selected
by IMPACT for the CRISPR-Cas9 screen analysis. Full list

of the 97 genes selected by IMPACT belonging to the MAPK

KEGG pathway annotation.

(DOCX)

Text S1 Dissecting the function of related protein
complexes.

(PDF)

Text S2 Application to other data sets.

(DOCX)

Text S3 References for the supplementary materials.

(PDF)
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