
RESEARCH ARTICLE

Turing complete neural computation based

on synaptic plasticity

Jérémie CabessaID
1,2*

1 Laboratory of Mathematical Economics and Applied Microeconomics (LEMMA), University Paris 2 –

Panthéon-Assas, 75005 Paris, France, 2 Institute of Computer Science, Czech Academy of Sciences, 18207

Prague 8, Czech Republic

* jeremie.cabessa@u-paris2.fr

Abstract

In neural computation, the essential information is generally encoded into the neurons via

their spiking configurations, activation values or (attractor) dynamics. The synapses and

their associated plasticity mechanisms are, by contrast, mainly used to process this informa-

tion and implement the crucial learning features. Here, we propose a novel Turing complete

paradigm of neural computation where the essential information is encoded into discrete

synaptic states, and the updating of this information achieved via synaptic plasticity mecha-

nisms. More specifically, we prove that any 2-counter machine—and hence any Turing

machine—can be simulated by a rational-weighted recurrent neural network employing

spike-timing-dependent plasticity (STDP) rules. The computational states and counter val-

ues of the machine are encoded into discrete synaptic strengths. The transitions between

those synaptic weights are then achieved via STDP. These considerations show that a

Turing complete synaptic-based paradigm of neural computation is theoretically possible

and potentially exploitable. They support the idea that synapses are not only crucially

involved in information processing and learning features, but also in the encoding of

essential information. This approach represents a paradigm shift in the field of neural

computation.

Introduction

How does the brain compute? How do biological neural networks encode and process infor-

mation? What are the computational capabilities of neural networks? Can neural networks

implement abstract models of computation? Understanding the computational and dynamical

capabilities of neural systems is a crucial issue with significant implications in computational

and system neuroscience, artificial intelligence, machine learning, bio-inspired computing,

robotics, but also theoretical computer science and philosophy.

In 1943, McCulloch and Pitts proposed the concept of an artificial neural network (ANN) as

an interconnection of neuron-like logical units [1]. This computational model significantly

contributed to the development of two research directions: (1) Neural Computation, which

studies the processing and coding of information as well as as the computational capabilities of

PLOS ONE | https://doi.org/10.1371/journal.pone.0223451 October 16, 2019 1 / 34

a1111111111

a1111111111

a1111111111

a1111111111

a1111111111

OPEN ACCESS

Citation: Cabessa J (2019) Turing complete neural

computation based on synaptic plasticity. PLoS

ONE 14(10): e0223451. https://doi.org/10.1371/

journal.pone.0223451

Editor: Tao Song, Polytechnical Universidad de

Madrid, SPAIN

Received: April 12, 2019

Accepted: September 20, 2019

Published: October 16, 2019

Copyright: © 2019 Jérémie Cabessa. This is an

open access article distributed under the terms of

the Creative Commons Attribution License, which

permits unrestricted use, distribution, and

reproduction in any medium, provided the original

author and source are credited.

Data Availability Statement: All relevant data are

within the manuscript and its Supporting

Information files.

Funding: J.C received the following fundings: 1.

Defense Advanced Research Projects Agency

(DARPA) – Lifelong Learning Machines (L2M)

program, cooperative agreement No. HR0011-18-

2-0023 (https://www.darpa.mil/program/lifelong-

learning-machines), and 2. Czech Science

Foundation, grant No. GA19-05704S (https://gacr.

cz/en/).

Competing interests: The author has declared that

no competing interests exist.

http://orcid.org/0000-0002-5394-5249
https://doi.org/10.1371/journal.pone.0223451
http://crossmark.crossref.org/dialog/?doi=10.1371/journal.pone.0223451&domain=pdf&date_stamp=2019-10-16
http://crossmark.crossref.org/dialog/?doi=10.1371/journal.pone.0223451&domain=pdf&date_stamp=2019-10-16
http://crossmark.crossref.org/dialog/?doi=10.1371/journal.pone.0223451&domain=pdf&date_stamp=2019-10-16
http://crossmark.crossref.org/dialog/?doi=10.1371/journal.pone.0223451&domain=pdf&date_stamp=2019-10-16
http://crossmark.crossref.org/dialog/?doi=10.1371/journal.pone.0223451&domain=pdf&date_stamp=2019-10-16
http://crossmark.crossref.org/dialog/?doi=10.1371/journal.pone.0223451&domain=pdf&date_stamp=2019-10-16
https://doi.org/10.1371/journal.pone.0223451
https://doi.org/10.1371/journal.pone.0223451
http://creativecommons.org/licenses/by/4.0/
https://www.darpa.mil/program/lifelong-learning-machines
https://www.darpa.mil/program/lifelong-learning-machines
https://gacr.cz/en/
https://gacr.cz/en/

various kinds of artificial and biological neural models; (2) Machine Learning, which concerns

the development and utilization of neural network algorithms in Artificial Intelligence (AI).

The proposed study lies within the first of these two approaches. In this context, the compu-

tational capabilities of diverse kinds of neural networks have been shown to range from the

finite automaton degree [1–3] up to the Turing [4] or even to the super-Turing levels [5–7]

(see [8] for a survey of complexity theoretic results). In short, Boolean recurrent neural net-
works are computationally equivalent fo finite state automata; analog neural networks with

rational synaptic weights are Turing complete; and analog neural nets with real synaptic

weights as well as evolving neural nets are capable of super-Turing capabilities (cf. Table 1).

These theoretical results have later been improved, motivated by the possibility to implement

finite state machines on electronic hardwares (see for instance [9–13]). Around the same time,

the computational power of spiking neural networks (instead of sigmoidal ones) has also been

extensively studied [14, 15]. More recently, the study of P systems—parallel abstract models of

computation inspired from the membrane structure of biological cells—has become a highly

active field of research [16–18].

Concerning the second direction, Turing himself brilliantly anticipated the two concepts of

learning and training that would later become central to machine learning [36]. These ideas

were realized with the introduction of the perceptron [37], which gave rise to the algorithmic

conception of learning [38–40]. Despite some early limitation issues [41], the development of

artificial neural networks has steadily progressed since then. Nowadays, artificial neural net-

works represent a most powerful class of algorithms in machine learning, thanks to their

highly efficient training capabilities. In particular, deep learning methods—multilayer neural

networks that can learn in supervised and/or unsupervised manners—have achieved impres-

sive results in numerous different areas (see [42] for a brilliant survey and the references

therein).

These approaches share a common and certainly sensible conception of neural computa-

tion that could be qualified as a neuron-based computational framework. According to this

conception, the essential information is encoded into the neurons, via their spiking configu-

rations, activation values or (attractor) dynamics. The synapses and their associated plastic-

ity mechanisms are, by contrast, essentially used to process this information and implement

the crucial learning features. For instance, in the simulation of abstract machines by neural

networks, the computational states of the machines are encoded into activation values or

spiking patterns of neurons [8]. Similarly, in most if not all deep learning algorithms, the

input, output and intermediate information is encoded into activation values of input, out-

put and hidden (layers of) neurons, respectively [42]. But what if the synaptic states would

also play a crucial role in the encoding of information? What if the role of the synapses

Table 1. Computational power of various models of recurrent neural networks. FSA, TM and TM/poly(A) stand for

finite state automata, Turing machines and Turing machines with polynomial advice (which are super-Turing), respec-

tively. REG, P and P/poly are the complexity classes decided in polynomial time by these three models of computation.

The results in the case of classical computation can be found in [1–7, 19–24]. Results in alternative infinite computa-

tional frameworks have also been obtained [25–35].

BOOLEAN STATIC SIGMOID

STATIC BI-VALUED EVOLVING EVOLVING

Q FSA TM TM/poly(A) TM/poly(A)

REG P P/poly P/poly

R FSA TM/poly(A) TM/poly(A) TM/poly(A)

REG P/poly P/poly P/poly

https://doi.org/10.1371/journal.pone.0223451.t001

Turing complete neural computation based on synaptic plasticity

PLOS ONE | https://doi.org/10.1371/journal.pone.0223451 October 16, 2019 2 / 34

https://doi.org/10.1371/journal.pone.0223451.t001
https://doi.org/10.1371/journal.pone.0223451

would not only be confined to the processing of information and learning processes, as

crucial as these features might be? In short, what about a synaptic-based computational
framework?

In biology, the various mechanisms of synaptic plasticity provide “the basis for most models

of learning, memory and development in neural circuits” [43]. Spike-timing-dependent plastic-
ity (STDP) refers to the biological Hebbian-like learning process according to which the synap-

ses’ strengths are adjusted based on the relative timings of the presynaptic and postsynaptic

spikes [38, 44, 45]. It is widely believed that STDP “underlies several learning and information

storage processes in the brain, as well as the development and refinement of neuronal circuits

during brain development” (see [46] and the references therein). In particular, fundamental

neuronal structures like synfire chains [47–51] (pools of successive layers of neurons strongly

connected from one stratum to the next by excitatory connections), synfire rings [52] (looping

synfire chains) and polychronous groups [53] (groups of neurons capable of generating time-

locked reproducible spike-timing patterns), have all been observed to emerge in self-organiz-

ing neural networks employing various STDP mechanisms [52–55]. On another level, regard-

ing STDP mechnisms, it has been shown that synapses might change their strengths by

jumping between discrete mechanistic states, rather than by simply moving up and down in a

continuum of efficacy [56].

Based on these considerations, we propose a novel Turing complete synaptic-based para-

digm of neural computation. In this framework, the essential information is encoded into

discrete synaptic states instead of neuronal spiking patterns, activation values or dynamics.

The updating of this information is then achieved via synaptic plasticity mechanisms. More

specifically, we prove that any 2-counter machine—and hence any Turing machine—can be

simulated by a rational-weighted recurrent neural network subjected to STDP. The computa-

tional states and counter values of the machine are encoded into discrete synaptic strengths.

The transitions between those synaptic weights are achieved via STDP. These results show

that a Turing complete synaptic-based paradigm of computation is theoretically possible

and potentially exploitable. They support the idea that synapses are not only crucially

involved in information processing and learning features, but also in the encoding of essen-

tial information in the brain. This approach represents a paradigm shift in the field of neural

computation.

The possible impacts of these results are both practical and theoretical. In the field of neuro-

morphic computing, our synaptic-based paradigm of neural computation might lead to the

realization of novel analog neuronal computers implemented on VLSI technologies. Regarding

AI, our approach might lead to the development of new machine learning algorithms. On a

conceptual level, the study of neuro-inspired paradigms of abstract computation might

improve the understanding of both biological and artificial intelligences. These aspects are dis-

cussed in the conclusion.

Materials and methods

Recurrent neural networks

A rational-weighted recurrent neural network (RNN)N consists of a synchronous network of

neurons connected together in a general architecture. The network is composed of M input

neurons ðuiÞ
M
i¼1

and N internal neurons ðxiÞ
N
i¼1

. The dynamics of network N is computed as fol-

lows: given the activation values of the input neurons ðujðtÞÞ
M
j¼1

and internal neurons ðxjðtÞÞ
N
j¼1

at time step t, the activation values of the internal neurons ðxiðt þ 1ÞÞ
N
i¼1

at time step t + 1 are

Turing complete neural computation based on synaptic plasticity

PLOS ONE | https://doi.org/10.1371/journal.pone.0223451 October 16, 2019 3 / 34

https://doi.org/10.1371/journal.pone.0223451

given by the following equations:

xiðt þ 1Þ ¼ f
XN

j¼1

aijðtÞ � xjðtÞ þ
XM

j¼1

bijðtÞ � ujðtÞ þ ciðtÞ

 !

; for i ¼ 1; � � � ;N ð1Þ

where aijðtÞ; bijðtÞ 2 Q are the rational weights of the synaptic connections from xj to xi and uj
to xi at time t, respectively, ciðtÞ 2 Q is the rational bias of cell xi at time t, and f is either the

hard-threshold activation function θ or the linear sigmoid activation function σ defined by

yðxÞ ¼
0 if x < 1

1 if x � 1

(

sðxÞ ¼

0 if x < 0

x if 0 � x � 1

1 if x > 1:

8
>>><

>>>:

A neuron is called Boolean or analog depending on whether its activation value is computed

by the function θ or σ, respectively. Input neurons ðuiÞ
M
i¼1

are all Boolean.

The input state and internal state of N at time t are the vectors

uðtÞ ¼ ðu1ðtÞ; . . . ; uMðtÞÞ
T
2 BM

xðtÞ ¼ ðx1ðtÞ; . . . ; xNðtÞÞ
T
2 QN

For any Boolean input stream u = u(0)u(1)u(2) � � �, the computation of N over input u is the

sequence of internal states N ðuÞ ¼ xð0Þxð1Þxð2Þ . . ., where x(0) = 0 and the components

of x(t) are given by Eq (1), for each t> 0. A simple recurrent neural network is illustrated in

Fig 1.

A spike-timing dependent plasticity (STDP) rule modifies the synaptic weights aij(t)
according to the spiking patterns of the presynaptic and postsynaptic cells xj and xi [45]. Here,

we consider two STDP rules. The first one is a classical generalized Hebbian rule [38]. It allows

the synaptic weights to vary across finitely many values comprised between two bounds amin
and amax (0 < amin< amax< 1). The rule is given as follows:

aijðt þ 1Þ ¼

amin; if Rðt þ 1Þ < amin

amax; if Rðt þ 1Þ > amax where

Rðt þ 1Þ; otherwise

8
>>><

>>>:

ð2Þ

Rðt þ 1Þ≔ aijðtÞ þ Z � ðbxiðt þ 1Þc � bxjðtÞc � bxiðtÞc � bxjðt þ 1ÞcÞ

where bxc denotes the floor of x (the greatest integer less than or equal to x) and η> 0 is the

learning rate. Accordingly, the synaptic weight aij(t) is incremented (resp. decremented) by η
at time t + 1 if the presynaptic cell xj spikes 1 time step before (resp. after) the postsynaptic cell

xi. The floor function is used to truncate the activation values of analog neurons to their integer

part, if needed. The synaptic weights enabled by this rule is illustrated in Fig 2. In the sequel,

this STDP rule will be used to encode the transitions between the finitely many computational

states of the machine to be simulated.

The second rule is an adaptation to our context of a classical Hebbian rule. It allows the syn-

aptic weights to vary across the infinitely many values of the sequence

b ¼ 1 �
1

2k

� �1

k¼0

¼ ð0:0; 0:5; 0:75; 0:875; 0:9375; . . .Þ

Turing complete neural computation based on synaptic plasticity

PLOS ONE | https://doi.org/10.1371/journal.pone.0223451 October 16, 2019 4 / 34

https://doi.org/10.1371/journal.pone.0223451

The rule is given as follows:

aijðt þ 1Þ ¼

aijðtÞ þ
1

2
ð1 � aijðtÞÞ if xiðt þ 1Þ � xjðtÞ � xiðtÞ � xjðt þ 1Þ ¼ 1

max ðaijðtÞ � ð1 � aijðtÞÞ; 0Þ if xiðt þ 1Þ � xjðtÞ � xiðtÞ � xjðt þ 1Þ ¼ � 1

aijðtÞ if xiðt þ 1Þ � xjðtÞ � xiðtÞ � xjðt þ 1Þ ¼ 0

8
>>>>><

>>>>>:

ð3Þ

As for the previous one, the synaptic weight aij(t) is incremented (resp. decremented) at time

t+1 if the presynaptic cell xj spikes 1 time step before (resp. after) the postsynaptic cell xi. But

in this case, the synaptic weight varies across the infinitely many successive values of the

sequence β. For instance, if aijðtÞ ¼ 1

2
þ 1

4
þ 1

8
¼ 0:875 is incremented (resp. decremented) by

the STDP rule, then aijðt þ 1Þ ¼ 1

2
þ 1

4
þ 1

8
þ 1

16
¼ 0:9375 (resp. aijðt þ 1Þ ¼ 1

2
þ 1

4
¼ 0:75).

Here, the floor functions are removed, since this rule will only be applied to synaptic connec-

tions between Boolean neurons. The synaptic weights enabled by this rule is illustrated in Fig

2. In the sequel, this STDP rule will be used to encode the variations among the infinitely

many possible counter values of the machine to be simulated.

Fig 1. A recurrent neural network. The network contains two input cells u1, u2 and three internal cells x1, x2, x3.

Excitatory and inhibitory connections are represented as red and blue arrows, respectively. Cells u1, u2, x1, x2 are

Boolean (activation function θ) whereas x3 is analog (activation function σ). Over the Boolean input u = (1, 1)T (1, 0)T

(0, 1)T, the network’s computation is N ðuÞ ¼ ð0; 0; 0ÞT ð0; 1; 0ÞT ð1; 0; 0ÞT ð0; 1; 1ÞT ð0; 0; 0:25Þ
T
ð0; 0; 0:625Þ

T
. . . .

https://doi.org/10.1371/journal.pone.0223451.g001

Turing complete neural computation based on synaptic plasticity

PLOS ONE | https://doi.org/10.1371/journal.pone.0223451 October 16, 2019 5 / 34

https://doi.org/10.1371/journal.pone.0223451.g001
https://doi.org/10.1371/journal.pone.0223451

Finite state automata

A deterministic finite state automaton (FSA) is a tuple A ¼ ðQ;S; d; q0; FÞ, where:

• Q = {q0, . . ., qn−1} is a finite set of computational states;

• S is an alphabet of input symbols;

• δ: Q × S! Q is a transition function;

• q0 2 Q is the initial state;

• F� Q is the set of final states.

Each transition δ(q, a) = q0 signifies that if the automaton is state q 2 Q and reads input

symbol a 2 S, then it will move to state q0 2Q. For any input w = a0a1 � � �ap 2 S�, the computa-
tion of A over w is the finite sequence

AðwÞ ¼ ððqi0 ; a0; qi1Þ; ðqi1 ; a1; qi2Þ; . . . ; ðqip ; ap; qipþ1
ÞÞ

such that qi0 ¼ q0 and dðqik ; akÞ ¼ qikþ1
, for all k = 0, . . ., p. Such a computation is usually

denoted as

AðwÞ : q0� !
a0 qi1 � !

a1 qi2 � � � qip � !
ap qipþ1

:

Input w is said to be accepted (resp. rejected) by automaton A if the last state qipþ1
of computa-

tion AðwÞ belongs (resp. does not belong) to the set of final states F. The set of all inputs

accepted by A is the language recognized by A. Finite state automata recognize the class of reg-
ular languages. A finite state automaton is generally represented as a directed graph, as illus-

trated in Fig 3.

Fig 2. Synaptic weights enabled by to the two STDP rules. The red curve displays the finitely many possible synaptic

weights enabled by the first STDP rule (Eq (2)), where amin = 0.1, amax = 1 and η = 0.1. These are the successive values of

the sequence (0.1, 0.2, 0.3, 0.4, 0.5, 0.6, 0.7, 0.8, 0.9, 1.0). The blue curve displays the first elements of the infinitely many

synaptic weights enabled by the second STDP rule (Eq (3)). These are the successive values of the sequence β = (0.0, 0.5,

0.75, 0.875, 0.9375, . . .).

https://doi.org/10.1371/journal.pone.0223451.g002

Turing complete neural computation based on synaptic plasticity

PLOS ONE | https://doi.org/10.1371/journal.pone.0223451 October 16, 2019 6 / 34

https://doi.org/10.1371/journal.pone.0223451.g002
https://doi.org/10.1371/journal.pone.0223451

Counter machines

A counter machine is a finite state automaton provided with additional counters [57]. The

counters are used to store integers. They can be pushed (incremented by 1), popped (decre-

mented by 1) or kept unchanged. At each step, the machine determines its next computational

state according to its current input symbol, computational state and counters’ states, i.e., if

counters are zero or non-zero.

Formally, a deterministic k-counter machine (CM) is a tuple Ck ¼ ðQ;S;C;O; d; q0; FÞ,
where:

• Q = {q0, . . ., qn−1} is a finite set of computational states;

• S is an alphabet of input symbols not containing the empty symbol � (recall that the empty

symbol satisfies �w = w� = w, for any string w 2 S�);

• C = {?,>} is the set of counter states, where?,> represent the zero and non-zero states,

respectively;

• N is the set of counter values (doesn’t need to be hold in the tuple Ck);

• O = {push, pop, −} is the set of counter operations;

• δ: Q × S [{�} × Ck! Q × Ok is a (partial) transition function;

• q0 2 Q is the initial state;

Fig 3. A finite state automaton. The nodes and edges of the graph represent the states and transitions of the

automaton, respectively. Initial and final states are represented with an incoming arrow and a double-circle,

respectively. An edge from state q to q0 labelled by a represents the transition relation δ(q, a) = q0. This automaton

recognizes the language {0m1n: m, n> 0}, i.e., the sequences of bits beginning with a strictly positive number of 0’s and

ending with a strictly positive number of 1’s.

https://doi.org/10.1371/journal.pone.0223451.g003

Turing complete neural computation based on synaptic plasticity

PLOS ONE | https://doi.org/10.1371/journal.pone.0223451 October 16, 2019 7 / 34

https://doi.org/10.1371/journal.pone.0223451.g003
https://doi.org/10.1371/journal.pone.0223451

• F� Q is the set of final states.

The value and state of counter j are denoted by cj and �cj, respectively, for j = 1, . . ., k. (In the

sequel, certain cells will also be denoted by cj’s and �cj’s. The use of same notations to designate

counter’s values or states and specific cells will be clear from the context.) The “bar function”

(c 7!�c) retrieves the counter’s state from its value. It is naturally defined by �cj ¼ ? if cj = 0 and

�cj ¼ > if cj> 0. The value of counter j after application of operation oj 2 O is denoted by oj(cj).
The counter operations influence their values in the following natural way:

• If oj = push, then oj(cj) = cj + 1;

• If oj = pop, then oj(cj) = max(cj − 1, 0);

• If oj = −, then oj(cj) = cj.

Each transition dðq; a;�c1; . . . ;�ckÞ ¼ ðq0; o1; . . . ; okÞ signifies that if the machine is state q 2
Q, reads the regular or empty input symbol a 2 S [{�} and has its k counter being in states

�c1; . . . ;�ck 2 C, then it will move to state q0 2 Q and perform the k counter operations o1, . . ., ok
2 O. Depending on whether a 2 S or a = �, the corresponding transition is called a regular
transition or an �-transition, respectively. We assume that δ is a partial (rather than a total)

function. Importantly, the determinism is expressed by the fact that the machine can never

face a choice between either a regular or an �-transition, i.e., for any q 2 Q, any a 2 S and any

�c1; . . . ;�ck 2 C, if dðq; a;�c1; . . . ;�ckÞ is defined, then dðq; �;�c1; . . . ;�ckÞ is undefined [57].

For any input w = a0a1 � � � ap 2 S�, the computation of a k-counter machine Ck over input w
can be described as follows. For each successive input symbol ai 2 S, before trying to process

ai, the machine first tests if an �-transition is possible. If this is the case, it performs this transi-

tion. Otherwise, it tests if the regular transition associated with ai is possible, and if so, per-

forms it. The deterministic condition ensures that a regular and an �-transition are never

possible at the same time. When no more transition can be performed, the machine stops.

For any input w = a0a1 � � � ap 2 S�, the computation of Ck over w is the unique finite or infi-

nite sequence of states, symbols and counter values encountered by Ck while reading the suc-

cessive bits of w possibly interspersed with � symbols. The formal definition involves the

following notions.

An instantaneous description of Ck is a tuple ðq;w; c1; . . . ; ckÞ 2 Q� S
� � Nk

. For any

empty or non-empty symbol a0 2 S [{�} and any w 2 S�, the relation “‘” over the set of

instantaneous descriptions is defined as follows:

ðq; a0w; c1; . . . ; ckÞ ‘ ðq0;w; c01; . . . ; c0kÞ iff dðq; a0;�c1; . . . ;�ckÞ ¼ ðq0; o1; . . . ; okÞ

and c0
1
¼ o1ðc1Þ; . . . ; c0k ¼ okðckÞ

Note that depending on whether a0 = � or a0 2 S, the relation “‘” is determined by an �-transi-

tion or a regular transition, respectively. (Note also that when a0 = �, one has a0w = �w = w, and

in this case, the relation “‘” keeps w unchanged).

For any input w = a0a1 � � � ap 2 S�, the determinism of Ck ensures that there is a unique

finite or infinite sequence of instantaneous descriptions

ððqni ;wi; c1;i; . . . ; ck;iÞÞ
l
i¼0
; l 2 N [f1g

such that ðqn0
;w0; c1;0; . . . ; ck;0Þ ¼ ðq0;w; 0; . . . ; 0Þ is the initial instantaneous description, and

ðqni ;wi; c1;i; . . . ; ck;iÞ ‘ ðqniþ1
;wiþ1; c1;iþ1; . . . ; ck;iþ1Þ, for all i< l. Then, the computation of Ck

Turing complete neural computation based on synaptic plasticity

PLOS ONE | https://doi.org/10.1371/journal.pone.0223451 October 16, 2019 8 / 34

https://doi.org/10.1371/journal.pone.0223451

over w, denoted by CkðwÞ, is the finite or infinite sequence defined by

CkðwÞ ¼ ððqni ; a
0
i; c1;i; . . . ; ck;iÞÞ

l
i¼0
; l 2 N [f1g ð4Þ

where a0i ¼ � if wi = wi+1 (case of an �-transition), and a0i is the first bit of wi otherwise (case

of a regular transition), for all i< l. Note that the computation over w can take longer than

|w| = p + 1 steps, even be infinite, due to the use of �-transitions. The input w 2 S� is said to be

accepted by Ck if the computation of the machine over w is finite, consumes all letters of w and

stops in a state of F, i.e., if a0l ¼ � and qnl 2 F. It is rejected otherwise. The set of all inputs

accepted by Ck is the language recognized by Ck.

It is known that 1-counter machines are strictly more powerful than finite state automata,

and k-counter machines are computationally equivalent to Turing machines (Turing com-

plete), for any k� 2 [57]. However, the class of k-counter machines that do not make use of

�-transitions is not Turing complete. For this reason, the simulation of �-transitions by our

neural networks will be essential towards the achievement of Turing-completeness.

A k-counter machine can also be represented as a directed graph, as illustrated in Fig 4. The

2-counter machine of Fig 4 recognizes a language that is recursively enumerable but not con-

text-free, i.e., it can be recognized by some Turing machine, yet by no pushdown automaton.

Note that this 2-counter machine contains �-transitions.

Results

We show that any k-counter machine can be simulated by a recurrent neural network com-

posed of Boolean and analog neurons, and using the two STDP rules described by Eqs (2) and

(3). In this computational paradigm, the states and counter values of the machine are encoded

into specific synaptic weights of the network. The transitions between those states and counter

values are reflected by an evolution of the corresponding synaptic weights. Since 2-counter

machines are computationally equivalent to Turing machines, these results show that the pro-

posed STDP-based recurrent neural networks are Turing complete.

Construction

We provide an algorithmic construction which takes the description of a k-counter machine

Ck as input and provides a recurrent neural network N that simulates Ck as output. The net-

work N is constructed by assembling several modules together: an input encoding module, an

input transmission module, a state module, k counter modules and several detection modules.
These modules are described in detail in the sequel. The global behaviour of N can be summa-

rized as follows.

1. The computational state and k counter values of Ck are encoded into specific synaptic

weights belonging to the state module and counter modules of N , respectively.

2. At the beginning of the simulation, N receives its input stream via successive activations of

its input cells belonging to the input encoding module. Meanwhile, this module encodes the

whole input stream into a single rational number, and stores this number into the activation

value of a sigmoid neuron.

3. Then, each time the so-called tic cell of the input encoding module is activated, N triggers

the simulation of one computational step of Ck.

a. First, it attempts to simulate an �-transition of Ck by activating the cell u� of the input
transmission module. If such a transition is possible in Ck, then N simulates it.

Turing complete neural computation based on synaptic plasticity

PLOS ONE | https://doi.org/10.1371/journal.pone.0223451 October 16, 2019 9 / 34

https://doi.org/10.1371/journal.pone.0223451

b. Otherwise, a signal is sent back the input encoding module. This module then retrieves

the last input bit a stored in its memory, and attempts to simulate the regular transition

of Ck associated with a by activating the cell ua of the input transmission module. If such

a transition is possible in Ck, then N simulates it.

Fig 4. A 2-counter machine. The nodes and edges of the graph represent the states and transitions of the machine, respectively.

An edge from q to q0 labelled by a;�c1;�c2 ! o1; o2 represent the transition dðq; a;�c1;�c2Þ ¼ ðq0; o1; o2Þ. In other words, if the

machine is in computational state q, reads input a and has counter states �c1;�c2, then it will move to computational state q0 and

performs counter operations o1, o2. This 2-counter machine recognizes the language {0n1n0n: n> 0}, i.e., the sequences of bits

beginning with a strictly positive number of 0’s followed by the same number of 1’s and followed by the same number of 0’s

again.

https://doi.org/10.1371/journal.pone.0223451.g004

Turing complete neural computation based on synaptic plasticity

PLOS ONE | https://doi.org/10.1371/journal.pone.0223451 October 16, 2019 10 / 34

https://doi.org/10.1371/journal.pone.0223451.g004
https://doi.org/10.1371/journal.pone.0223451

4. The network N simulates a transition of Ck as follows: first, it retrieves the current compu-

tational state and k counter values of Ck encoded into k + 1 synaptic weights by means of its

detection modules. Based on this information, it sends specific signals to the state module
and counter modules. These signals update specific synaptic weights of these modules in

such a way to encode the new computational state and counter values of Ck.

The general architecture of N is illustrated in Fig 5. The general functionalities of the mod-

ules are summarized in Table 2. The following sections are devoted to the detailed description

of the modules, as well as to the proof of correctness of the construction.

Stack encoding. In the sequel, each binary input stream will be piled up into a “binary

stack”. In this way, the input stream can be stored by the network, and then processed bit by

bit at successive time steps interspersed by constant intervals. The construction of the stack is

achieved by “pushing” the successive incoming bits into it. The stack is encoded as a rational

number stored in the activation value of one (or several) analog neurons. The pushing and

popping stack operations can be simulated by simple analog neural circuits [4]. We now pres-

ent these notions in detail.

A binary stack whose elements from top to bottom are γ1, γ2, . . ., γp 2 {0, 1} is represented

by the finite string γ = γ1 γ2 � � � γp 2 {0, 1}�. The stack γ whose top element has been popped is

denoted by pop(γ) = γ2 � � � γp, and the stack obtained by pushing element α 2 {0, 1} into γ is

Fig 5. STDP-based recurrent neural network simulating a k-counter machine. The network is obtained by the

construction given in Algorithm 1. It is composed of 1 input encoding module. 1 input transmission module, 1 state

module, k counter modules, and at most |Q| � |S [{�}| � 2k = 6nk detection modules, all interconnected together in a

precise way. According to this construction, the computational state and counter values of the machine are encoded

into specific synaptic weights of the state and counter modules, respectively (red dashed arrow). The synaptic

connections provoking changes in these specific weights are depicted in boldface.

https://doi.org/10.1371/journal.pone.0223451.g005

Turing complete neural computation based on synaptic plasticity

PLOS ONE | https://doi.org/10.1371/journal.pone.0223451 October 16, 2019 11 / 34

https://doi.org/10.1371/journal.pone.0223451.g005
https://doi.org/10.1371/journal.pone.0223451

denoted by push(α, γ) = αγ1 γ2 . . . γp (α is now the top element). For instance, if γ = 0110, then

pop(γ) = 110, push(0, γ) = 00110 and push(1, γ) = 10110.

In our context, any stack γ = γ1 γ2 � � � γp 2 {0, 1}� is encoded by the rational number

�rg≔
Pn

i¼1

2giþ1

4i
2 ½0; 1� [4]. Hence, the top element γ1 of γ can be retrieved by the operation

topðgÞ ¼ sð4�rg � 2Þ 2 f0; 1g, where σ is the linear sigmoid function defined previously. The

encodings of push(0, γ) and push(1, γ) are given by s
�rg
4
þ 1

4

� �
and s

�rg
4
þ 3

4

� �
, respectively. The

encoding of pop(γ) is given by sð4�rg � 2topðgÞ � 1Þ. As an illustration, the stack γ = 0110 is

encoded by �rg ¼ 1

4
þ 3

16
þ 3

64
þ 1

256
. The top element of γ is topðgÞ ¼ s 1þ 3

4
þ 3

16
þ 1

64
� 2

� �
¼ 0.

The encodings of push(0, γ) and push(1, γ) are 1

4
þ 1

16
þ 3

64
þ 3

256
þ 1

1024
and 3

4
þ 1

16
þ 3

64
þ 3

256
þ 1

1024
,

which represents the stacks 00110 and 10110, respectively. The encoding of pop(γ) is

s 1þ 3

4
þ 3

16
þ 1

64
� 2 � 0 � 1

� �
¼ 3

4
þ 3

16
þ 1

64
, which represents to the stack 110. These four oper-

ations can be implemented by simple neural circuits.

Input encoding module. The input encoding module is used for two purposes: pile up the

successive input bits into a stack, and implement a “tic mechanism” which triggers the simula-

tion of one computational step of the counter machine by the network. These two processes

are described in detail below. This module (the most intricate one) has been designed on the

basis of the previous considerations about stack encoding, involving neural circuits that imple-

ment the “pop”, “top” and “pop” operations. It is composed of 31 cells in0, in1, end, tic, c1, . . .,

c20, d1, . . ., d7, some of which being Boolean and others analog, as illustrated in Fig 6. It is con-

nected to the input transmission module and the detection modules described below.

The three Boolean cells in0, in1 and end are input cells of the network. They are used to

transmit the successive inputs bits to the network. The transmission of input 0 or 1 is repre-

sented by a spike of cell in0 or in1, respectively. At the end of the input stream, cell end spikes

to indicate that all inputs have been processed.

The activity of this module, illustrated in Fig 7, can be described as follows. Suppose that

the input stream a1 � � � ap is transmitted to the network. While the bits a1, . . ., ap are being

received, the module builds the stack γ = a1 � � � ap, and stores its encoding �rg into the activation

values of an analog neuron. To achieve this, the module first pushes every incoming input ai
into a stack γ0 (first ‘push’ circuit in Fig 6). Since pushed elements are by definition added on

the top of the stack, γ0 consists of elements a1, . . ., ap in reverse order, i.e., γ0 = ap � � � a1. The

encoding �rg0 of stack γ0 is stored in cell c1. Then, the module pops the elements of γ0 from top

to bottom (first ‘pop’ circuit in Fig 6), and pushed them into another stack γ (second ‘push’

Table 2. Modules composing the STDP-based recurrent neural network that simulates a k-counter machine.

Module Role

INPUT ENCODING • Store the successive input bits into a “stack”.

• Implement a “tic mechanism” which triggers the simulation of one computational step of the

machine.

INPUT

PROCESSING

• Transmit the successive input bits to the network.

STATE • Encode the successive computational states of the machine into an evolving synaptic weight.

• Simulate the change in computational states of the machine throughout the computation.

COUNTER • Encode the successive counter values of the machine into evolving synaptic weights.

• Simulate the change in the counter values of the machine throughout the computation.

DETECTION • Retrieve the current computational and counter states of the machine.

• Use this information to simulate the next transition of the machine.

https://doi.org/10.1371/journal.pone.0223451.t002

Turing complete neural computation based on synaptic plasticity

PLOS ONE | https://doi.org/10.1371/journal.pone.0223451 October 16, 2019 12 / 34

https://doi.org/10.1371/journal.pone.0223451.t002
https://doi.org/10.1371/journal.pone.0223451

circuit in Fig 6). After completion of this process, γ consists of elements a1, . . ., ap in the right

order, i.e., γ = a1 � � � ap. The encoding �rg of stack γ is stored in cell c14.

The Boolean cell tic is also an input cell. Each activation this cell triggers the simulation of

one computational step of the counter machine by the network. When the tic cell spikes, it

sends a signal to cell u� of the next input transmission module. The activation of u� attempts to

launch the simulation of an �-transition of the machine. If, according to the current computa-

tional and counter states of the machine, an �-transition is possible, then the network simulates

it via its other modules, and at the same time, sends an inhibitory signal to c15. Otherwise, after

some delay (‘delays’ circuit in Fig 6), cell c15 is activated. This cell triggers a sub-circuit that

pops the current stack γ (second ‘pop’ circuit in Fig 6) and transmits its top element a 2 {0, 1}

to cell ua of the next input transmission module. Then, the activation of ua launches the simu-

lation of a regular transition of the machine associated with input symbol a, via the other mod-

ules of the network.

The module is composed of several sub-circuits that implement the top(), push() and pop()

operations described previously, as shown in Fig 6. An input encoding module is denoted as

input_encoding_module().
Input transmission module. The input transmission module is used to transmit to the

network the successive input bits sent by the previous input encoding module. The module

simply consists of 3 Boolean input cells u0, u1, u� followed by 3 layers of Boolean delay cells, as

Fig 6. Input encoding module. This module piles up the successive incoming input bits into a stack and implement

the “tic mechanism”, which triggers the simulation of one computational step of the counter machine. It is composed

of 31 Boolean and analog cells (depicted in white/blue and grey, respectively) in0, in1, end, tic, c1, . . ., c20, d1, . . ., d7.

First of all, at successive time steps, cell in0 or in1 spikes depending on whether input 0 or 1 is received. Then, cell end
spikes to indicate that all input bits have been processed. Meanwhile, the successive bits are pushed into a stack γ0

whose encoding is hold by c1 (first ‘push’ circuit). After all bits have been pushed, γ0 contains all input bits in reverse

order. Subsequently, c2, . . ., c7 pop every element of γ0 (first ‘pop’ circuit). Cell c8 or c9 spikes iff the popped element is a

0 or a 1, respectively. Afterwards, cells c10, c11 push these elements back into a new stack, in order to build the reversed

stack γ (second ‘push’ circuit). The encoding of γ is transferred to and hold by c12 and c13 at alternating time steps

(‘copy’ circuit), and then hold by c14 at every time step. After completion of this process, γ contains all input bits in the

original order. Besides this, each time the tic cells spikes, it triggers the simulation of one computational step of the

counter machine by the network. First, it attempts to simulatate an �-transition by activating cell u� of the next module.

If this simulation step fails, cell c15 is activated after some delay (‘delays’ circuit), which represents a signal telling that

the top element of stack γ, instead of �, has to be given as next input symbol. In this case, c14, c16, c17, c18 pop γ (second

‘pop’ circuit) and transmit its top element, 0 or 1, to cell c19 or c20, respectively. Cell c19 or c20 then activates cell u0 or u1

of the next module, respectively, triggering the simulation of a regular transition.

https://doi.org/10.1371/journal.pone.0223451.g006

Turing complete neural computation based on synaptic plasticity

PLOS ONE | https://doi.org/10.1371/journal.pone.0223451 October 16, 2019 13 / 34

https://doi.org/10.1371/journal.pone.0223451.g006
https://doi.org/10.1371/journal.pone.0223451

illustrated in Fig 8. It is connected to the input encoding module described above, and to the

state module, counter modules and detection modules described below. The activation of cell u0,

u1 or u� simulates the reading of input symbol 0, 1 or � by the counter machine, respectively.

Each time such a cell is activated, the information propagates along the delay cells of the corre-

sponding row. An input transmission module is denoted as input_transmission_module().
State module. In our model, the successive computational states of the counter machine

are encoded as rational numbers, and stored as successive weights of a designated synapse

ws(t) (subscript s refers to ‘state’). More precisely, the fact that the machine is in state qk is

Fig 7. Example of activity of the input encoding module. The lower graph is a raster plot displaying the cells’

activities. Activation values between 0 and 1 (of sigmoid neurons) are not represented, only spikes are. In this

simulation, the input stream 001101 and the “end of input” signal are transmitted via cells in0, in1, end at successive

time steps 0, 1, 2, . . ., 7 (blue pattern). The successive input bits are first piled up in reverse order into a stack γ0 whose

encoding is stored as the activation value of c1, and then piled up again in the right order into a stack γ whose encoding

is stored as the activation value of c14. The activation values of c1 and c14 over time are represented by the orange and

red curves in the upper graph, respectively. Then, the tic cell spikes every 15 time steps from t = 20 onwards (blue

pattern). Each such spike triggers the sub-circuit that pops stack γ and outputs its top element, 0 or 1, by activating cell

c19 or c20 10 time steps later, respectively. We see that the successive input bits, namely 0, 0, 1, 1, 0, 1, 0 (blue pattern),

are correctly output by cells c19 or c20 (red pattern).

https://doi.org/10.1371/journal.pone.0223451.g007

Fig 8. Input transmission module. This module transmits the successive inputs bits to the network. It is composed of

three Boolean input cells u0, u1, u� (in blue) followed by 3 layers of Boolean delay cells connected in a parallel way via

excitatory connections of weights 1. The activation of cells u0, u1 or u� simulates the reading of input symbols 0, 1 or �

by the counter machine, respectively.

https://doi.org/10.1371/journal.pone.0223451.g008

Turing complete neural computation based on synaptic plasticity

PLOS ONE | https://doi.org/10.1371/journal.pone.0223451 October 16, 2019 14 / 34

https://doi.org/10.1371/journal.pone.0223451.g007
https://doi.org/10.1371/journal.pone.0223451.g008
https://doi.org/10.1371/journal.pone.0223451

encoded by the rational weight ws(t) = amin + k � η, for k = 0, . . ., n − 1, where amin and η are

parameters of the STDP rule given by Eq (2). Hence, the change in computational state of the

machine is simulated by incrementing or decrementing ws(t) in a controlled manner. This

process is achieved by letting ws(t) be subjected to the STDP rule of Eq (2), and by triggering

specific spiking patterns of the presynaptic and postsynaptic cells of ws(t).
The state module is designed to implement these features. It is composed of a Boolean pre-

synaptic cell pres connected to an analog postsynaptic cell posts by a synapse of weight ws(t), as

well as of 6(n − 1) Boolean cells c1, . . ., c3(n − 1) and �c1; . . . ;�c3ðn� 1Þ (for some n to be specified),

as illustrated in Fig 9. The synaptic weight ws(t) is subjected to the STDP rule of Eq (2), and

has an initial value of ws(0) = amin. The architecture of the module ensures that the activation

of cell c3k+1 or �c3kþ1 triggers successive specific spiking patterns of pres and posts which, accord-

ing to STDP (Eq (2)), increments or decrements ws(t) by (n − 1 − k) � η, for any 0� k� n − 2,

Fig 9. State module. This module is used to simulate the successive computational states of the counter machine. It is

composed of a Boolean cell pres connected to an analog cell posts via a synaptic connection of weight ws(t) (dashed red

arrow) subjected to the first STDP rule given by Eq (2), as well as of 6n Boolean cells c1, . . ., c3(n−1) and �c1; . . . ;�c3ðn� 1Þ.

The latter cells project onto pres and posts via excitatory and inhibitory synapses. To increment (resp. decrement) the

value of ws(t) by (n − 1 − k) � η (where η is the learning rate of the STDP rule of Eq (2)), it suffices to activate the blue

cell c3k+1 (resp. cell �c3kþ1), where 0� k� n − 2.

https://doi.org/10.1371/journal.pone.0223451.g009

Turing complete neural computation based on synaptic plasticity

PLOS ONE | https://doi.org/10.1371/journal.pone.0223451 October 16, 2019 15 / 34

https://doi.org/10.1371/journal.pone.0223451.g009
https://doi.org/10.1371/journal.pone.0223451

respectively (for instance, if k = 0, then ws(t) is incremented or decremented by (n − 1) � η,

whereas if k = n − 2, then ws(t) is only incremented or decremented by 1 � η). The module is

linked to the input transmission module described above and to the detection modules
described below.

The activity of this module, illustrated in Fig 10, can be described as follows. Suppose

that at time step t, one has ws(t) = v and one wishes to increment (resp. decrement) ws(t) by

(n − 1 − k) � η, where η is the learning rate of the STDP rule of Eq (2) and 0� k� n − 2. To

achieve this, we activate the cell c3k+1 (resp. cell �c3kþ1) (a blue cell of Fig 9). The activation of

c3k+1 (resp. cell �c3kþ1) launches a chain of activations of the next cells (red events in Fig 10),

which, according to the connectivity of the module, induces k successive pairs of spikes of pres
followed by posts (resp. posts followed by pres) (blue events in Fig 10). Thanks to the STDP rule

of Eq (2), these spiking patterns increment (resp. decrement) k times the value of ws(t) by an

amount of η. A state module with 6(n − 1) + 2 cells is denoted as state_module(n − 1).

Counter module. In our model, the successive counter values of the machine are encoded

as rational numbers and stored as successive weights of designated synapses wcj
ðtÞ, for j = 1, . . .,

k (subscript cj refers to ‘counter j’). More precisely, the fact that counter j has a value of n� 0 at

time t is encoded by the synaptic weight wcj
ðtÞ having the rational value rn≔

Pn
i¼1

1

2i
(with the

convention that r0 ≔ 0). Then, the “push” (incrementing the counter by 1) and “pop” (decre-

menting the counter by 1) operations are simulated by incrementing or decrementing wcj
ðtÞ

appropriately.

The k counter modules are designed to implement these features. Each counter module is

composed of 12 Boolean cells push, pop, test, = 0, 6¼ 0, prec, postc, c1, c2, c3, c4, c5, as illustrated

Fig 10. Example of activity of the state module. The lower graph is a raster plot displaying the cells’ activities. When

cell c1 (resp. �c1) spikes, it launches a chain of activations of the next cells c2, . . ., c9 (resp. �c2; . . . ;�c9). These activations

(red events) induce spiking patterns of the cells pres and posts (blue events), which thanks to the STDP rule of Eq (2),

increment (resp. decrement) the synaptic weight ws(t) by steps of η (η = 0.1 here). The value of ws(t) over time is

represented in the upper plot (red curve).

https://doi.org/10.1371/journal.pone.0223451.g010

Turing complete neural computation based on synaptic plasticity

PLOS ONE | https://doi.org/10.1371/journal.pone.0223451 October 16, 2019 16 / 34

https://doi.org/10.1371/journal.pone.0223451.g010
https://doi.org/10.1371/journal.pone.0223451

in Fig 11. The presynaptic and postsynaptic cells prec and postc are connected by a synapse of

weight wc(t) subjected to the second STDP rule given by Eq (3) and having an initial value of

wc(0) = 0. Accordingly, the values of wc(t) may vary across the elements of the infinite sequence

b ¼ 1 � 1

2k

� �1
k¼0
¼ ð0; 0:5; 0:75; 0:875; 0:9375; . . .Þ. The module is connected to the input

transmission module described above and to detection modules described below.

The activity of this module, illustrated in Fig 12, can be described as follows. Each activation

of the push (resp. pop) cell (blue events in Fig 12) propagates into the circuit and results 2 time

steps later in successive spikes of the prec and postc cells (resp. postc and prec cells), which,

thanks to the STDP rule of Eq (3), increment (resp. decrement) the value of wc(t) (red curve in

Fig 12). The activation of the test cell (blue events in Fig 12) results 4 time steps later in the

spike of the Boolean cell ‘= 0’ or ‘6¼ 0’ (red events in Fig 12), depending on whether wc(t) = 0 or

wc(t) 6¼ 0, respectively. During this process, the value of wc(t) is first incremented (2 time steps

later) and then decremented (2 time steps later again) back to its original value. In other

words, the testing procedure induces a back and forth fluctuation of wc(t), without finally

modifying it from its initial value (this fluctuation is unfortunately unavoidable). A counter

module is denoted as counter_module().
Detection modules. Detection modules are used to retrieve—or detect—the current

computational and counter states of the machine being simulated. This information is then

employed to simulate the next transition of the machine. More precisely, each input symbol a
2 S [{�}, computational state q 2 Q and counter states �c1; . . . ;�ck 2 C of the machine are asso-

ciated with a corresponding detection module. This module is activated if and only if the

Fig 11. Counter module. This module is used to simulate one counter of a k-counter machine. It is composed of 12

Boolean cells: push, pop, test, = 0, 6¼ 0, prec, postc (in blue), c1, c2, c3, c4, c5. The presynaptic and postsynaptic cells prec
and postc are connected by a synapse of weight wc(t) (dashed red arrow) subjected to the second STDP rule given by Eq

(3). The activation of the push or pop cell increments or decrements the value of wc(t), respectively. The activation of

the test cell results in the activation of the cell ‘= 0’ or ‘6¼ 0’, depending on whether w(t) = 0 or w(t) 6¼ 0, respectively.

https://doi.org/10.1371/journal.pone.0223451.g011

Turing complete neural computation based on synaptic plasticity

PLOS ONE | https://doi.org/10.1371/journal.pone.0223451 October 16, 2019 17 / 34

https://doi.org/10.1371/journal.pone.0223451.g011
https://doi.org/10.1371/journal.pone.0223451

current input bit processed by the network is precisely a, the current synaptic weights ws(t)
corresponds to the encoding of the computational state q, and the current synaptic weights

wc1
ðtÞ; . . . ;wck

ðtÞ are the encodings of counter values with corresponding counter states

�c1; . . . ;�ck. Afterwards, the detection module sends suitable activations to the state and counter

modules so as to simulate the next transition dðq; a;�c1; . . . ;�ckÞ ¼ ðq0; o1; . . . ; okÞ of the

machine. Formally, a detection module detects if the activation value of cell posts of the state

module is equal to a certain value v, together with the fact that k signals from cells = 0 or 6¼ 0 of

the k counter modules are correctly received. The module is composed of 4 Boolean cells con-

nected in a feedforward manner, as illustrated in Fig 13. It is connected to the input transmis-
sion module, the state module and the counter modules described above.

The activity of this module, illustrated in Fig 14, can be described as follows. Suppose that

at time step t, cell c1 is spiking and cell posts has an activation value of v (with 0� v� 1).

Then, at time t + 1, both c2 and c3 spike (since they receive signals of intensity 1). At next time

t + 2, two signals of intensities 1

kþ2
are transmitted to c4. Suppose that at this same time step, c4

also receives k signals from the counter modules. Then, c4 receives k + 2 signals of intensities
1

kþ2
, and hence spikes at time t + 3 (case 1 of Fig 14). By contrast, if at time step t, c1 is spiking

and posts has an activation value of v0 > v (resp. v0 < v), then at time t + 1 only c2 (resp. c3)

spikes. Hence, at time t + 2, c4 receives less than k + 2 signals of intensities 1

kþ2
, and thus stays

quiet (cases 3 and 4 of Fig 14). Consequently, the ‘detection cell’ c4 (blue cell of Fig 13) spikes

if and only if posts has an exact activation value of v and c4 receives exactly k signals from its

Fig 12. Example of activity of the counter module. The lower graph is a raster plot displaying the cells’ activities.

Cells push, push, test, pop, test, pop, pop, test are activated at successive time steps 0, 10, 20, 30, 40, 50, 60, 70 (blue

pattern). The upper curve shows the fluctuation of the synaptic weight wc(t), which encodes the change in the counter

value over time. Note that the activations of the push and pop cells correctly increment and decrement the value of

wc(t), respectively. At time 60, when wc(t) = 0 (counter is zero), the pop signal has no more effect on its value.

Moreover, test queries are performed at times 20, 40 and 70 and their answers given by the activities of cells ‘= 0’ and

‘6¼ 0’ (red pattern) at time 24, 44 and 74, respectively. Note that cells ‘= 0’ and ‘6¼ 0’ provide correct answers to whether

the value of wc(t) is 0 or not. Finally, note that whenever wc(t) 6¼ 0, each testing procedure induces a fluctuation of wc(t)
(peaks of the red curve), without finally modifying its initial value.

https://doi.org/10.1371/journal.pone.0223451.g012

Turing complete neural computation based on synaptic plasticity

PLOS ONE | https://doi.org/10.1371/journal.pone.0223451 October 16, 2019 18 / 34

https://doi.org/10.1371/journal.pone.0223451.g012
https://doi.org/10.1371/journal.pone.0223451

afferent connections. A detection module involving weights 1 � v; 1þ v; 1

kþ2
is denoted as

detection_module(v, k).

Assembling the modules. Any given k-counter machine Ck ¼ ðQ;S;C;O; d; 0; FÞ (where

S = {0, 1} and Q = {0, . . ., n − 1}) can be simulated by a recurrent neural network N subjected

to the STDP rules given by Eqs (2) and (3). The network is obtained by a suitable assembling

of the modules described above. The architecture of N is illustrated in Fig 5, and its detailed

construction is given by Algorithm 1. In short, the network N is composed of 1 input encod-

ing module (line 1), 1 input transmission module (line 2), 1 state module (line 3), k counter

modules (lines 4–6) and at most |Q|�| S [{�}| � 2k = 3n2k detection modules (lines 7–11). The

modules are connected together according to the patterns described in lines 12–47. This

makes a total of Oðn2kÞ cells and Oðnk2kÞ synapses, which, since the number of counters k is

Fig 13. Detection module. This module is used to detect if the activation value of posts is equal to v together with the

fact that k signals from the counter modules are correctly received. If these conditions are fulfilled, the ‘detection cell’

c4 spikes, which triggers the simulation of the next transition of the machine. It is composed of 4 Boolean cells c1, c2, c3,

c4 connected in a feedforward way.

https://doi.org/10.1371/journal.pone.0223451.g013

Fig 14. Examples of activity of the detection module. The detection module, composed of the cells c1, c2, c3, c4,

receives activations from the state module via the cell posts, as well as from 2 counter modules via the cells ext1, ext2.

The module detects whether the activation value of posts is equal to v = 0.3 together with the fact that both ext1, ext2
have been activated. In case 1, these conditions are fulfilled, and thus the ‘detection cell’ c4 spikes (bold spike at t = 3).

In all other cases, the required conditions are not fulfilled: either only one external activation is received (ext2 has not

spiked, case 2), or the activation value v of posts satisfies v> 0.3 (thus c3 is not spiking, case 3) or v< 0.3 (thus c2 is not

spiking, case 4). In each case, the ‘detection cell’ c4 does not spike.

https://doi.org/10.1371/journal.pone.0223451.g014

Turing complete neural computation based on synaptic plasticity

PLOS ONE | https://doi.org/10.1371/journal.pone.0223451 October 16, 2019 19 / 34

https://doi.org/10.1371/journal.pone.0223451.g013
https://doi.org/10.1371/journal.pone.0223451.g014
https://doi.org/10.1371/journal.pone.0223451

fixed, corresponds to OðnÞ cells and OðnÞ synapses. A recurrent neural networks obtained via

Algorithm 1 is referred to as an STDP-based RNN.

Algorithm 1 Procedure which takes a k-counter machine as input and builds an STDP-

based RNN that simulates it.
Require: k-counter machine Ck ¼ ðQ;S;C;O; d; 0; FÞ, where Σ = {0, 1} and Q =
{0, . . ., n − 1}

// note: computational states are represented as integers
// ��� INSTANTIATION OF THE MODULES ���

1: IN1 input_encoding_module() // input encoding module
2: IN2 input_transmission_module() // input transmission module
3: ST state_module(n − 1) // state module (where n = |Q|)
4: for all j = 1, . . ., k do
5: C(j) counter_module() // k counter modules
6: end for
7: for all tuple ði; a;�c1; . . . ;�ckÞ 2 Q� S [f�g � Ck do
8: if dði; a;�c1; . . . ;�ckÞ is defined then
9: DETði; a;�c1; . . . ;�ckÞ detection moduleðamin þ i � Z; kÞ // detection modules
10: end if
11: end for

// ��� CONNECTION BETWEEN MODULES ���

12: connect c19 of IN1 to u0 of IN2: weight 1 // input encoding to
input transmission

13: connect c20 of IN1 to u1 of IN2: weight 1
14: connect tic of IN1 to u� of IN2: weight 1
15: for all j = 1, . . ., k do // input transmission to counters
16: connect u0, u1, u� of IN2 to test of C(j): weight 1
17: end for
18: connect d2,0, d2,1, d2,� of IN2 to pres of ST: weight 1 // input

transmission to state
19: for all tuple ði; a;�c1; . . . ;�ckÞ 2 Q� S [f�g � Ck do
20: if dði; a;�c1; . . . ;�ckÞ ¼ ði0; o1; . . . ; okÞ then
21: connect d3,a of IN2 to c1 of DETði; a;�c1; . . . ;�ckÞ: weight 1 // input

transmission to detection
22: connect post of ST to c2 of DETði; a;�c1; . . . ;�ckÞ: weight 1 // state

to detection
23: connect post of ST to c3 of DETði; a;�c1; . . . ;�ckÞ: weight −1
24: if a == � then //detection to input encoding
25: connect c4 of DETði; a;�c1; . . . ;�ckÞ to c15 of IN1: weight −1
26: end if
27: if i0 − i > 0 then // detection to state
28: connect c4 of DETði; a;�c1; . . . ;�ckÞ to c3((n−1)−(i0−i))+1 of ST: weight 1
29: else if i0 − i < 0 then
30: connect c4 of DETði; a;�c1; . . . ;�ckÞ to �c3ððn� 1Þ� ði0 � iÞÞþ1 of ST: weight 1
31: end if
32: for all j = 1, . . ., k do // detection to counters
33: if oj == push then
34: connect c4 of DETði; a;�c1; . . . ;�ckÞ to cell push of C(j): weight 1
35: else if oj == pop then
36: connect c4 of DETði; a;�c1; . . . ;�ckÞ to cell pop of C(j): weight 1
37: end if
38: end for
39: end if
40: for all j = 1, . . ., k do // counters to detection
41: if �cj ¼¼ ? then
42: connect ‘= 0’ of C(j) to c4 of DETði; a;�c1; . . . ;�ckÞ: weight 1

kþ2

43: else if �cj ¼¼ > then

Turing complete neural computation based on synaptic plasticity

PLOS ONE | https://doi.org/10.1371/journal.pone.0223451 October 16, 2019 20 / 34

https://doi.org/10.1371/journal.pone.0223451

44: connect ‘6¼ 0’ of C(j) to c4 of DETði; a;�c1; . . . ;�ckÞ: weight 1

kþ2

45: end if
46: end for
47: end for

Turing completeness

We now prove that any k-counter machine is correctly simulated by its corresponding STDP-

based RNN given by Algorithm 1. Since 2-counter machines are Turing complete, then so is

the class of STDP-based RNNs. Towards this purpose, the following definitions need to be

introduced.

Let N be an STDP-based RNN. The input cells of N are the cells in0, in1, end, tic of the

input encoding module (cf. Fig 6, four blue cells of the first layer). Thus, inputs of N are vec-

tors in B4 whose successive components represent the spiking configurations of cells in0, in1,

end, and tic, respectively. In order to describe the input streams of N , we consider the follow-

ing vectors of B4:

0≔

1

0

0

0

0

B
B
B
B
@

1

C
C
C
C
A
; 1≔

0

1

0

0

0

B
B
B
B
@

1

C
C
C
C
A
; end≔

0

0

1

0

0

B
B
B
B
@

1

C
C
C
C
A
; tici≔

0

0

0

1

0

B
B
B
B
@

1

C
C
C
C
A
; for all i � 0 and =0≔

0

0

0

0

0

B
B
B
B
@

1

C
C
C
C
A

According to these notations, the input stream 0011end=0=0tic corresponds to the following

sequence of vectors provided at successive time steps

1

0

0

0

0

B
B
B
B
@

1

C
C
C
C
A

1

0

0

0

0

B
B
B
B
@

1

C
C
C
C
A

0

1

0

0

0

B
B
B
B
@

1

C
C
C
C
A

0

1

0

0

0

B
B
B
B
@

1

C
C
C
C
A

0

0

1

0

0

B
B
B
B
@

1

C
C
C
C
A

0

0

0

0

0

B
B
B
B
@

1

C
C
C
C
A

0

0

0

0

0

B
B
B
B
@

1

C
C
C
C
A

0

0

0

1

0

B
B
B
B
@

1

C
C
C
C
A

i.e., to the successive spikes of cells in0, in0, in1, in1, end, followed by two times steps during

which all cells are quiet, followed by a last spike of the cell tic.
For any binary input w = a0 � � � ap 2 S�, let uw 2 ðB

4Þ
�

be the corresponding input stream

of N defined by

uw ¼ a0 � � � apend =0 � � � =0|fflffl{zfflffl}
K0pþ1

tic0 =0 � � � =0|fflffl{zfflffl}
K

tic1 =0 � � � =0|fflffl{zfflffl}
K

tic2 � � �

where ai = 0 if ai = 0 and ai = 1 if a1 = 0, for i = 0, . . ., p. In other words, the input stream uw
consists of successive spike from cells in0 and in1 (inputs a0 � � � ap), followed by one spike from

cell end (input end), followed by K 0pþ1
time steps during which nothing happens (inputs =0� � �=0),

followed by successive spikes from cell tic, interspersed by constant intervals of K time steps

during which nothing happens (input blocks tici=0 � � � =0). The value of K 0pþ1
is chosen such that,

at time step p + 2 + K0, the p + 1 successive bits of uw are correctly stored into cell c14 of the

input encoding module. The value of K is chosen such that, after each spike of the tic cell, the

updating of the state and counter modules can be achieved within K time steps. Taking K 0pþ1
�

3ðpþ 1Þ þ 4 and K� 17 + 3(n − 1) (where n = |Q|) satisfies these requirements. Note that

K 0pþ1
depends on the input length, while K is constant (for a given counter machine). An input

stream of this form is depicted by the 4 bottom lines of Fig 15 (in this case K 0pþ1
¼ 23 and

Turing complete neural computation based on synaptic plasticity

PLOS ONE | https://doi.org/10.1371/journal.pone.0223451 October 16, 2019 21 / 34

https://doi.org/10.1371/journal.pone.0223451

K = 29). Besides, for each i� 0, let ti be the time step at which tici occurs. For instance, in Fig

15, one has t0 = 30, t1 = 60, t2 = 90, t3 = 120, Let also

ws;i≔wsðti � 1Þ

wc1;i
≔wc1

ðti � 1Þ; . . . ;wck;i
≔wck

ðti � 1Þ

be the synaptic weights wsðtÞ;wc1
ðtÞ; . . . ;wck

ðtÞ of the state and counter modules at time step

ti − 1 (i.e., 1 time step before tici has occurred), with the assumption that

ðws;0;wc1 ;0
; . . . ;wck;0

Þ ¼ ðamin; 0; . . . ; 0Þ:

For example, in Fig 15, the values of wsðtÞ;wc1
ðtÞ;wc2

ðtÞ over time are represented by the

upper red and orange curves (pay attention to the different left-hand and right-hand scales

associated to these curves): one has ðws;0;wc1 ;0
;wc2 ;0

Þ ¼ ð0:1; 0; 0Þ; ðws;1;wc1 ;1
;wc2 ;1

Þ ¼

ð0:3; 0; 0Þ; ðws;2;wc1 ;2
;wc2 ;2

Þ ¼ ð0:3; 0:5; 0:5Þ; ðws;3;wc1 ;3
;wc2 ;3

Þ ¼ ð0:3; 0:75; 0:75Þ, etc. Fur-

thermore, let a00i 2 S [f�g [f=0g be defined by

a00i ¼

a if cell c4 of one and only one detection module DETðq; a;�c1; . . . ;�ckÞ

spikes between ti and tiþ1; for some q 2 Q; a 2 S [f�g; �c1; . . . ;�ck 2 C
=0 otherwise

8
><

>:

In other words, a00i is the input symbol (possibly �) processed by N between ti and ti+1. For

instance, in Fig 15, the successive input bits processed by the network are displayed by the

spiking patterns of the cells u�, u0, u1: one has a00
0
¼ � (only u� spikes between t0 and t1), a00

1
¼ 0

Fig 15. Simulation 1. Computation of the STDP-based RNN simulating the 2-counter machine of Fig 4 over input

001100. The lower graph is a raster plot displaying the spiking patterns of some of the cells of the network belonging to

the input encoding module (cells in0, in1, end, tic), the input transmission module (cells u0, u1, u�), the state module

(cells press, posts) and the two counter modules (cells push, pop, test, preck , postck , = 0, 6¼ 0, for k = 1,2). The upper graph

displays the evolution of the synaptic weights ws(t) (red curve) and wc1
ðtÞ;wc2

ðtÞ (orange curves) over time. The red

curve is displayed relatively to the left-hand scale (ranging from 0 to 1). The two orange curves are are displayed

relatively to the upper and lower right-hand scales, respectively (both ranging from 0 to 1). The evolution of ws(t) and

wc1
ðtÞ;wc2

ðtÞ (red and orange curves) represent the encodings of the successive states and counter values of the

2-counter machine, respectively.

https://doi.org/10.1371/journal.pone.0223451.g015

Turing complete neural computation based on synaptic plasticity

PLOS ONE | https://doi.org/10.1371/journal.pone.0223451 October 16, 2019 22 / 34

https://doi.org/10.1371/journal.pone.0223451.g015
https://doi.org/10.1371/journal.pone.0223451

(both u� and then u0 spike between t1 and t2, but only u0 leads to the activation of a detection

module, even if this is not represented), a00
2
¼ 0 (u0 spikes after u� between t2 and t3), a00

3
¼ 1

(u1 spikes after u� between t3 and t4), etc.

Now, for any input stream uw, the computation of N over uw is the sequence

N ðuwÞ ¼ ððws;i; a00i ;wc1;i
; . . . ;wck;i

ÞÞ
l2
i¼0
; l2 2 N [f1g ð5Þ

where l2 ¼ minfti : a00i ¼ =0; i � 0g. In other words, the computation of N over uw is the

sequence of successive values of wsðtÞ; a00i ;wc1
ðtÞ; . . . ;wck

ðtÞ, which are supposed to encode the

successive states, input symbols and counter values of the machine to be simulated,

respectively.

According to these considerations, we say that Ck is simulated in real time byN , or equiva-

lently that N simulates Ck in real time, if and only if, for any input w 2 S� with corresponding

input stream uw 2 ðB
4Þ
�
, the computations of Ck over w (Eq (4)) and of N over uw (Eq (5))

CkðwÞ ¼ ððni; a0i; c1;i; . . . ; ck;iÞÞ
l1
i¼0

N ðuwÞ ¼ ððws;i; a00i ;wc1;i
; . . . ;wck;i

ÞÞ
l2
i¼0

satisfy the following conditions:

ws;i ¼ amin þ ni � Z state condition ð6Þ

a00i ¼ a0i symbol condition ð7Þ

wcj;i
¼ rcj;i for all j ¼ 1; . . . ; k counter values condition ð8Þ

for all i = 0, . . ., l1, which implicitly implies that l2� l1 (recall that r0 ≔ 0 and rn≔
Pn

i¼1
1

2i
, for

all n> 0). In other words, Ck is simulated by N iff, on every input, the computations of Ck is

perfectly reflected by that of N : the sequence of input symbols processed by Ck and N coincide

(Condition (7)), and the successive computational states and counter values of Ck are properly

encoded into the successive synaptic weights of wsðtÞ;wc1
ðtÞ; . . . ;wck

ðtÞ of N , respectively

(Conditions (6) and (8)). According to these considerations, each state ni 2 N and counter

value cj;i 2 N of Ck is encoded by the synaptic value wsðti � 1Þ ¼ amin þ ni � Z 2 Q and

wcj
ðti � 1Þ ¼ rcj;i 2 Q, for j = 1, . . ., k, respectively. The real time aspect of the simulation is

ensured by the fact that the successive time steps (ti)i�0 involved in the computation N ðwÞ are

separated by a constant number of time steps K> 0. This means that the transitions of Ck are

simulated by N in fixed amount of time.

We now show that, in this precise sense, any k-counter machine is correctly simulated its

corresponding STDP-based recurrent neural network.

Theorem 1. Let Ck be a k-counter machine andN be the STDP-based RNN given by Algo-
rithm 1 applied on Ck. Then, Ck is simulated in real time byN .

Proof. Let w = a0 � � � ap 2 S� be some input and uw 2 ðB
4
Þ
�

be its corresponding input

stream. Consider the two computations of Ck on w (Eq (4)) and of N on uw (Eq (5)), respec-

tively:

CkðwÞ ¼ ððni; a0i; c1;i; . . . ; ck;iÞÞ
l1
i¼0

N ðuwÞ ¼ ððws;i; a00i ;wc1;i
; . . . ;wck;i

ÞÞ
l2
i¼0
:

Turing complete neural computation based on synaptic plasticity

PLOS ONE | https://doi.org/10.1371/journal.pone.0223451 October 16, 2019 23 / 34

https://doi.org/10.1371/journal.pone.0223451

We prove by induction on i that CkðwÞ and N ðuwÞ satisfy Conditions (6)–(8), for all i = 0, . . .,

l1.

By definition, the first elements of CkðwÞ and N ðuwÞ are

ðn0; a00; c1;0; . . . ; ck;0Þ ¼ ð0; a0
0
; 0; . . . ; 0Þ

ðws;0; a000;wc1;0
; . . . ;wck;0

Þ ¼ ðamin; a000; 0; . . . ; 0Þ:

Hence, Conditions (6) and (8) are satisfied for i = 0, i.e.,

ws;0 ¼ amin þ n0 � Z and wcj;0
¼ rcj;0 for all j ¼ 1; � � � ; k: ð9Þ

We now prove Condition (7) for i = 0. Towards this purpose, the following observations are

needed. By construction and according to the value of Kp+1, at time t0 − 1, cell c14 of the input

encoding module IN1 holds the encoding of the whole input w = a0 � � � ap (the latter being con-

sidered as a stack). The top element of this stack is a0. Besides, according to Relations (9) and

Algorithm 1 (lines 22–23 and 40–46), only the detection modules DETðn0; a;�c1;0; . . . ;�ck;0Þ,
where a 2 S [{�}, are susceptible have their cell c4 activated between t0 and t1 (indeed, only

these modules are capable of “detecting” the current synaptic value amin + n0 � η and counters

states c1;0; . . . ; ck;0 involved in Relations (9)).

Now, consider the symbol a0
0
2 S [f�g. Then either a0

0
2 S or a0

0
¼ �. As a first case,

suppose that a0
0
2 S. Since a0

0
6¼ � and a0

0
is the first symbol processed by Ck during its

computation over input w = a0 � � � ap (cf. Eq (4)), one necessarily has a0
0
¼ a0. Thus,

dðn0; a00;�c1;0; . . . ;�ck;0Þ ¼ dðn0; a0;�c1;0; . . . ;�ck;0Þ, and the determinism of Ck ensures that

dðn0; �;�c1;0; . . . ;�ck;0Þ is undefined. According to Algorithm 1 (lines 7–11), the module

DETðn0; a0;�c1;0; . . . ;�ck;0Þ is instanciated, whereas DETðn0; �;�c1;0; . . . ;�ck;0Þ is not. Hence, the

dynamics of N between t0 and t1 goes as follows. At time t0, the cell tic of IN1 sends a signal to

u� of IN2 (Algorithm 1, line 14) which propagates to the detection modules associated to sym-

bol � (Algorithm 1, line 21). Since the module DETðn0; �;�c1;0; . . . ;�ck;0Þ does not exist, it can

certainly not be activated, and thus, the cell c15 of IN1 will not be inhibited in return (Algo-

rithm 1, line 24–26). The spike of c15 will then trigger the sub-circuit of IN1 that pops the top

element of the stack currently encoded in c14, namely, the symbol a0. This triggers the activa-

tion of c19 or c20 of IN1 depending on whether a0 = 0 or a0 = 1. This activity then propagates to

cells ua0
and next d3;a0

of IN2 (Algorithm 1, lines 12–13). It propagates further to the detection

modules of the form DET(�, a0, �, . . ., �), and in particular to DETðn0; a0;�c1;0; . . . ;�ck;0Þ (Algo-

rithm 1, line 21). According to Relations (9), the cell c4 of DETðn0; a0;�c1;0; . . . ;�ck;0Þ, and of this

module only, will be activated, since it is the only module of this form capable of detecting the

current weight ws(t) = amin + η � n0 as well as the current counter states �c1;0; . . . ;�ck;0 (Algorithm

1, lines 22–23 and 40–46). This amounts to saying that the symbol a00
0

processed by N between

t0 and t1 is equal to a0. Therefore, a00
0
¼ a0 ¼ a0

0
. This shows that in this case, Condition (7)

holds for i = 0.

As a second case, suppose that a0
0
¼ �. It follows that dðn0; a00;�c1;0; . . . ;�ck;0Þ ¼

dðn0; �;�c1;0; . . . ;�ck;0Þ, and by Algorithm 1 (lines 7–11), the module DETðn0; �;�c1;0; . . . ;�ck;0Þ is

instanciated. Consequently, the dynamics of N between t0 and t1 goes as follows. At time t0,

the cell tic of IN1 sends a signal to u� of IN2 (Algorithm 1, line 14) which propagates to the

module DETðn0; �;�c1;0; . . . ;�ck;0Þ (Algorithm 1, line 21). By Relations (9), the cell c4 of this

detection module, and of only this one, will be activated (Algorithm 1, lines 22–23 and 40–46).

This amounts to saying that a00
0
¼ � ¼ a0

0
. Therefore, in this case also, Condition (7) holds for

i = 0.

Turing complete neural computation based on synaptic plasticity

PLOS ONE | https://doi.org/10.1371/journal.pone.0223451 October 16, 2019 24 / 34

https://doi.org/10.1371/journal.pone.0223451

For the induction step, let m< l1, and suppose that Conditions (6)–(8) are satisfied for all

i�m. Let also o1,m+1, . . ., ok,m+1 2 O be the counter operations such that

dðnm; a0m;�c1;m; . . . ;�ck;mÞ ¼ ðnmþ1; o1;mþ1; . . . ; ok;mþ1Þ: ð10Þ

By definition of the sequence CkðwÞ, a0m 2 S [f�g and the counter operations satisfy

c1;mþ1 ¼ o1;mþ1ðc1;mÞ; . . . ; ck;mþ1 ¼ ok;mþ1ðck;mÞ: ð11Þ

By the induction hypothesis (Condition (7)), a00m ¼ a0m. The definition of a00m ensures that the

cell c4 of one and only one detection module DETðq; a00m;�c1; . . . ;�ckÞ is activated between time

steps tm and tm+1, for some q 2 Q and some �c1; . . . ;�ck 2 C. But by the induction hypotheses

(Conditions (6) and (8)), at time step tm − 1, one has

ws;m ¼ amin þ nm � Z ð12Þ

wcj;m
¼ rcj;m ; for all j ¼ 1; . . . ; k: ð13Þ

Hence, Relations (12) and (13) and Algorithm 1 (lines 22–23 and 40–46) ensure that the mod-

ule DETðnm; a00m;�c1;m; . . . ;�ck;mÞ, and only this one, has its cell c4 activated between time steps tm
and tm+1. By Relation (10), the cell c4 of this detection module is connected to cell

c3ððn� 1Þ� ðnmþ1 � nmÞÞþ1 if nmþ1 � nm > 0 or

�c3ððn� 1Þ� ðnmþ1 � nmÞÞþ1 if nmþ1 � nm < 0

of the state module ST (Algorithm 1, lines 27–31). Hence, the activation of this detection mod-

ule between tm and tm+1 induces subsequent spiking patterns of the state module which, by

construction, increments (if nm+1 − nm> 0) or decrements (if nm+1 − nm< 0) the synaptic

weight ws(t) by |nm+1 − nm| � η, and hence, changes it from its current value amin + nm � η (cf.

Eq (12)) to the new value amin + nm � η + (nm+1 − nm) � η = amin + nm+1 � η. Note that each spik-

ing pattern takes 3 time steps, and hence, the updating of ws(t) takes at most 3(n − 1) time

steps, where n is the number of states of Ck (the longest update being when |nm+1 − nm| = n − 1,

which takes 3(n − 1) time steps). Therefore, at time tm+1 − 1, one has

ws;mþ1 ¼ amin þ nmþ1 � Z:

This shows that Condition (6) is satisfied for i = m + 1.

Similarly, by Relation (10), the cell c4 of the module DETðnm; a00m;�c1;m; . . . ;�ck;mÞ is con-

nected to cells push or pop of the counter module C(j) depending on whether oj,m+1 == push
or oj,m+1 == pop, respectively, for j = 1, . . ., k (Algorithm 1, lines 32–38). Hence, the activation

of the detection module DETðnm; a00m;�c1;m; . . . ;�ck;mÞ between tm and tm+1 induces subsequent

activations of the counter modules which, by construction, change the synaptic weights wcj
ðtÞ

from their current value rcj;m to roj;mþ1ðcj;mÞ
, for j = 1, . . ., k. Note that the updating of each wcj

ðtÞ
takes only 3 time steps. Consequently, at time tm+1 − 1, one has

wcj;mþ1
¼ roj;mþ1ðcj;mÞ

; for j ¼ 1; � � � ; k

By Relation (11), these equations can be rewritten as

wcj;mþ1
¼ rcj;mþ1

; for j ¼ 1; � � � ; k:

This shows that Condition (8) is satisfied for i = m + 1.

Turing complete neural computation based on synaptic plasticity

PLOS ONE | https://doi.org/10.1371/journal.pone.0223451 October 16, 2019 25 / 34

https://doi.org/10.1371/journal.pone.0223451

We now show that Condition (7) holds for i = m + 1. By the induction hypothesis, one has

ða0iÞ
m
i¼0
¼ ða00i Þ

m
i¼0

. We must prove that a0mþ1
¼ a00mþ1

. By definition, elements from ða0iÞ
m
i¼0

and

ða00i Þ
m
i¼0

belong to S [{�}. Let ða0ijÞ
p1

j¼0
(with p1�m) and ða00ijÞ

p2

j¼0
(with p2�m) be the subse-

quences formed by the non-empty symbols of ða0iÞ
m
i¼0

and ða00i Þ
m
i¼0

, respectively. The induction

hypothesis ensures that p1 = p2 = p0 and

ða0ijÞ
p0

j¼0
¼ ða00ijÞ

p0

j¼0
: ð14Þ

Moreover, by definition again, ða0iÞ
m
i¼0

is the sequence of empty and non-empty symbols pro-

cessed by Ck during the m + 1 first steps of its computation over input w = a0� � �ap (cf. Eq (4)).

Hence, the subsequence of its non-empty symbols ða0ijÞ
p0

j¼0
corresponds precisely to the p0 + 1

successive letters of w, i.e.,

ða0ijÞ
p0

j¼0
¼ ðaiÞ

p0

i¼0
: ð15Þ

The fact that � symbols of ða0iÞ
m
i¼0

vanish within concatenation together with Relation (15) yield

the following equalities

a0
0
� � � a0m ¼ a0i0 � � � a

0
ip0
¼ a0 � � � ap0 : ð16Þ

Also, Relations (14) and (15) directly imply

ða00ijÞ
p0

j¼0
¼ ðaiÞ

p0

i¼0
: ð17Þ

Besides, as already mentioned, at time t0 − 1, cell c14 of module IN1 holds the encoding of

input w = a0� � �ap (considered as a stack). Between times t0 and tm+1 − 1, the elements of

ða00i Þ
m
i¼0

are successively processed by N (cf. Eq (5)). During this time interval, the successive

non-empty symbols of ða00i Þ
m
i¼0

, i.e., the elements of ða00ijÞ
p0

j¼0
¼ ðaiÞ

p0

i¼0
(cf. Relation (17)), are suc-

cessively popped from w = a0� � �ap and the remaining string stored in cell c14. Consequently, at

time tm+1 − 1, cell c14 holds the encoding of the remaining string ap0+1� � �ap, and thus, its top

element is ap0+1.

From this point onwards, the proof of Relation (7) for the case i = 0 can be adapted to

the present situation. In short, consider a0mþ1
2 S [f�g. Then either a0mþ1

2 S or a0mþ1
¼ �.

Note that in case a0mþ1
2 S, Relation (16) ensures that a0mþ1

¼ ap0þ1. Taking this fact into

account and replacing variables a0; a00; a
00
0
; n0;�c1;0; . . . ;�ck;0 of the previous argument by

amþ1; a0mþ1
; a00mþ1

; nmþ1;�c1;mþ1; . . . ;�ck;mþ1, respectively, leads to a00mþ1
¼ a0mþ1

. Therefore, Condi-

tion (7) holds for i = m + 1.

Finally, we show that STDP-based RNNs are Turing complete. Let N be an STDP-based

RNN. Let also acc; rej 2 Q be two specific values for ws(t). For any binary input w = a0� � �ap 2
S�, we say that w is accepted (resp. rejected) by N if the sequence N ðuwÞ is finite, and its last

element ðws;l2
; a00l2 ;wc1;l2

; . . . ;wck;l2
Þ satisfies a00l2 ¼ � and ws;l2

¼ acc (resp. ws;l2
¼ rej). The lan-

guage recognized byN , denoted by LðN Þ, is the set of inputs accepted by N . A language L�
S� is recognizable by some STDP-based RNN if there exists some STDP-based RNN N such

that LðN Þ ¼ L.

Corollary 1. Let L� S� be some language. The language L is recognizable by some Turing
machine if and only if L is recognizable by some STDP-based RNN.

Proof. Suppose that L is recognizable by some STDP-based RNN N . The construction

described in Algorithm 1 ensures that N can be simulated by some Turing machine M.

Turing complete neural computation based on synaptic plasticity

PLOS ONE | https://doi.org/10.1371/journal.pone.0223451 October 16, 2019 26 / 34

https://doi.org/10.1371/journal.pone.0223451

Hence, L is recognizable by some Turing machine M. Conversely, suppose that L is recogniz-

able by some Turing machine M. Then L is also recognizable by some 2-counter machine C2

[57]. By Theorem 1, L is recognizable by some STDP-based RNN N .

Simulations

We now illustrate the correctness of our construction by means of computer simulations.

First, let us recall that the 2-counter machine of Fig 4 recognizes the recursively enumerable

(but non context-free and non regular) language {0n1n0n: n> 0}, i.e., the sequences of bits

beginning with a strictly positive number of 0’s followed by the same number of 1’s and fol-

lowed again by the same number of 0’s. For instance, inputs w1 = 001100 and w2 = 0011101

are respectively accepted and rejected by the machine. Based on the previous considerations,

we implemented an STDP-based RNN simulating this 2-counter machine. The network con-

tains 390 cells connected together according to the construction given by Algorithm 1. We

also set amin = η = 0.1 in the STDP rule of Eq (2). Two computations of this network over an

accepting and a rejecting input stream are illustrated in Figs 15 and 16. These simulations illus-

trate the correctness of the construction described in Algorithm 1.

More specifically, the computation of the network over the input stream

uw1
¼ 001100 end =0 � � � =0

|fflffl{zfflffl}
K0

6
¼23

tic0
=0 � � � =0
|fflffl{zfflffl}
K¼29

tic1
=0 � � � =0
|fflffl{zfflffl}
K¼29

tic2 � � �

which corresponds to the encoding of w1 = 001100, is displayed in Fig 15. In this case, taking

K = 17 + 3(5 − 1) = 29 suffices for the correctness of the simulation (since the largest possible

state update, in terms of the states’ indices, is a change from q5 to q1). The lower raster plot dis-

plays the spiking activities of some of the cells of the network belonging to the input encoding

module (in0, in1, end, tic), the input transmission module (u0, u1, u�), the state module (press,
posts) and the two counter modules (push; pop; test; preck ; postck ;¼ 0; 6¼ 0, for k = 1, 2).

Fig 16. Simulation 2. Computation of the STDP-based RNN simulating the 2-counter machine of Fig 4 over input

0011101.

https://doi.org/10.1371/journal.pone.0223451.g016

Turing complete neural computation based on synaptic plasticity

PLOS ONE | https://doi.org/10.1371/journal.pone.0223451 October 16, 2019 27 / 34

https://doi.org/10.1371/journal.pone.0223451.g016
https://doi.org/10.1371/journal.pone.0223451

From time step t = 0 to t = 6, the encoding of the input stream 001100 is transmitted to the

network via activations of cells in0, in1 and end (blue pattern). Between t = 6 and t = 30, the

input pattern is encoded into activation values of sigmoid cells in the input encoding module,

as illustrated in Fig 7. From t = 30 onwards, the tic cell is activated every 30 time steps in order

to trigger the successive computational steps of the network. Each spike of the tic cell induces a

subsequent spike of u� one time step later. At this moment, the network tries to simulate an

�-transition of the counter machine. If such a transition is possible, the network performs it:

this is the case at time steps t = 31, 181. Otherwise, the input encoding module retrieves the

next input bit to be processed, and activates the corresponding cell u0 or u1 (blue pattern): this

is the case at time steps t = 71, 101, 131, 161, 221, 251. In Fig 15 (cells u0, u1, u�), we can see

that on this input stream, the network processes the sequence of input symbols �0011�00.

Every time the network receives an input symbol (�, 0 or 1), it simulates one transition of

the counter machine associated to this input. The successive computational states of the

machine are encoded into the successive values taken by ws(t) (cf. Fig 15, red curve in the

upper graph). The changes in these synaptic weights are induced by the spiking patterns of

cells pres and posts (red patterns). The successive counter states of the machine, i.e., ‘zero’ or

‘non-zero’, are given by the activations of cells ‘= 0’ or ‘6¼0’ of the counter modules, respectively

(black patterns). The consecutive counter operations are given by the activations of cells push,

pop and test (black patterns). The successive counter values of the machine are encoded into

the successive values taken by wc1
ðtÞ and wc2

ðtÞ (orange curves of the upper graph). The

changes in these synaptic weights are induced by the spiking pattern of cells precj and postcj , for

j = 1, 2 (orange patterns). The pics along these curves are caused by the testing procedures

which increment and decrement back the values of the synapses without finally modifying

their current values (cf. description of the counter module).

The computation of the network over input stream uw1
can be described by the successive

synaptic weights ðwsðtÞ;wc1
ðtÞ;wc2

ðtÞÞ at time steps t = 30k, for 1� k� 10. In this case, one

has

wsðtÞ

wc1
ðtÞ

wc2
ðtÞ

0

B
B
@

1

C
C
A ¼

0:1

0:0

0:0

0

B
@

1

C
A

0:3

0:0

0:0

0

B
@

1

C
A

0:3

0:5

0:5

0

B
@

1

C
A

0:3

0:75

0:75

0

B
@

1

C
A

0:6

0:75

0:5

0

B
@

1

C
A

0:6

0:75

0:0

0

B
@

1

C
A

0:4

0:75

0:0

0

B
@

1

C
A

0:4

0:5

0:0

0

B
@

1

C
A

0:4

0:0

0:0

0

B
@

1

C
A

0:5

0:0

0:0

0

B
@

1

C
A:

Recall that state n and counter value x of Ck are encoded by the synaptic weights ws(t) = amin +

n � η and wc(t) = rx in N , respectively. Accordingly, the previous values correspond to the

encodings of the following states and counter values (q, c1, c2) of the counter machine:

q

c1

c2

0

B
@

1

C
A ¼

0

0

0

0

B
@

1

C
A

2

0

0

0

B
@

1

C
A

2

1

1

0

B
@

1

C
A

2

2

2

0

B
@

1

C
A

5

2

1

0

B
@

1

C
A

5

2

0

0

B
@

1

C
A

3

2

0

0

B
@

1

C
A

3

1

0

0

B
@

1

C
A

3

0

0

0

B
@

1

C
A

4

0

0

0

B
@

1

C
A:

These are the correct computational states and counter values encountered by the machine

along the computation of input w1 = 001100 (cf. Fig 4). Therefore, the network simulates the

counter machine correctly. The fact that the computations of the machine and the network ter-

minate in state 4 and with ws(t) = 0.5 = 0.1 + 4 � η, respectively, means that inputs w1 and uw1

are accepted by both systems.

As another example, the computation of the network over the input stream

uw2
¼ 0011101end =0 � � � =0

|fflffl{zfflffl}
23

tic0
=0 � � � =0
|fflffl{zfflffl}

29

tic1
=0 � � � =0
|fflffl{zfflffl}

29

tic2 � � �

Turing complete neural computation based on synaptic plasticity

PLOS ONE | https://doi.org/10.1371/journal.pone.0223451 October 16, 2019 28 / 34

https://doi.org/10.1371/journal.pone.0223451

which corresponds to the encoding of w2 = 0011101, is displayed in Fig 16 (cells u0, u1, u�). We

see that on this input stream, the network processes the sequence of input symbols �0011�101.

The successive synaptic weights ðwsðtÞ;wc1
ðtÞ;wc2

ðtÞÞ at time steps t = 30k, for 1� k� 10 are

wsðtÞ

wc1
ðtÞ

wc2
ðtÞ

0

B
B
@

1

C
C
A ¼

0:1

0:0

0:0

0

B
@

1

C
A

0:3

0:0

0:0

0

B
@

1

C
A

0:3

0:5

0:5

0

B
@

1

C
A

0:3

0:75

0:75

0

B
@

1

C
A

0:6

0:75

0:5

0

B
@

1

C
A

0:6

0:75

0:0

0

B
@

1

C
A

0:4

0:75

0:0

0

B
@

1

C
A

0:2

0:75

0:0

0

B
@

1

C
A

0:2

0:75

0:0

0

B
@

1

C
A

0:2

0:75

0:0

0

B
@

1

C
A:

These values correspond to the encodings of the following states and counter values (q, c1, c2)

of the counter machine:

q

c1

c2

0

B
@

1

C
A ¼

0

0

0

0

B
@

1

C
A

2

0

0

0

B
@

1

C
A

2

1

1

0

B
@

1

C
A

2

2

2

0

B
@

1

C
A

5

2

1

0

B
@

1

C
A

5

2

0

0

B
@

1

C
A

3

2

0

0

B
@

1

C
A

1

2

0

0

B
@

1

C
A

1

2

0

0

B
@

1

C
A

1

2

0

0

B
@

1

C
A:

These are the correct computational states and counter values encountered by the machine

working over input w2 = 0011101 (cf. Fig 4). Therefore, the network simulates the counter

machine correctly. The fact that the computations of the machine and the network terminate

in state 1 and with ws(t) = 0.2 = 0.1 + 1 � η, respectively, means that inputs w1 and uw1
are

rejected by both systems.

Discussion

We proposed a novel Turing complete paradigm of neural computation where the essential

information is encoded into discrete synaptic levels rather than into spiking configurations,

activation values or (attractor) dynamics of neurons. More specifically, we showed that any
2-counter machine—and thus any Turing machine—can be simulated by a recurrent neural

network subjected to two kinds of spike-timing-dependent plasticity (STDP) mechanisms.

The finitely many computational states and infinitely many counter values of the machine are

encoded into finitely and infinitely many synaptic levels, respectively. The transitions between

states and counter values are achieved via the two STDP rules. In short, the network operates

as follows. First, the input stream is encoded and stored into the activation value of a specific

analog neuron. Then, every time a tic input signal is received, the network tries to simulate an

�-transition of the machine. If such a transition is possible, the network simulates it. Otherwise,

the network retrieves from its memory the next input bit to be processed, and simulates a regu-

lar transition associated with this input. These results have been illustrated by means of com-

puter simulations. An STDP-based recurrent neural network simulating a specific 2-counter

machine has been implemented and its dynamics analyzed.

We emphasize once again that the possibility to simulate �-transitions is (unfortunately)

necessary to the achievement of Turing completeness. Indeed, it is well-known that the class

of k-counter machines that do not make use of �-transitions is not Turing complete, for any

k> 0. For instance, the language L = {w#w: w 2 {0, 1}�} (the strings of bits separated by a

symbol # whose prefix and suffix are the same), is recursively enumerable, but cannot be rec-

ognized by a k-counter machine without �-transitions. The input encoding module, as intri-

cate as it is, ensures the implementation of this feature. It encodes and stores the incoming

input stream so as to be able to subsequently intersperse the successive regular transitions

(associated to regular input symbols) with �-transitions (associated to � symbols). By contrast,

a k-counter machine without �-transitions could be simulated by an STDP-based neural net-

work working in an online fashion. The successive input symbols would be processed as they

Turing complete neural computation based on synaptic plasticity

PLOS ONE | https://doi.org/10.1371/journal.pone.0223451 October 16, 2019 29 / 34

https://doi.org/10.1371/journal.pone.0223451

arrive, and a regular transition be simulated for each successive symbol. An STDP-based neu-

ral net (as described in Fig 5) without input encoding module could simulate a k-counter

machine without �-transitions. One would just need to add sufficiently many delay layers

to its input transmission module in order to have enough time to emulate each regular

transition.

In the present context, the STDP-based RNNs are capable of simulating Turing machines

working in the accepting mode (i.e., machines that provide accepting or rejecting decisions of

their inputs by halting in an accepting or a rejecting state, respectively). But it would be possi-

ble to adapt the construction to simulate Turing machines working also in the generative mode
(i.e., machines that write the successive words of a language on their output tape, in an enu-

merative way). To this end, we would need to simulate the program and work tape of M by an

STDP-based RNN N (as described in Theorem 1), and the output tape of M by an additional

neural circuit N out plugged to N . Broadly speaking, the simulation process could be achieved

as follows:

• Every non-output move of M is simulated by the STDP-based RNN N in the usual way (cf.

Theorem 1).

• Every time M is generating a new word w = a1� � �an on its output tape, use the circuit N out

to build step by step the encoding �rw ¼
Pn

i¼1

2aiþ1

4i
2 ½0; 1� of w and store this value in a desig-

nated neuron c (as described in the paragraph “Input encoding module”).

• When M has finished generating w, use the circuit N out to transfer the value �rw of c to

another neuron c0, to set the activation value of c back to 0, and to output the successive bits

of w by popping the the stack �rw stored in c0 (again, as described in the paragraph “Input

encoding module”).

In this way, the STDP-based RNN N plugged to the circuit N out could work as a language

generator: it outputs bit by bit the successive words of the language L generated by M. The

implementation of the circuit N out is along the lines of what is described in the paragraph

“input encoding module”.

Concerning the complexity issue, our model uses OðnÞ neurons and OðnÞ synapses to sim-

ulate a counter machine with n states. Moreover, the simulation works in real-time, since

every computational step of the counter machine can be simulated in a fixed amount of 17 + 3

(n − 1) time steps (17 time steps to transmit the next input bit up to the end of the detection

modules, and at most 3(n − 1) time steps to perform the state and counter updates). In the con-

text of rational-weighted sigmoidal neural networks, the seminal result from Siegelmann and

Sontag uses 886 Boolean and analog neurons to simulate a universal Turing machine [4].

Recent results show that Turing completeness can be achieved with a minimum of 3 analog

neurons only, the other ones being Boolean [58]. As for spiking neural P systems, Turing uni-

versality can be achieved with 3 or 4 neurons only, but this comes at the price of exponential

time and space overheads (see [59], Table 1). In our case, the complexity of Turing universality

is expected to be investigated in detail in a future work.

Regarding synaptic-based computation, a somehow related approach has already been pur-

sued in the P system framework with the consideration of spiking neural P systems with rules
on synapses [60]. In this case, synapses are considered as computational units triggering

exchanges of spikes between neurons. The proposed model is shown to be Turing universal. It

is claimed that “placing the spiking and forgetting rules on synapses proves to be a powerful

feature, both simpler proofs and smaller universal systems are obtained in comparison with

the case when the rules are placed in the neurons” [60]. In this context however, the

Turing complete neural computation based on synaptic plasticity

PLOS ONE | https://doi.org/10.1371/journal.pone.0223451 October 16, 2019 30 / 34

https://doi.org/10.1371/journal.pone.0223451

information remains encoded into the number of spikes hold by the neurons, referred to as

the “configuration” of the system. By contrast, in our framework, the essential information—

the computational states and counter values—is encoded into discrete synaptic levels, and

their updates achieved via synaptic plasticity rules.

As already mentioned, it has been argued that in biological neural networks “synapses

change their strength by jumping between discrete mechanistic states rather than by simply

moving up and down in a continuum of efficacy” [56]. These considerations represent “a

new paradigm for understanding the mechanistic underpinnings of synaptic plasticity, and

perhaps also the roles of such plasticity in higher brain functions” [56]. In addition, “much

work remains to be done to define and understand the mechanisms and roles these states

play” [56]. In our framework, the computational states and counter values of the machine are

encoded into discrete synaptic states. However, the input stream to be processed is still

encoded into the activation value of a specific analog neuron. It would be interesting to

develop a paradigm where this feature also is encoded into synapses. Moreover, it would be

interesting to extend the proposed paradigm of computation to the consideration of more

biological STDP rules.

It is worth noting that synaptic-based and neuron-based computational paradigms are not

opposite conceptions, but intertwined processes instead. Indeed, changes in synaptic states are

achieved via the elicitation of specific neuronal spiking patterns (which modify the synaptic

strengths via STDP). The main difference between these two conceptions is whether the essen-

tial information is encoded and memorized into synaptic states or into spiking configurations,

activation values or (attractor) dynamics of neurons.

In biology, real brain circuits do certainly not operate by simulating abstract finite state

machines. And with our work, we do intend to argue in this sense. Rather, our intention is to

show that a bio-inspired Turing complete paradigm of abstract neural computation—centered

on the concept of synaptic plasticity—is not only theoretically possible, but also potentially

exploitable. The idea of representing and storing essential information into discrete synaptic

levels is, we believe, novel and worthy of consideration. It represents a paradigm shift in the

field of neural computation.

Finally, the impacts of the proposed approach are twofold. From a practical perspective,

contemporary developments in neuromorphic computing provide the possibility to

implement neurobiological architectures on very-large-scale integration (VLSI) systems,

with the aim of mimicking neuronal circuits present in the nervous system [61, 62]. The

implementation of our model on VLSI technologies would lead to the realization of

new kinds of analog neuronal computers. The computational and learning capabilities

of these neural systems could then be studied directly from the hardware point of view.

And the integrated circuits implementing our networks might be suitable for specific appli-

cations. Besides, from a Machine Learning (ML) perspective, just as the dynamics of biologi-

cal neural nets inspired neuronal-based learning algorithms, in this case also, the STDP-

based recurrent neural networks might eventually lead to the development of new ML

algorithms.

From a theoretical point of view, we hope that the study of neuro-inspired paradigms of

abstract computation might contribute to the understanding of both biological and artificial

intelligences. We believe that similarly to the foundational work from Turing, which played a

crucial role in the practical realization of modern computers, further theoretical considerations

about neural- and natural-based models of computation shall contribute to the emergence of

novel computational technologies, and step by step, open the way to the next computational

generation.

Turing complete neural computation based on synaptic plasticity

PLOS ONE | https://doi.org/10.1371/journal.pone.0223451 October 16, 2019 31 / 34

https://doi.org/10.1371/journal.pone.0223451

Supporting information

S1 Files. Python code. All python scripts generating the results of the paper are provided

in an attached zip folder files.zip. The description of the different files is given in

Read_me.txt.

(ZIP)

Acknowledgments

Supports from DARPA—Lifelong Learning Machines (L2M) program, cooperative agreement

No. HR0011-18-2-0023, as well as from the Czech Science Foundation, grant No. GA19-

05704S are gratefully acknowledged. We warmly thank Brigitte Quenet for insightful discus-

sions about synaptic computation as well as for the implementation of the counter module.

We also thank Hélène Oppenheim-Gluckman for precious (silent) advices.

Author Contributions

Conceptualization: Jérémie Cabessa.

Writing – original draft: Jérémie Cabessa.

References
1. McCulloch WS, Pitts W. A logical calculus of the ideas immanent in nervous activity. Bulletin of Mathe-

matical Biophysic. 1943; 5:115–133. https://doi.org/10.1007/BF02478259

2. Kleene SC. Representation of events in nerve nets and finite automata. In: Shannon C, McCarthy J, edi-

tors. Automata Studies. Princeton, NJ: Princeton University Press; 1956. p. 3–41.

3. Minsky ML. Computation: finite and infinite machines. Englewood Cliffs, N. J.: Prentice-Hall, Inc.;

1967.

4. Siegelmann HT, Sontag ED. On the computational power of neural nets. J Comput Syst Sci. 1995;

50(1):132–150. https://doi.org/10.1006/jcss.1995.1013

5. Siegelmann HT, Sontag ED. Analog computation via neural networks. Theor Comput Sci. 1994; 131

(2):331–360. https://doi.org/10.1016/0304-3975(94)90178-3

6. Cabessa J, Siegelmann HT. Evolving recurrent neural networks are super-Turing. In: Proceedings of

IJCNN 2011. IEEE; 2011. p. 3200–3206.

7. Cabessa J, Siegelmann HT. The Super-Turing Computational Power of plastic Recurrent Neural Net-

works. Int J Neural Syst. 2014; 24(8). https://doi.org/10.1142/S0129065714500294 PMID: 25354762

8. Sı́ma J, Orponen P. General-Purpose Computation with Neural Networks: A Survey of Complexity The-

oretic Results. Neural Computation. 2003; 15(12):2727–2778. https://doi.org/10.1162/

089976603322518731 PMID: 14629867

9. Elman JL. Finding Structure in Time. Cognitive Science. 1990; 14(2):179–211. https://doi.org/10.1207/

s15516709cog1402_1

10. Pollack JB. The Induction of Dynamical Recognizers. Machine Learning. 1991; 7:227–252. https://doi.

org/10.1023/A:1022651113306

11. Indyk P. Optimal Simulation of Automata by Neural Nets. In: Mayr EW, Puech C, editors. STACS. vol.

900 of Lecture Notes in Computer Science. Springer; 1995. p. 337–348.

12. Horne BG, Hush DR. Bounds on the complexity of recurrent neural network implementations of finite

state machines. Neural Networks. 1996; 9(2):243–252. https://doi.org/10.1016/0893-6080(95)00095-X

13. Siegelmann HT. Recurrent Neural Networks and Finite Automata. Computational Intelligence. 1996;

12:567–574. https://doi.org/10.1111/j.1467-8640.1996.tb00277.x

14. Maass W. Computing with Spiking Neurons. In: Maass W, Bishop CM, editors. Pulsed Neural Networks.

Cambridge, MA, USA: MIT Press; 1999. p. 55–85.

15. Maass W, Bishop CM, editors. Pulsed Neural Networks. Cambridge, MA, USA: MIT Press; 1999.

16. Păun G. Computing with Membranes. J Comput Syst Sci. 2000; 61(1):108–143. https://doi.org/10.

1006/jcss.1999.1693

17. Păun G. Membrane Computing. An Introduction. Berlin: Springer-Verlag; 2002.

Turing complete neural computation based on synaptic plasticity

PLOS ONE | https://doi.org/10.1371/journal.pone.0223451 October 16, 2019 32 / 34

http://www.plosone.org/article/fetchSingleRepresentation.action?uri=info:doi/10.1371/journal.pone.0223451.s001
https://doi.org/10.1007/BF02478259
https://doi.org/10.1006/jcss.1995.1013
https://doi.org/10.1016/0304-3975(94)90178-3
https://doi.org/10.1142/S0129065714500294
http://www.ncbi.nlm.nih.gov/pubmed/25354762
https://doi.org/10.1162/089976603322518731
https://doi.org/10.1162/089976603322518731
http://www.ncbi.nlm.nih.gov/pubmed/14629867
https://doi.org/10.1207/s15516709cog1402_1
https://doi.org/10.1207/s15516709cog1402_1
https://doi.org/10.1023/A:1022651113306
https://doi.org/10.1023/A:1022651113306
https://doi.org/10.1016/0893-6080(95)00095-X
https://doi.org/10.1111/j.1467-8640.1996.tb00277.x
https://doi.org/10.1006/jcss.1999.1693
https://doi.org/10.1006/jcss.1999.1693
https://doi.org/10.1371/journal.pone.0223451

18. The P Systems Webpage;. Available from: http://ppage.psystems.eu/.

19. Neumann Jv. The computer and the brain. New Haven, CT, USA: Yale University Press; 1958.

20. Kilian J, Siegelmann HT. The dynamic universality of sigmoidal neural networks. Inf Comput. 1996;

128(1):48–56. https://doi.org/10.1006/inco.1996.0062

21. Hyötyniemi H. Turing machines are recurrent neural networks. In: Alander J, Honkela T, M J, editors.

STeP’96—Genes, Nets and Symbols; Finnish Artificial Intelligence Conference, Vaasa 20-23 Aug.

1996. Vaasa, Finland: University of Vaasa, Finnish Artificial Intelligence Society (FAIS); 1996. p. 13–24.

22. Balcázar JL, GavaldàR, Siegelmann HT. Computational power of neural networks: a characterization

in terms of Kolmogorov complexity. IEEE Transactions on Information Theory. 1997; 43(4):1175–1183.

https://doi.org/10.1109/18.605580

23. Neto JaPG, Siegelmann HT, Costa JF, Araujo CPS. Turing Universality of Neural Nets (Revisited). In:

EUROCAST’97: Proceedings of the A Selection of Papers from the 6th International Workshop on

Computer Aided Systems Theory. London, UK: Springer-Verlag; 1997. p. 361–366.

24. Siegelmann HT. Neural networks and analog computation: beyond the Turing limit. Cambridge, MA,

USA: Birkhauser Boston Inc.; 1999.

25. Cabessa J, Duparc J. Expressive Power of Non-deterministic Evolving Recurrent Neural Networks in

Terms of Their Attractor Dynamics. In: Calude CS, Dinneen MJ, editors. Unconventional Computation

and Natural Computation—14th International Conference, UCNC 2015, Auckland, New Zealand,

August 30—September 3, 2015, Proceedings. vol. 9252 of Lecture Notes in Computer Science.

Springer; 2015. p. 144–156.

26. Cabessa J, Duparc J. Expressive Power of Nondeterministic Recurrent Neural Networks in Terms of

their Attractor Dynamics. IJUC. 2016; 12(1):25–50.

27. Cabessa J, Finkel O. Expressive Power of Evolving Neural Networks Working on Infinite Input Streams.

In: Klasing R, Zeitoun M, editors. Fundamentals of Computation Theory - 21st International Sympo-

sium, FCT 2017, Bordeaux, France, September 11-13, 2017, Proceedings. vol. 10472 of Lecture Notes

in Computer Science. Springer; 2017. p. 150–163.

28. Cabessa J, Siegelmann HT. The Computational Power of Interactive Recurrent Neural Networks. Neu-

ral Computation. 2012; 24(4):996–1019. https://doi.org/10.1162/NECO_a_00263 PMID: 22295978

29. Cabessa J, Villa AEP. The expressive power of analog recurrent neural networks on infinite input

streams. Theor Comput Sci. 2012; 436: 23–34. https://doi.org/10.1016/j.tcs.2012.01.042

30. Cabessa J, Villa AEP. The Super-Turing Computational Power of Interactive Evolving Recurrent Neural

Networks. In: et al VM, editor. Proceedings of ICANN 2013. vol. 8131 of Lecture Notes in Computer Sci-

ence. Springer; 2013. p. 58–65.

31. Cabessa J, Villa AEP. Interactive Evolving Recurrent Neural Networks Are Super-Turing Universal. In:

et al SW, editor. Proceedings of ICANN 2014. vol. 8681 of Lecture Notes in Computer Science.

Springer; 2014. p. 57–64.

32. Cabessa J, Villa AEP. Computational capabilities of recurrent neural networks based on their attractor

dynamics. In: 2015 International Joint Conference on Neural Networks, IJCNN 2015, Killarney, Ireland,

July 12-17, 2015. IEEE; 2015. p. 1–8.

33. Cabessa J, Villa AEP. Recurrent neural networks and super-Turing interactive computation. In: Koprin-

kova-Hristova P, Mladenov V, Kasabov KN, editors. Artificial Neural Networks: Methods and Applica-

tions in Bio-/Neuroinformatics. Springer; 2015. p. 1–29.

34. Cabessa J, Villa AEP. On Super-Turing Neural Computation. In: Liljenström H, editor. Advances in Cog-

nitive Neurodynamics (IV): Proceedings of the Fourth International Conference on Cognitive Neurody-

namics—2013. Dordrecht: Springer Netherlands; 2015. p. 307–312.

35. Cabessa J, Villa AEP. Expressive power of first-order recurrent neural networks determined by their

attractor dynamics. Journal of Computer and System Sciences. 2016; 82(8):1232–1250. https://doi.org/

10.1016/j.jcss.2016.04.006

36. Turing AM. Intelligent Machinery. Teddington, UK: National Physical Laboratory; 1948.

37. Rosenblatt F. The perceptron: A perceiving and recognizing automaton. Ithaca, New York: Cornell

Aeronautical Laboratory; 1957. 85-460-1.

38. Hebb DO. The organization of behavior: a neuropsychological theory. John Wiley & Sons Inc.; 1949.

39. Rosenblatt F. The Perceptron: A Probabilistic Model for Information Storage and Organization in the

Brain. Psychological Review. 1958; 65(6):386–408. https://doi.org/10.1037/h0042519 PMID: 13602029

40. Widrow B. The Speed of Adaption in Adaptive Control Systems. In: American Rocket Society (ARS)

Guidance, Control and Navigation Conference Proceedings; 1961. p. 1933–1961.

41. Minsky ML, Papert S. Perceptrons: An Introduction to Computational Geometry. Cambridge, MA, USA:

MIT Press; 1969.

Turing complete neural computation based on synaptic plasticity

PLOS ONE | https://doi.org/10.1371/journal.pone.0223451 October 16, 2019 33 / 34

http://ppage.psystems.eu/
https://doi.org/10.1006/inco.1996.0062
https://doi.org/10.1109/18.605580
https://doi.org/10.1162/NECO_a_00263
http://www.ncbi.nlm.nih.gov/pubmed/22295978
https://doi.org/10.1016/j.tcs.2012.01.042
https://doi.org/10.1016/j.jcss.2016.04.006
https://doi.org/10.1016/j.jcss.2016.04.006
https://doi.org/10.1037/h0042519
http://www.ncbi.nlm.nih.gov/pubmed/13602029
https://doi.org/10.1371/journal.pone.0223451

42. Schmidhuber J. Deep learning in neural networks: An overview. Neural Networks. 2015; 61:85–117.

https://doi.org/10.1016/j.neunet.2014.09.003 PMID: 25462637

43. Abbott LF, Nelson SB. Synaptic plasticity: taming the beast. Nat Neurosci. 2000; 3 Suppl.:1178–1183.

https://doi.org/10.1038/81453 PMID: 11127835

44. Markram H, Lübke J, Frotscher M, Sakmann B. Regulation of Synaptic Efficacy by Coincidence of Post-

synaptic APs and EPSPs. Science. 1997; 275(5297):213–215. https://doi.org/10.1126/science.275.

5297.213 PMID: 8985014

45. Caporale N, Dan Y. Spike timing-dependent plasticity: a Hebbian learning rule. Annu Rev Neurosci.

2008; 31:25–46. https://doi.org/10.1146/annurev.neuro.31.060407.125639 PMID: 18275283

46. Sjöström J, Gerstner W. Spike-timing dependent plasticity. Scholarpedia. 2010; 5(1):1362.

47. Abeles M. Local Cortical Circuits. An Electrophysiological Study. vol. 6 of Studies of Brain Function.

Berlin Heidelberg New York: Springer-Verlag; 1982.

48. Abeles M. Corticonics: Neuronal Circuits of the Cerebral Cortex. 1st ed. Cambridge University Press;

1991.

49. Abeles M. Time Is Precious. Science. 2004; 304(5670):523–524. https://doi.org/10.1126/science.

1097725 PMID: 15105481

50. Ikegaya Y, Aaron G, Cossart R, Aronov D, Lampl I, Ferster D, et al. Synfire Chains and Cortical Songs:

Temporal Modules of Cortical Activity. Science. 2004; 304(5670):559–564. https://doi.org/10.1126/

science.1093173 PMID: 15105494

51. Mainen ZF, Sejnowski TJ. Reliability of spike timing in neocortical neurons. Science. 1995; 268

(5216):1503–1506.

52. Zheng P, Triesch J. Robust development of synfire chains from multiple plasticity mechanisms. Front

Comput Neurosci. 2014; 8(66). https://doi.org/10.3389/fncom.2014.00066 PMID: 25071537

53. Izhikevich EM. Polychronization: computation with spikes. Neural Computation. 2006; 18(2):245–82.

https://doi.org/10.1162/089976606775093882 PMID: 16378515

54. Szatmáry B, Izhikevich EM. Spike-Timing Theory of Working Memory. PLoS Computational Biology.

2010; 6(8):e1000879. https://doi.org/10.1371/journal.pcbi.1000879 PMID: 20808877

55. Jun JK, Jin DZ. Development of Neural Circuitry for Precise Temporal Sequences through Spontaneous

Activity, Axon Remodeling, and Synaptic Plasticity. PLOS ONE. 2007; 2(8):1–17. https://doi.org/10.

1371/journal.pone.0000723

56. Montgomery JM, Madison DV. Discrete synaptic states define a major mechanism of synapse plasticity.

Trends in Neurosciences. 2004; 27(12):744–750. https://doi.org/10.1016/j.tins.2004.10.006 PMID:

15541515

57. Hopcroft JE, Motwani R, Ullman JD. Introduction to Automata Theory, Languages, and Computation

(3rd Edition). Boston, MA, USA: Addison-Wesley Longman Publishing Co., Inc.; 2006.

58. Šı́ma J. Three Analog Neurons Are Turing Universal. In: Fagan D, Martı́n-Vide C, O’Neill M, Vega-

Rodrı́guez MA, editors. Theory and Practice of Natural Computing - 7th International Conference,

TPNC 2018, Dublin, Ireland, December 12-14, 2018, Proceedings. vol. 11324 of Lecture Notes in Com-

puter Science. Springer; 2018. p. 460–472.

59. Neary T. Three small universal spiking neural P systems. Theor Comput Sci. 2015; 567:2–20. https://

doi.org/10.1016/j.tcs.2014.09.006

60. Song T, Pan L, Păun G. Spiking neural P systems with rules on synapses. Theoretical Computer Sci-

ence. 2014; 529:82–95. https://doi.org/10.1016/j.tcs.2014.01.001

61. Mead C. Neuromorphic electronic systems. Proceedings of the IEEE. 1990; 78(10):1629–1636. https://

doi.org/10.1109/5.58356

62. Monroe D. Neuromorphic Computing Gets Ready for the (Really) Big Time. Commun ACM. 2014;

57(6):13–15.

Turing complete neural computation based on synaptic plasticity

PLOS ONE | https://doi.org/10.1371/journal.pone.0223451 October 16, 2019 34 / 34

https://doi.org/10.1016/j.neunet.2014.09.003
http://www.ncbi.nlm.nih.gov/pubmed/25462637
https://doi.org/10.1038/81453
http://www.ncbi.nlm.nih.gov/pubmed/11127835
https://doi.org/10.1126/science.275.5297.213
https://doi.org/10.1126/science.275.5297.213
http://www.ncbi.nlm.nih.gov/pubmed/8985014
https://doi.org/10.1146/annurev.neuro.31.060407.125639
http://www.ncbi.nlm.nih.gov/pubmed/18275283
https://doi.org/10.1126/science.1097725
https://doi.org/10.1126/science.1097725
http://www.ncbi.nlm.nih.gov/pubmed/15105481
https://doi.org/10.1126/science.1093173
https://doi.org/10.1126/science.1093173
http://www.ncbi.nlm.nih.gov/pubmed/15105494
https://doi.org/10.3389/fncom.2014.00066
http://www.ncbi.nlm.nih.gov/pubmed/25071537
https://doi.org/10.1162/089976606775093882
http://www.ncbi.nlm.nih.gov/pubmed/16378515
https://doi.org/10.1371/journal.pcbi.1000879
http://www.ncbi.nlm.nih.gov/pubmed/20808877
https://doi.org/10.1371/journal.pone.0000723
https://doi.org/10.1371/journal.pone.0000723
https://doi.org/10.1016/j.tins.2004.10.006
http://www.ncbi.nlm.nih.gov/pubmed/15541515
https://doi.org/10.1016/j.tcs.2014.09.006
https://doi.org/10.1016/j.tcs.2014.09.006
https://doi.org/10.1016/j.tcs.2014.01.001
https://doi.org/10.1109/5.58356
https://doi.org/10.1109/5.58356
https://doi.org/10.1371/journal.pone.0223451

