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After decades of research, the sigma-1 receptor (Sig-1R)’s structure, and molecular
functions are being unveiled. Sig-1R is an integral endoplasmic reticulum (ER)
membrane protein which forms an oligomer and binds a variety of psychotropic
drugs. It forms a complex with the ER chaperone BiP that controls specific signaling
molecules’ stability and function at the ER to regulate Ca2+ signaling, bioenergetics,
and ER stress. Sig-1R is highly enriched in ER subdomains that are physically linked
to outer mitochondrial membranes, reflecting its role in regulating ER–mitochondria
communications. Thus, Sig-1R ligands are expected to serve as novel neuroprotective
agents which treat certain psychiatric and neurodegenerative disorders. In this short
review, the cell biological aspects of Sig-1R are discussed, with a particular focus on its
role in fundamental ER functions.
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INTRODUCTION

The sigma receptor was originally proposed to be a subtype of the G protein-coupled opioid
receptors (Su and Hayashi, 2003). However, a series of later experiments confirmed that the sigma
receptor is insensitive to naloxone and GTP (Wilke et al., 1999; Su and Hayashi, 2003). Although
the sigma-1 receptor (Sig-1R), a subtype of the sigma receptor, has largely been a mystery since
its existence was first proposed in the 1970s, its ligands have demonstrated therapeutic potential
in a variety of situations (Su and Hayashi, 2003). At the cellular level, the major action site of
Sig-1R is the ER (Su et al., 2010). However, it was recently shown that it is highly enriched in a
specialized subcomponent of the ER membrane called the mitochondrial-associated ER membrane
(MAM) (Hayashi and Su, 2007). Sig-1R ligands modulate cellular functions, such as ion channel
activity, neuronal firing, neuronal differentiation, cancer growth, and cell death/apoptosis, as well as
behaviors related to neurological and neuropsychiatric disorders such as substance addiction (e.g.,
cocaine and methamphetamine abuse), depression, schizophrenia, amyotrophic lateral sclerosis,
and Alzheimer’s disease (Mavlyutov et al., 2010, 2013; Su et al., 2010; Maurice and Goguadze, 2017;
Nguyen et al., 2017). Uniqueness of Sig-1R ligands lies in their mode of action; in experimental
animals, they only exert a therapeutic effect under pathological conditions, particularly ER or
mitochondrial stress, and have no effect in normal naïve animals (Hayashi and Su, 2004, 2007;
Maurice and Goguadze, 2017; Nguyen et al., 2017). In general, they act to normalize physiological
or behavioral functions (Hayashi and Su, 2004). The unique “normalizing” effect of Sig-1R ligands
may be partially attributed to Sig-1R’s characteristics as a stress protein and molecular chaperone.
In this short review, Sig-1R’s cell biological aspects are discussed, with a particular focus on its role
in fundamental ER functions.
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STRUCTURE OF SIG-1R

Recent studies have ascertained that Sig-1R forms oligomers
(e.g., trimers) at the ER membrane, creating a Sig-1R ligand–
binding pocket (Chu et al., 2013; Schmidt et al., 2016).
A crystallographic study demonstrated that Sig-1R has a single
transmembrane domain in the middle of the protein, although
other studies have proposed models with two transmembrane
domains (Ortega-Roldan et al., 2015; Schmidt et al., 2016; Penke
et al., 2018). Although the crystallographic study proposed
the C-terminus localizing at the cytoplasmic milieu, a recent
study using biologically, and physiologically relevant membranes
clearly demonstrated that the Sig-1R possesses a long ER-
lumenal domain including the C-terminus (Schmidt et al., 2016;
Mavlyutov et al., 2017). By expressing ascorbate peroxidase 2
(i.e., APEX2)-tagged Sig-1R in ND7/23 cells or in dorsal root
ganglion neurons, Mavlyutov et al. (2017) demonstrated that (i)
N-terminus of the Sig-1R faces the cytosol while the C-terminus
faces the ER lumen; (ii) the transmembrane domain exists
between amino acids 1–80. The C-terminal hydrophobic domain
seems to be involved in forming oligomers (Schmidt et al.,
2016). Size exclusion chromatography showed that Sig-1R ligands
mediate alterations in Sig-1R oligomerization (Gromek et al.,
2014). Meanwhile, FRET studies further support the previous
finding that Sig-1R agonists and antagonists tend to cause
oligomer dissociation and stabilization, respectively (Mishra
et al., 2015; Yano et al., 2018).

ROLE OF THE SIG-1R–BIP PROTEIN
COMPLEX IN SIG-1R ACTIVATION

An assay screening Sig-1R binding proteins identified BiP, an ER
molecular chaperone, as one of the major components of the
Sig-1R protein complex (Hayashi and Su, 2007). Solution NMR
spectroscopy showed that the C-terminal membrane–tethering
domain of Sig-1R interacts with full-length BiP or the nucleotide-
binding domain of BiP (Ortega-Roldan et al., 2013). This finding
raised the unexpected possibility that Sig-1R regulates chaperone
activity at the ER. The interaction between Sig-1R and BiP does
not change either protein’s stability, excluding the possibility that
Sig-1R is a substrate of the BiP chaperone (Hayashi and Su,
2007). A light-scattering assay provided clear evidence that the
purified C-terminus of the Sig-1R polypeptide prevents heat-
induced protein aggregation in vitro (Hayashi and Su, 2007),
suggesting that Sig-1R possesses an innate biological activity
similar to that of molecular chaperones. Interaction between
purified BiP and the C-terminus of Sig-1R blocks this activity
(Hayashi and Su, 2007). Immunoprecipitation and BRET assays
have further examined the physiological role of the heteromeric
interaction between Sig-1R and BiP. They revealed that (+)-
pentazocine causes Sig-1R and BiP to dissociate, but haloperidol
inhibits this dissociation (Hayashi and Su, 2007; Yano et al.,
2018). As mentioned above, Sig-1R agonists, such as (+)-
pentazocine, induce the dissociation of Sig-1R oligomers, but
Sig-1R antagonists, such as haloperidol, stabilize them (Gromek
et al., 2014; Mishra et al., 2015; Yano et al., 2018). It is likely that

Sig-1R multimerization, which is regulated by Sig-1R ligands, is a
key factor promoting Sig-R–BiP interaction.

Taken together, the research results to date clearly indicate
Sig-1R is a unique chaperone protein that forms homo-oligomers,
and interacts with BiP in its dormant state. Upon binding Sig-1R
agonists, which mediate the homo-oligomers’ destabilization, and
thus lead to dissociation of BiP from Sig-1R, Sig-1R is activated
to exert its innate chaperone activity.

ROLES OF SIG-1R IN REGULATING ER
FUNCTIONS

The endoplasmic reticulum is a multifunctional intracellular
organelle that serves as an intracellular Ca2+ store and a factory
of protein and lipid synthesis (Hayashi et al., 2009; Penke et al.,
2018). Recent discoveries highlight that the ER also regulates
stress response (namely the ER stress response) by transmitting
signals derived from unfolded proteins accumulating in the
ER (Mori, 2015; Penke et al., 2018). The ER dynamically
changes its shape by forming a reticular structure throughout
the entire cytoplasm, thus enabling physical connections to
other subcellular organelles, such as the plasma membrane
and mitochondria (Hayashi et al., 2009; Kerkhofs et al., 2017).
As discussed below, Sig-1R appears to be involved in these
fundamental ER functions (Figure 1).

Ca2+ Signaling and Bioenergetics
Sig-1R is enriched at ER membranes that are physically associated
with the mitochondria [i.e., mitochondria-associated membranes
(MAMs)] (Hayashi et al., 2009; Penke et al., 2018). The physical
membrane contact between the ER and the mitochondria
enables the ER to directly provide Ca2+ to mitochondria via
IP3 receptors at MAMs, thus regulating bioenergetics, and
free radical formation in mitochondria (Hayashi, 2015b). This
Ca2+, provided via MAMs, activates enzymes involved in
the TCA cycle, thus potentiating ATP production (Hayashi
et al., 2009; Hayashi, 2015b). Sig-1R at MAMs stabilizes the
activated IP3 receptor type 3, which is abundant at MAMs, thus
ensuring proper Ca2+ influx into the mitochondria from the ER
(Hayashi and Su, 2007) (Figure 1).

ER Stress, Oxidative Stress, and Cellular
Survival
Endoplasmic reticulum stress sensor proteins monitor the
concentration of misfolded proteins in the ER lumen and regulate
molecular chaperones’ expression (Mori, 2015). The stress sensor
protein IRE-1 is enriched at MAMs although other ER stress
sensor proteins, such as PERK and ATF-6, are not (Mori
et al., 2013). Sig-1R stabilizes IRE-1 at the MAM (Figure 1).
Sig-1R associates with IRE-1 only when IRE-1 is activated (i.e.,
phosphorylated) under ER stress, prolonging IRE-1’s innate
endonuclease activity in CHO cells (Mori et al., 2013). Activated
IRE-1 promotes XBP1 mRNA splicing to express the XBP1
transcription factor, which induces the upregulation of several
ER chaperones (Mori, 2015). In neonatal cardiomyocytes, Sig-1R
knockdown decreases activated IRE-1 and XBP1 as well as XBP1’s
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FIGURE 1 | Cell biological roles of sigma-1 receptors (Sig-1R) at the ER. Sig-1R are highly enriched at the mitochondria-associated ER membrane (MAM). Sig-1R is
a unique chaperone protein that forms homo-oligomers (i.e., trimmers) and interacts with BiP in its dormant state. Upon binding Sig-1R agonists, which mediate the
homo-oligomers’ destabilization, and lead to dissociation of BiP from Sig-1R, Sig-1R is activated to exert its innate chaperone activity. Sig-1R stabilizes IP3
receptors type-3 (IP3R3) at the MAM, thus regulates Ca2+ influx into mitochondria and ATP synthesis. Sig-1R also stabilizes the ER stress sensor IRE1 at the MAM
under ER or oxidative stress. Sig-1R thus regulates expression of stress-related proteins by regulating transcription factors XBP-1 and NF-kB. ERAD, ER-associated
degradation; ERSE, endoplasmic reticulum stress element.

nuclear localization but also increases the expression of several
ER stress-related proteins, such as CHOP (Alam et al., 2017).

Sig-1R exerts a neuroprotective effect in the brain by
suppressing ER stress. Sig-1R agonists improve behavioral
recovery and reduce infarction sizes in mice subjected to transient
cerebral artery occlusion. Importantly, treatment with Sig-1R
ligands induces Sig-1R upregulation and reduces ER stress
in these same mice (Morihara et al., 2018). In contrast, in
Sig-1R knockout mice, activation of ER sensor proteins and
downregulation of anti-apoptotic Bcl2, induced by occlusion–
reperfusion of the carotid artery, was potentiated (Zhao et al.,
2019). In iPS cell–originated human cortical neurons, the Sig-1R
ligand N,N-dimethyltryptamine (DMT), an endogenous Sig-1R
ligand (Fontanilla et al., 2009), promotes cellular survival under
hypoxia in an HIF1-independent manner (Szabo et al., 2016).
Knockout of Sig-1R increases α-synuclein (αSyn) oligomers,
fibrillar αSyn, and αSyn phosphorylation in the dopaminergic
neurons of mouse brains. However, αSyn phosphorylation is
suppressed by salubrinal, an ER stress inhibitor (Hong et al.,
2017). Vanishing white matter (VWM) disease is caused by
eIF2B gene mutations that render the neurons prone to ER
stress; primary astrocytes isolated from VWM mutant mice
exhibit hypersensitivity to ER stress (Atzmon et al., 2018). Sig-1R
agonists increased the mutant astrocytes’ cellular survival under
ER stress, but this phenomenon was not observed in wild-type
astrocytes (Atzmon et al., 2018). Thus, Sig-1R acts as a suppressor
of ER stress-induced neuronal damage both in vitro and in vivo.

It seems that Sig-1R also regulates generation of reactive
oxygen species (ROS) in the mitochondria (Mori et al., 2013;
Hayashi, 2015a). The accumulation of mitochondrial ROS
triggers the association of Sig-1R with IRE-1 to stabilize the latter
(Mori et al., 2013). Sig-1R knockdown induces ROS accumulation
as well as NFkB activation, whereas Sig-1R overexpression
inhibits ROS generation in CHO cells (Meunier and Hayashi,
2010). In cancer cells, Sig-1R knockdown inhibits cellular
proliferation by inducing ER stress as well as ROS generation
(Happy et al., 2015). Two-dimensional gel electrophoresis and
mass spectrometry screening of the wild type and Sig-1R
knockout livers found significant changes in protein levels of
the antioxidant protein peroxiredoxin 6 and the BiP (Pal et al.,
2012). More importantly, the same study demonstrated that
Sig-1R promotes activation of the antioxidant response element
(ARE) to upregulate NAD(P)H quinone oxidoreductase 1 and
superoxide dismutase 1 mRNA expression (Pal et al., 2012).

Protein Synthesis and Trafficking
An in vitro study demonstrated that Sig-1R agonists potentiate
BDNF secretion without affecting BDNF polypeptide synthesis
(Fujimoto et al., 2012). Sig-1R seems to enhance BDNF secretion
by promoting BDNF post-translational processing (Fujimoto
et al., 2012). Several studies have demonstrated that Sig-1R
modulates the activity of ion channels, such as Kv2.1 and Kv1.2,
via physical contact (Fontanilla et al., 2009; Mavlyutov et al.,
2010; Kourrich et al., 2013). Though it has been convincingly
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demonstrated that Sig-1R is enriched at the MAM (Hayashi and
Su, 2007), it is also highly enriched at ER membranes physically
linked to postsynaptic plasma membranes in specific types of
neurons (e.g., those at the spinal cord) (Mavlyutov et al., 2010).
Interestingly, Sig-1R has been shown to co-localize with Kv2.1
potassium channels on specialized ER membranes in spinal cord
neurons (Mavlyutov et al., 2010, 2013). These findings raise the
intriguing possibility that Sig-1R regulates potassium channel
activity by regulating trafficking Kv2.1 channels between the ER
and plasma membrane (Hayashi, 2015b). It has also been shown
that the Kv2.1 potassium channel plays a role in tethering the
ER to the plasma membrane (Johnson et al., 2018). Whether
Sig-1R is involved in the tethering action of Kv2.1 is unclear
at present. An atomic force microscopic study demonstrated
that the Sig-1R directly bind to the voltage-gated ion channel
(Balasuriya et al., 2012), possibly via the interaction between
transmembrane domains of the channel, and the cholesterol-
binding domain of the Sig-1R. Since these two molecules mostly
colocalize at the cytoplasmic region of the cell, the major site
of the protein interaction might involve the ER membrane
(Balasuriya et al., 2012).

Lipid Synthesis
The mitochondria-associated ER membranes is a key
structure for ER lipid synthesis (Hayashi et al., 2009). For
example, phosphatidylserine is synthesized at the MAM
before transportation to the mitochondria for conversion to
phosphatidylethanolamine (Hayashi et al., 2009). Similarly, the
synthesis of steroids and sphingolipids also relies on the physical
contact between the ER MAM and mitochondria (Hayashi
et al., 2009). Accordingly, the MAM contains considerable
levels of ceramides and cholesterol, in contrast to the other
ER membranes (Hayashi and Fujimoto, 2010). Intriguingly, the
Sig-1R is shown to bind specific types of sterols and sphingolipids
(Ramachandran et al., 2009; Hayashi and Fujimoto, 2010).

These lipids play a crucial role in recruiting Sig-1R to the
MAM (Hayashi and Fujimoto, 2010), thus enabling Sig-1R
to form functional protein complexes with MAM proteins.
Whether Sig-1R is involved in ER lipid synthesis is, however,
just beginning to be explored. Nonetheless, it has been shown
that Sig-1R knockdown suppresses glucosylceramide synthesis
but upregulates HMG-CoA reductase by suppressing ER-
associated degradation (Hayashi et al., 2012). Further studies
are undoubtedly needed to understand the precise molecular role
of Sig-1R in regulating lipid synthesis.

CONCLUSION

Sig-1R unique cell biological characteristics are as follows: (1) it
is an ER membrane protein which shares no homology with any
other mammalian protein and forms homo-oligomers; (2) it is
enriched in a specialized ER subdomain which physically contacts
the mitochondria (i.e., the MAM); (3) it is activated when cells
face ER or oxidative stress and ameliorates this stress, thereby
promoting cellular survival; and (4) Sig-1R oligomerization,
which is regulated by ligand binding, is a key factor in
its activation and association with BiP. Sig-1R’s subcellular
localization gives this small molecule the ability to regulate
communication among organelles. Its unique mode of activation,
which is triggered under ER stress or ROS accumulation,
could be exploited to treat human diseases, especially those
caused by misfolding proteins accumulating in the nervous
system (i.e., conformational diseases such as Alzheimer’s disease,
amyotrophic lateral sclerosis, and Parkinson’s disease).
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