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Brain-computer interface (BCI) systems exploit brain activity for generating a control
command and may be used by individuals with severe motor disabilities as an alternative
means of communication. An emerging brain monitoring modality for BCI development
is transcranial Doppler ultrasonography (TCD), which facilitates the tracking of cerebral
blood flow velocities associated with mental tasks. However, TCD-BCI studies to date
have exclusively been offline. The feasibility of a TCD-based BCI system hinges on its
online performance. In this paper, an online TCD-BCI system was implemented, bilaterally
tracking blood flow velocities in the middle cerebral arteries for system-paced control of
a scanning keyboard. Target letters or words were selected by repetitively rehearsing
the spelling while imagining the writing of the intended word, a left-lateralized task.
Undesired letters or words were bypassed by performing visual tracking, a non-lateralized
task. The keyboard scanning period was 15 s. With 10 able-bodied right-handed young
adults, the two mental tasks were differentiated online using a Naïve Bayes classification
algorithm and a set of time-domain, user-dependent features. The system achieved an
average specificity and sensitivity of 81.44 ± 8.35 and 82.30 ± 7.39%, respectively.
The level of agreement between the intended and machine-predicted selections was
moderate (κ = 0.60). The average information transfer rate was 0.87 bits/min with an
average throughput of 0.31 ± 0.12 character/min. These findings suggest that an online
TCD-BCI can achieve reasonable accuracies with an intuitive language task, but with
modest throughput. Future interface and signal classification enhancements are required
to improve communication rate.
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INTRODUCTION
Individuals who are cognitively aware but living with severe
motor disabilities such as muscular dystrophy, multiple sclero-
sis, high-level spinal cord injuries or locked-in syndrome may
not be able to use conventional means of expression such as
speech and gestures for communication. Brain-computer inter-
face (BCI) systems offer an alternative means of communication
for these individuals (Tai et al., 2008). BCI systems enable users
to generate a control command through mental activity alone
(Tai et al., 2008). Many portable brain monitoring modalities
have been explored for BCI development. The majority of sys-
tems have used electroencephalography (EEG) (Wolpaw et al.,
2002), while hemodynamic-based monitoring modalities such
as near-infrared spectroscopy (NIRS) (Sitaram et al., 2009; Falk
et al., 2011), and transcranial Doppler (TCD) ultrasonography
systems (Myrden et al., 2011) are emerging BCI alternatives. The
cerebral hemodynamic response is inherently slower than the cor-
responding electrical response measured using EEG. In fact, there
is a hemodynamic delay of 5–10 s between the onset of mental
activation and the manifestation of blood flow velocity changes
(Harders et al., 1989; Szirmai et al., 2005). However, hemody-
namic monitoring systems are not prone to electro-genic artifacts
due to muscle contractions or eye-movements. In particular,

TCD-based systems have recently demonstrated high accuracies
in offline studies (Myrden et al., 2011; Aleem and Chau, 2013).

TCD is a non-invasive ultrasound technology that detects
the changes in cerebral blood flow velocity (CBFV). It was first
introduced as a medical imaging device in 1982, and has been
widely applied clinically (Aaslid et al., 1982) for the detection
of increased intracranial pressure in neurocritical care, evalua-
tion of subarachnoid haemorrhage, detection of microembolism,
and monitoring of cerebral circulation during cardiopulmonary
bypass (White and Venkatesh, 2006; Sarkar et al., 2007; Tsivgoulis
et al., 2009; Reinsfelt et al., 2012).

TCD has recently been used as a functional brain imaging
tool to examine the effects of mental tasks on the blood flow
velocities. In particular, functional TCD studies have focused on
the middle cerebral arteries (MCAs), which perfuse 80% of the
brain, and thus measurements of velocities therein reflect cog-
nitive effort levels (Vingerhoets and Stroobant, 1999; Stroobant
and Vingerhoets, 2000). Blood flow lateralization elicited by men-
tal tasks, such as verbal fluency and visuospatial tasks, has been
detected using TCD in many studies (Aaslid, 1987; Vingerhoets
and Stroobant, 1999; Stroobant and Vingerhoets, 2000; Haag
et al., 2009; Whitehouse et al., 2009). Blood flow lateralization is
due to the coupling between the cerebral blood flow and oxidative
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metabolism (Buxton and Lawrence, 1997). The left hemisphere
of the brain exhibits augmented blood flow velocity during verbal
fluency tasks while the right hemisphere demonstrates heightened
activation during visuospatial tasks (Vingerhoets and Stroobant,
1999).

Recent functional TCD-BCI studies have reported promis-
ing rates of classifying different mental states (Myrden et al.,
2011; Aleem and Chau, 2013; Faress and Chau, 2013). Myrden
et al. (2011) first introduced TCD as a BCI measurement
modality and discriminated between word generation and rest
(average accuracy of 82.9 ± 10.5%) and between mental rota-
tion and rest (85.7 ± 10%) in 9 able-bodied adults using
45 s task periods. The authors later followed up with a 3-
class offline BCI, discerning among word generation, mental
rotation and unconstrained rest with over 70% accuracy and
reaching transmission rates of 1.2 bits per min (Myrden et al.,
2012). Subsequently, in a study of 18 adults, Aleem and Chau
(2013) reduced the task period to 18 s and classified succes-
sive left and right lateralizations offline in a user-independent
framework with accuracies up to 74.6 ± 12.6%. Most recently,
in an offline TCD-NIRS-BCI study, Faress and Chau (2013)
achieved an average accuracy of 76.1 ± 9.9% in the automatic
differentiation between pre- and post-verbal fluency hemody-
namics (Faress and Chau, 2013). Collectively, these past offline
TCD-BCI studies have shown that language (e.g., verbal flu-
ency) and spatial tasks (e.g., mental rotation) elicit machine-
discernible lateralizations in cerebral blood flow velocities in the
MCAs, with time intervals as short as 18 s. The fundamen-
tal challenge of TCD-BCIs remains the relatively low through-
put. Further, the viability of an online TCD-BCI has yet to be
demonstrated.

In light of the above, the aim of the present study was to
ascertain the achievable accuracy and throughput of communica-
tion with an online TCD-BCI. In particular, we implemented an
online spelling system (i.e., scanning keyboard) controlled via two
mental states, namely, rest and activation. The activation task was
repetitive mental spelling and imagined writing of the intended
word and the rest mental task was the visual tracking of a display
of TCD signals. We hypothesized that previously reported offline
accuracies in excess of 80% could be replicated in the online set-
ting using an activation task that intuitively combined language
processing and right-handed motor imagery.

METHODS
PARTICIPANTS
Thirteen able-bodied participants were recruited for this study.
Participants had normal or corrected to normal vision, and no
reported history of neurological, metabolic, respiratory, cardio-
vascular, or drug/alcohol-related conditions. One participant was
excluded after the first session due to the inability to accu-
rately describe the study protocol. A second participant was
excluded upon disclosing post-study, a medical history that vio-
lated inclusion criteria. A third participant was excluded due to
inadequate transtemporal windows, which precluded the loca-
tion of the MCAs. The ten remaining participants included
for study (aged 18–40 years; all female), were all right-handed.
All participants provided written informed consent. This study

was approved by the research ethics boards of both Holland
Bloorview Kids Rehabilitation Hospital and the University of
Toronto.

INSTRUMENTATION
The Doppler spectra of blood flow velocities through the left
and right MCAs were monitored using the MultiDop X-4 TCD
(Compumedics Germany) and the accompanying bilateral head-
gear with two fixed 2 MHz ultrasonic transducers. The data were
recorded at a sampling frequency of 100 Hz. The probes were
positioned over the transtemporal insonation window according
to an established insonation procedure (Alexandrov et al., 2007)
as seen in Figure 1.

Ultrasound gel was applied between the probe and the user’s
skin to ensure proper signal transduction. Once the probe was
placed over the transtemporal window, the TCD was turned on
with an initial depth setting of 50 mm. The insonation angle and
depth were then adjusted to find the bifurcation of the inter-
nal carotid artery into the middle cerebral artery (blood flowing
toward the probe) and the anterior cerebral artery (blood flowing
away from the probe). The insonation depth was then decreased
until the maximum unidirectional flow toward the probe was
detected. All participants were given 5 min breaks per every
15 min of TCD usage to provide sufficient time for probe cool-
ing. Throughout the recording process, the thermal cranial index
(TIC) of the probes did not exceed 1.5, thus avoiding discomfort
or thermal injury to the participants, which is in accordance with
the British Medical Ultrasound Society safety guidelines (Group,
2010). The TCD device (MultiDop X-4) was approved by Health
Canada’s Medical Devices Directorate for investigational testing.

MENTAL TASKS
Participants performed two mental tasks (i.e., activation and rest)
throughout the study. Mental spelling accompanied by imag-
ined writing of each letter with the right hand was used as
the activation task, with the intent of eliciting left-lateralized
brain activity. To restore CBFV to non-lateralized basal levels,
visual tracking of a time-evolving strip chart of left and right
mean CBFV (Figure 2) was used as the rest task. The partici-
pant performed mental spelling throughout each 15 s activation
period and the visual tracking task throughout each 15 s rest
period.

During the training session, participants were presented with
either a single letter or multiple letters forming part of a word.
Upon seeing this cue, participants were instructed to repeti-
tively rehearse the spelling of the desired word while simultane-
ously imagining the writing of the word with their right hand.
Likewise, participants were instructed to shift their gaze to the
TCD feedback signal whenever an hourglass appeared on the
screen. Both tasks were completed without any vocalization to
avoid an increase in blood flow due to speech.

In the testing sessions, the participants used the TCD BCI to
spell target words online. During these sessions, the participants
were asked to perform the activation mental task when the desired
letter appeared among the currently available letter choices and
to perform the rest mental task when the desired letter was not
displayed.
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FIGURE 1 | Sagittal (left panel) and axial (middle panel) view of the ultrasound probe set at the transtemporal insonation window, directed toward the

MCA. Experimental setup (right panel) showing participant with TCD headgear and corresponding TCD spectrum.

FIGURE 2 | TCD-BCI interface. The bottom graph is the dynamic feedback
signal showing a 10-s segment of left and right mean CBFV. Each step of
the graph represents an average of 1.3 s of CBFV data (sampling rate of
100 Hz). This display facilitated the visual tracking task for inducing the rest
state.

DYNAMIC KEYBOARD
A custom on-screen keyboard was developed based on the con-
cept of the dynamic keyboard developed by the University of
Victoria. In our implementation, each level of the keyboard hier-
archy contained multiple bins, although at any given time, only
one bin was displayed to minimize mental workload and user
confusion. Each bin contained multiple letters or words. Figure 2
depicts the user interface of the dynamic on-screen keyboard.
The dynamic keyboard behaviors were governed by the following
operating principles.

1. Letters are grouped into bins on the basis of their frequencies
of use in the English language. For example, the initial letter
bin contains the 5 most frequently occurring first letters (t,
a, s, i, o) of English words. When one or more letters have
been selected, subsequent letter bins contain the set of most
probable next letters.

2. Whenever a letter bin is selected, a word bin containing the
most frequent words starting with the sequence of letters
selected thus far is presented.

3. Whenever a word bin is selected, each word within the bin is
presented sequentially.

4. When none of the letters or words in a sequence is selected, the
keyboard returns to the previous level of the hierarchy.

5. Whenever a selection is made, an “undo” option is immedi-
ately presented as a means of confirming the user’s selection.
The “undo” bin also provides an opportunity to delete the
most recent letter or word, upon which the interface returns
to the previous level of the hierarchy.

Figure 3 portrays an example of dynamic keyboard progression.
For simplicity, only a subset of paths is shown. Here, the bin
“t, a, s, i, o” is selected. Bypassing the “undo” bin confirms the
selection. The first bin on the next level of the hierarchy con-
tains the highest frequency words starting with one of “t, a, s, i,
o.” Here, this word bin is bypassed, triggering the presentation
of individual letters from the previous level of the hierarchy. The
letter “t” is chosen and confirmed (bypassing undo), prompting
the presentation of high frequency words starting with “t.” In this
example, this word bin is selected and confirmed, resulting in the
presentation of the individual words from this bin.

EXPERIMENTAL PROTOCOL
Each participant completed three sessions. At the beginning of
the first session, each participant was given an information sheet,
highlighting the nature of each task. In addition, prior to each
session, participants also received verbal instruction about how
to perform the activation and rest tasks. The first session involved
two training blocks and one testing block while subsequent ses-
sions contained one training block followed by two testing blocks.
A one minute baseline recoding was obtained before each block
for the purpose of normalizing data collected from the block.
During baseline, participants performed the rest task. A five
minute rest period was offered between blocks.

For each training block, the participants performed a total
of forty task segments. Each segment was either an activation
or rest task. The sequence of task presentation was random-
ized (Figure 4). A 10 s recovery period was included after each
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FIGURE 3 | An example of dynamic keyboard progression. In this example, the user has selected the letter “t” and the bin containing high frequency words
“the-to-that-this-they.”

FIGURE 4 | Schematic diagram of the training block. The training block
began with a 1-minute baseline period, followed by 40 randomized task
segments. During each task segment, the screen randomly displayed either
an hourglass or a letter. If a letter was presented, the participant performed

the activation mental task for 15 s, followed by the rest task (visual tracking of
the TCD feedback signal) for 10 s. If an hourglass was displayed instead of a
letter at the beginning of the segment, the participant continued to perform
the rest task for an additional 15 s.

activation task to allow the participant’s blood flow velocities to
return to baseline levels. During the recovery period, the par-
ticipants performed the rest task to restore basal blood flow
velocities. In the first session, participants had a 10 min break
while the two blocks of training data were used to train the appro-
priate classifier. For sessions two and three, the 10 min break
occurred after the first training block. During this break, the

classifier was trained with data from the current and initial ses-
sions. After each session, the participants’ level of fatigue was
ascertained via a written survey.

For each testing block, the participants were asked to spell a
given target phrase to the best of their abilities using the dynamic
keyboard. The participants performed the activation task only
when the bin containing the intended selection was presented.
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If a false positive occurred, the participants were instructed to
select the undo button and correct the error before continuing
the spelling process. If a false-negative occurred, the participants
were instructed to simply wait until the keyboard looped back to
the intended bin.

DATA PROCESSING AND CLASSIFICATION
All data collected from the training blocks were used for classifier
training. Therefore, for each participant, a total of forty activa-
tion data segments and forty rest data segments were used to
train a user-specific classifier in session I. For each subsequent
session, training data from session I (40 activation and 40 rest
segments) and the session at hand (20 activation and 20 rest seg-
ments) were pooled for training (i.e., 60 activation and 60 rest
data segments). Each segment was 15 s in duration. A total of
forty-four features were extracted from each segment. Twenty
four features were based on the left and right CBFV signal mean,
slope, standard deviation, and entropy over the following inter-
vals: 0–5, 5–10, and 10–15 s. Six features were extracted from the
differences in mean and slope between the left and right signals
over the same time intervals. Nine features were extracted based
on the correlation, dot product, and mutual information between
the left and right signals over the aforementioned time intervals.
The last five features were extracted from left and right CBFV sig-
nal standard deviation and entropy from 0 to 15 s and the mutual
information between the left and right CBFV signals over the
0 to 15 s interval. An example feature computation is presented
in Figure 5. These features were chosen according to the find-
ings of previous TCD brain lateralization studies (Myrden et al.,
2011).

Weighted sequential feature selection (WSFS) was used to
algorithmically select three to five features for each session, for
each participant, to train a Naïve Bayes classifier. WSFS extended
the sequential forward search (SFS) approach (Mamun et al.,
2012) by explicitly considering feature contributions (i.e., the
number of times a specific feature was chosen). For each fold of
a 10-fold cross-validation for feature selection, all features were
first ranked according to F-score (Duda et al., 2012) for interclass

separability, using the training set. These ranked features were
then organized into cumulative subsets such that the first subset
contained the top ranked feature, the second subset contained the
top two ranked features, and so on. The last subset contained all
features. Within each fold, the subset with the highest validation
accuracy was selected. Therefore, 10-fold cross-validation yielded
10 such subsets.

We enumerated the occurrence of each feature within these 10
subsets. Certain features appeared consistently across all subsets
while others surfaced intermittently. The selected features were
regrouped based on their frequency of occurrence, such that the
mth group contained all the features that appeared at least m
times, where m = {1, 2,. . .,10}. These new subsets were evaluated
through a subsequent constrained 10-fold cross-validation (i.e.,
only the m pre-determined feature subsets were cross-validated)
with newly randomized testing and training sets. The final set of
features was then selected as that with the highest average valida-
tion accuracy. The chosen features were used to train a Gaussian
Naïve Bayes classifier.

Figure 5 demonstrates a single trial of a rest task (left)
and activation task (right). The three most common features
selected across sessions and participants are highlighted. The least
common of the three features (slope of the right MCA CBFV) was
selected in six out of ten participants.

PERFORMANCE EVALUATION
To capture the different nuances of online classification perfor-
mance, several metrics were invoked as suggested by Thomas et al.
(2013) and Schlögl et al. (2007). To gauge the correctness of clas-
sification for a biased classifier (i.e., unequal performance for each
class), sensitivity, and specificity were estimated from the confu-
sion matrix Schlögl et al. (2007). Specificity is the number of true
negatives divided by the actual number of negatives in the test
set while sensitivity is the number of true positives divided by the
actual number positives in the test set.

To measure the agreement between the predicted and desired
selections (Cohen, 1960; Thomas et al., 2013) in the presence
of unbalanced data (i.e., unequal number of samples per class

FIGURE 5 | Sample recording depicting the three most common

features. (a) difference between left and right mean velocities, μL–μR, at
10–15 s (right graph); (b) difference between left and right mean velocities,
μL–μR, at 5–10 s (right graph), and, (c) slope of the right MCA CBFV (mR) at

5–10 s (left graph). Data shown are normalized and smoothed and represent
one trial performed by participant 10. The left graph depicts a rest trial while
the right graph portrays an activation trial, showing the difference between
left and right mean CBFV at 5–10 s and at 10–15 s.
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due to the nature of the experiment), Cohen’s kappa (κ) coeffi-
cient was estimated. Kappa ranges from 1 (perfect match) to 0
(chance level). If all values of κ within the 95% confidence interval
around the mean are above 0 (κ ± 1.96 × ϕ (κ) > 0, where ϕ(k)
is the standard error), then the average kappa value is significantly
above chance (Friedrich et al., 2012). The classification accuracy
ACC (overall agreement) was derived from the 2×2 confusion
matrix H, as

ACC = p0 =
∑

i Hii

N
(1)

where Hii are the main diagonal elements (i.e., number of correct
classifications) of the confusion matrix H and N = ∑

i

∑
j Hij is

the total number of trials. The chance expected agreement pe, is
the probability of observing the current confusion matrix and is
given by,

pe =
∑

i n+ini+
N2

(2)

where n+i and ni+ are the marginal column and row sums,
respectively. The estimate of the kappa coefficient κ is thus,

κ = p0 − pe

1 − pe
(3)

while its standard error ϕ(κ) is given by,

ϕ(κ) =
√

p0 + p2
e − ∑

i [n+ini+ (n+i + ni+)] /N3

(1 − pe)
√

N
(4)

This method of evaluation is preferred for problems with unbal-
anced classes (Danker-Hopfe et al., 2004; Anderer et al., 2005),
such as sleep classification.

To gauge performance of the system as a communication chan-
nel, we estimated the Nykopp information transfer rate (ITR),
which is recommended for classification problems with unbal-
anced class sizes (Thomas et al., 2013). Letting xi represent the
actual input category (x0 = rest, x1 = activation) and yj repre-
sent the predicted output (y0 = rest, y1 = activation), the ITR
was given by

ITRNykopp =
1∑

i = 0

1∑

j=0

p (xi) p
(
yj xi

)
log2

[
p
(
yj xi

)]
(5)

where

p
(
yj

) =
1∑

i=0

p (xi) p
(
yj xi

)
(6)

p
(
yj xi

) = Hij

ni+
(7)

while p(x0) = 0.7 and p (x1) = 0.3 are the prior probabilities of
rest and activation tasks, respectively to be, estimated from the
average frequency of occurrence of each task when spelling an
intended message with no mistakes. To calculate the bit-rate, we
multiplied the Nykopp ITR by the average number of trials per
min (Thomas et al., 2013).

To assess system efficiency, the average throughput, defined
as the number of characters output per min, was determined.
Only correct characters were counted while the measured dura-
tion included the time required to make error corrections. Since
participants were asked to correct mistakes during the spelling
process, the estimated throughputs were generally conservative
with the low char/min.

To measure the resemblance of the actual output to the
intended output, the Levenshtein or edit distance was calculated.
The edit distance compares the similarity between two strings of
unequal length and is defined as the number of editorial oper-
ations required to convert the actual output into the intended
output (Sankoff and Kruskal, 1993). Each deletion and insertion
of a character was given a weight of 1 while a substitution was
given a weight of 2, being equivalent to a deletion followed by
an insertion (Sankoff and Kruskal, 1993). Since the intended out-
puts were of different lengths for the testing blocks of the three
sessions, the edit distances were normalized based on the longest
string length of the intended outputs (Equation 8). Other nor-
malization methods more severely penalize a lack of input over
an incorrect selection (Marzal and Vidal, 1993; Weigel and Fein,
1994; Li and Liu, 2007). However, due to the study design, an
incorrect selection should have a higher edit distance than a lack
of input since the effort required to correct an incorrect selection
is far greater than that needed to produce an intended output with
no corrections. The normalized edit distance, DEN , is given by,

DEN = DE

|X| × |X∗| (8)

where |X| is the length of the intended output, DE is the raw
edit distance between intended and actual output, and |X∗| is the
length of the longest intended output from all sessions. Given the
longest string length in our experiment was 18, i.e., |X∗| = 18, a
normalized edit distance of 18 indicated no output and 0 meant
perfect match between the intended output and the actual output.
Any score above 18 indicated that the actual output mismatched
the intended output. The larger the normalized edit distance is,
the further away the actual output was from the intended output.

RESULTS
FEATURE SELECTION
Bilateral features were more frequently selected (Figure 6), which
could be due to the left-lateralized nature of the language task.
The higher selection frequency of bilateral features was consis-
tent with that reported in a previous offline TCD-BCI study using
verbal fluency (Myrden et al., 2011). Therefore, our modified ver-
bal fluency task (i.e., rehearsing the spelling while imagining the
writing of the target word) appeared to elicit machine-discernible
left-hemispheric lateralization.

INTER-PARTICIPANT ANALYSIS
The online performance on the testing blocks in sessions II and III
is reported in Table 1. The system achieved an average specificity
and sensitivity of 81.44 ± 8.35 and 82.30 ± 7.39% respectively,
resulting in an average kappa coefficient of 0.60 ± 0.03. All partic-
ipants exhibited a kappa coefficient that exceeded chance. Seven

Frontiers in Human Neuroscience www.frontiersin.org April 2014 | Volume 8 | Article 199 | 6

http://www.frontiersin.org/Human_Neuroscience
http://www.frontiersin.org
http://www.frontiersin.org/Human_Neuroscience/archive


Lu et al. Online transcranial Doppler ultrasonographic control

FIGURE 6 | Normalized frequency of features (the number of times a

feature has been selected divided by the total number of times all

feature have been selected) across all participants.

out of eight participants achieved a kappa coefficient over 0.4,
which is equivalent to an accuracy >70% had the classes been
balanced (Friedrich et al., 2012).

INTER-SESSION RESULTS
Classification performance across all sessions is summarized in
Table 1. Only four out of ten participants were able to achieve
above chance level kappa coefficient [κ ± 1.96 × ϕ (κ) > 0]. Of
the four participants, three were able to achieve a moderate agree-
ment within the first session ( > 0.4). For sessions II and III, all
participants achieved accuracies above chance. Moderate agree-
ment between intended and predicted selections ( > 0.4) was
achieved in nine out of ten participants.

DYNAMIC KEYBOARD OUTPUT AND USER FEEDBACK
The throughputs for all three sessions for all participants are
shown in Figure 7. The average throughput for session I, II, and
III across participants were 0.04 ± 0.05, 0.30 ± 0.14, and 0.32 ±
0.10 characters/minute, respectively.

Figure 8 depicts the edit distances for each session. Using a
paired t-test, we compared the edit distances for the 10 partic-
ipants at a rigorous significance level of 0.01. In the session I
test block, there was no significant difference between edit dis-
tances for the no output case (|X∗| = 18) against distances when
something was spelled (p = 0.619). In other words, the composed
output was distant from the target output string. In session II,
testing blocks 1 and 2 showed significant reduction in edit dis-
tances below that achieved in session I (p = 0.001; p = 0.005),
though there was no significant difference between the edit dis-
tances of the two blocks (p = 0.019). In session III, testing blocks
1 and 2 again showed significant improvement over session I edit
distances (p = 0.001; p < 0.001). In addition, there was no signif-
icant difference between edit distances of the two testing blocks in
session III (p = 0.790). Finally, there was no significant difference
between edit distances from the corresponding blocks of sessions
II and III (p ≥ 0.114).

The correlation between tiredness levels and performance of
all sessions were ascertained through Spearman’s coefficient (rs)
(Brown and Hollander, 1977). There were no significant corre-
lations between the tiredness levels and edit space or through-
put. In addition, there were no significant correlations between
tiredness and specificity or sensitivity. However, there was a nega-
tive trend on the tiredness of the participant before the session
and the specificity of the testing blocks (rs = −0.314, n = 20,
p = 0.177).

DISCUSSION
This study investigated the potential of controlling an onscreen
keyboard via an integrated mental spelling-motor imagery acti-
vation task. Previous studies have demonstrated the potential
of TCD as a BCI modality, but strictly in an offline set-
ting (Myrden et al., 2011; Aleem and Chau, 2013; Faress and
Chau, 2013). Using a mental spelling and motor imagery task
for making selections we achieved online accuracies compara-
ble to offline accuracies reported previously, but with modest
throughputs.

THROUGHPUT OF THE ONLINE TCD-BASED BCI COMMUNICATION
SYSTEM
The throughputs for sessions two and three improved beyond
those of session one, approaching transmission rates of estab-
lished BCI spelling devices (0.5 char/min) (Birbaumer et al.,
1999). The observed combination of low throughput (Figure 7)
and high kappa coefficient (Table 1) can be attributed to the
cost (temporal penalty) of a false-negative. If a bin was unin-
tentionally bypassed, the participant had to wait between 4 and
15 additional slides before the target bin would be presented
again. This wait time can translate into a temporal penalty
of several minutes for missing a selection, and is an inherent
limitation of scanning keyboards. Additional practice may help
to decrease response latency. Further, the Dynamic Keyboard
interface could also be improved (e.g., context-specific word
prediction) to enhance the speed and accuracy of letter/word
selection.

FEATURE SELECTION
Some features were consistently selected across all participants.
For most participants, the left lateralization of the mental task
was pronounced. This finding confirms previous reports of left
hemispheric lateralization accompanying verbal fluency tasks
(Vingerhoets and Stroobant, 1999; Myrden et al., 2011). Due to
the inherent lateralization, bilateral features were selected more
frequently, as shown in Figure 6, particularly those correspond-
ing to differences between the mean velocities of the left and right
MCAs. Nine out of ten participants had the two most frequent
features (i.e., difference of MCA means at 5–10 and 10–15 s)
selected at least in one session. The difference in means between
10 and 15 s was the most frequently selected feature, followed by
the difference in means between 5 and 10 s. The feature repre-
senting the difference in the means between 0 and 5 s was seldom
selected. This is likely due to the inherent 5–10 s hemodynamic
delay post-mental activation (Harders et al., 1989; Szirmai et al.,
2005).
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Table 1 | Classification performance within individual sessions.

Participant Session # Features selected Specificity (%) Sensitivity (%) Kappa k ± ϕ(k) Information transfer rate Bit-rate

ITRNykopp (bits/trial) (bits/min)

1 I 3 94.23 25.00 0.23 ± 0.19 0.05 0.16

II 3 84.27 70.97 0.53 ± 0.14 0.21 0.65

III 4 70.24 88.89 0.51 ± 0.13 0.23 0.73

2 I 1 78.26 71.43 0.43 ± 0.18 0.16 0.51

II 3 75.00 86.11 0.54 ± 0.13 0.24 0.77

III 2 82.93 94.74 0.72 ± 0.14 0.42 1.33

3 I 2 80.00 46.67 0.26 ± 0.17 0.05 0.16

II 2 82.72 83.78 0.63 ± 0.14 0.30 0.93

III 5 82.72 78.38 0.59 ± 0.14 0.25 0.78

4 I 2 32.65 72.73 0.03 ± 0.08 <0.01 0.01

II 4 77.03 71.88 0.45 ± 0.14 0.15 0.49

III 2 71.62 68.00 0.34 ± 0.13 0.10 0.31

5 I 4 36.84 100.00 0.27 ± 0.13 0.16 0.50

II 1 83.13 91.89 0.69 ± 0.14 0.39 1.22

III 1 71.80 90.91 0.56 ± 0.13 0.26 0.81

6 I 1 94.11 33.33 0.32 ± 0.20 0.09 0.27

II 2 81.18 88.57 0.63 ± 0.14 0.33 1.03

III 3 78.41 74.19 0.47 ± 0.13 0.18 0.57

7 I 4 88.89 71.43 0.59 ± 0.21 0.26 0.82

II 3 90.91 71.88 0.63 ± 0.15 0.29 0.91

III 3 93.26 80.65 0.74 ± 0.16 0.41 1.28

8 I 4 85.42 36.36 0.22 ± 0.17 0.04 0.13

II 2 82.98 72.72 0.56 ± 0.16 0.21 0.66

III 3 75.29 77.14 0.47 ± 0.13 0.18 0.56

9 I 4 82.00 40.00 0.20 ± 0.16 0.04 0.12

II 3 88.64 93.75 0.76 ± 0.15 0.48 1.53

III 3 86.05 81.82 0.64 ± 0.15 0.31 0.99

10 I 4 93.88 54.55 0.52 ± 0.22 0.20 0.64

II 2 83.75 94.87 0.73 ± 0.15 0.43 1.37

III 2 88.37 82.35 0.68 ± 0.15 0.35 1.10

Average online performance (sessions II and III) 81.44 ± 8.35 82.30 ± 7.39 0.60 ± 0.03 0.28 0.87

CLASSIFICATION OF MENTAL SPELLING
All participants exhibited improved upon their session I perfor-
mance in the latter 2 sessions. This improvement is attributable
in part to the increase of training data available to the classifier. In
addition, participants may have also become more familiar and
comfortable with the study protocol and the user-interface. A lon-
gitudinal study of TCD-based BCI may help elucidate the effect of
mental practice on functional performance.

Other factors (e.g., fatigue, extended trial duration or head
motion) may have also impacted participant performance. For
example, participant 4 reported a lack of concentration and
physical fatigue, which may explain the lower accuracies for this
individual.

COMMUNICATION RATE
The TCD-BCI was able to achieve an average bit-rate of 0.87
bits/min and a maximum of 1.53 bits/min. If the post-activation
task 10 s recovery time was removed, the average bit-rate would
improve to 1.10 bits/min. In addition, if we are able to bring
a three-task TCD into an online setting, similar to the offline
study by Aleem and Chau (2013), assuming equal priors, we can
further increase the bit-rate to 4.38 bits/min. Due to a lack of
published online TCD-BCIs at present, we compare our results to
those of other hemodynamic BCIs. Recent fMRI BCI studies using
two-task algorithm attained an average of 2 bits/min (∼80%
accuracy). Other fMRI BCI studies with a four-task algorithm
attained bit rates between 0.9 and 1.5 bits/min (∼90% accuracies)
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(Yoo et al., 2004; LaConte et al., 2007; Minati et al., 2012). Thus,
our system achieved a comparable bit-rate with a much sim-
pler set-up. At present, EEG-BCIs still offer the most compelling
bit-rates, typically in the order of 15–30 bits/min (Donchin and
Arbel, 2009; Kansaku et al., 2010).

The average throughput for session I was not significantly dif-
ferent from 0 characters/min at a significance level of 0.01 (p =
0.022), which could have been due to the lowered specificity and
sensitivity across participants in session I. Throughput for ses-
sions II and III were significantly different from that of session I
(p = 0.001; p < 0.001) and from 0 characters/minute (p < 0.001;
p < 0.001). This improvement may be due, in part, to the user’s
increasing familiarity with the keyboard, facilitating more skilled
navigation through the user interface. Given the temporal resolu-
tion of TCD and the sequential nature of the dynamic keyboard,
the throughput may have approached its theoretical limit at 0.3
characters/min. Without modification of the user interface and
the temporal window of data acquisition, further improvement of
the throughput might not be possible. Incidentally, the change in

FIGURE 7 | Average throughput in characters/minute for sessions I, II,

and III for all participants.

throughput from session II to III was not significant (p = 0.653),
but this does not preclude further improvements over extended
periods of practice.

Similar to throughput, the edit distances for both session II
and III improved significantly beyond session I values. Within
sessions II and III, the edit distances for the actual outputs did
not differ significantly. This suggested that the duration of TCD
usage did not affect the quality of the output as testing block 2
typically occurred an hour after initial TCD set-up. Therefore,
prolonged TCD usage may be possible provided that breaks are
provided every 15∼20 min.

USER FEEDBACK QUESTIONNAIRE
Feedback regarding the performance of the online TCD-BCI sys-
tem was neutral to positive (except for the first sessions for
participants 2 and 5). Participants 4 and 8 both indicated that
they were “somewhat tired” prior to and “very tired” after every
session. The lack of energy prior to the session may have impacted
participant performance with the online TCD-BCI. The live feed-
back may have further frustrated the participants, exacerbating
their fatigue and diminishing their concentration, thus form-
ing a negative feedback loop that further impacted performance.
However, the lack of significant overall correlation between tired-
ness levels and performance in terms of specificity, sensitivity, edit
distance, and throughput suggest that user perceived fatigue did
not directly impact overall user performance.

LIMITATIONS
The inefficiency of the scanning keyboard undoubtedly con-
strained the observed BCI accuracies. Scanning keyboards are
frequently used as an interface for assistive technology devices
(Jans and Clark, 1994; Lesher et al., 1998). However, the exist-
ing keyboard interface was prone to long delays in the event of
incorrect selections. For example, for individuals who achieved
high accuracies (>85%), it was still difficult to spell the intended
phrase within the allotted time. Further improvement of the
Dynamic Keyboard is necessary to achieve more efficient com-
munication in future studies. In addition, the required periodic
cooling of the TCD probes introduces further delays in commu-
nication. Future improvements in TCD technology may minimize
the required duration of probe cooling.

FIGURE 8 | Edit distances for test blocks from Sessions I (left plot), II (middle plot) and III (right plot). The horizontal line on each graph indicates an edit
distance of 18 where no input was observed.
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One of the major determinants for participant performance
was their motivation and concentration. For participants who
reported fatigue during specific sessions, (e.g., session 3, par-
ticipant 4), the overall accuracy rates were lower compared to
those of other participants. For participants who maintained con-
centration during the testing session, on the other hand, higher
accuracies were observed (e.g., participant 7 and participant 9).

Despite the efforts to precisely locate the MCAs, unbalanced
left and right CBFV magnitudes were occasionally observed.
Probe placement errors may contribute to lower accuracies.
Future TCD-BCI studies should endeavor to place the probes
flush against the skin overlying the temporal bone and establish
the same physiological insonation depth and sampling volume on
either side of the head.

Another potential source of signal contamination for func-
tional TCD studies is motion artifact. Conspicuous facial move-
ments may shift the TCD probes, resulting in momentary or
continuous deterioration of the recorded signals. Additionally,
extensive body movements e.g., swinging of the arms, crossing
and uncrossing the legs, and shifting body in the chair) may
also introduce CBFV changes unrelated to the mental tasks at
hand. Moderate movements (e.g., moving hands, and shifting
feet) were observed in many participants during this experiment.
However, the high classification accuracies achieved suggest a
level of robustness to these motion artifacts.

FUTURE OUTLOOK
Compared to EEG, TCD is robust to electrical artifacts but,
like near infrared spectroscopy, subject to long hemodynamic
time constants which are several orders of magnitude greater
than their corresponding electrical counterparts. However, unlike
near-infrared spectroscopy BCIs, TCD is immune to ambient
lighting. Based on these relative merits and the findings reported
herein, TCD may fulfill a niche need where users possess suffi-
cient literacy skills to do mental spelling, but may be unable to
use electrical and optical alternatives, due for example to excessive
myogenic noise or light absorption by dark hair. By addressing the
aforementioned limitations, a TCD-BCI may eventually provide a
means of bedside communication to non-verbal individuals who
have severe motor impairments.

Future research will however need to go beyond the con-
trolled, distraction-free laboratory conditions of the present study
to gauge feasibility in realistic environments such as the home
or inpatient unit. Further, future work must engage clients with
physical disabilities to ascertain tolerance for the instrumentation
and feasibility of the task paradigm.

CONCLUSION
Using an online TCD-BCI system with an onscreen keyboard
and combined mental spelling-motor imagery as the activation
task, an average specificity, and sensitivity of 81.44 ± 8.35 and
82.30 ± 7.39%, respectively, were achieved with 10 able-bodied
participants. The agreement between the intended and machine-
predicted selections was moderate (κ = 0.60 ± 0.03), with an
average information transfer rate of 0.87 bits/min. These results
support further investigation of online bilateral TCD-BCI systems
using intuitive language tasks.
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