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A biological age model based
on physical examination data to predict
mortality in a Chinese population

Qingqing Jia,1,7 Chen Chen,1,7 Andi Xu,1 Sicong Wang,1 Xiaojie He,2 Guoli Shen,2 Yihong Luo,1 Huakang Tu,1

Ting Sun,2,* and Xifeng Wu1,3,4,5,6,8,*
SUMMARY

Biological age could be reflective of an individual’s health status and aging degree. Limited estimations of
biological aging based on physical examination data in the Chinese population have been developed to
quantify the rate of aging. We developed and validated a novel aging measure (Balanced-AGE) based on
readily available physical health examination data. In this study, a repeated sub-sampling approach was
applied to address the data imbalance issue, and this approach significantly improved the performance
of biological age (Balanced-AGE) in predicting all-cause mortality with a 10-year time-dependent AUC of
0.908 for all-cause mortality. This mortality prediction tool was found to be effective across different
subgroups by age, sex, smoking, and alcohol consumption status. Additionally, this study revealed that
individuals who were underweight, smokers, or drinkers had a higher extent of age acceleration. The
Balanced-AGEmay serve as an effective and generally applicable tool for health assessment and manage-
ment among the elderly population.

INTRODUCTION

Aging leads to the occurrence of a variety of diseases.1–4 China is expected to have the largest aging population by 2050.5 Identifying those

who are ‘‘aging faster than normal rate’’ would help early intervention andpromotion of healthy aging.6 Human aging is affectedby a variety of

molecular mechanisms, as well as the factors that are resulted from gene-environment interactions.2,7–11 Generally, individuals who have the

same chronological agemay have completely different aging processes and longevity.12 Therefore, identification of an individual’s ‘‘true age’’

based on specific biological and environmental factors13–15 would allow targeted early interventions with individualized preventive measure-

ments as well as better health care management in the general population.

Specific biomarkers that are associated with human physical function, morbidity, andmortality have been identified, and thus can be used

to estimate the process of aging from the biological perspective.14,15 The concept of biological age,16 defined by selected biomarkers and

specific modeling algorithms, can more objectively and precisely reflect the biological changes of the human body due to the process of

aging.17 From body functional-related7 (e.g., muscle mass, anthropometry, body mass index) to blood biomarkers (e.g., red blood cell dis-

tribution width),10 a wide range of biomarkers have been selected for the calculation of biological age.

Several cohort studies have explored the association of biological age and chronological age with mortality.18–20 Overall, biological age

outperformed chronological age in terms of predictingmortality and health risks,21,22 and can be used to better reflect the senescent change

across multiple tissues and cells, providing insight into important pathways in aging. However, the majority of biological age models were

constructed based on the cohorts in Europe or U.S.10 Due to differences in race, lifestyle, and other factors across regions, biological age

models may have large differences in predictive accuracy in different regions and are not generalizable in different populations. While

some biological aging algorithms have been developed in Asian populations, most biological age models utilize complex genetic23–25

and/or molecular26 markers, which greatly limit their applicability and cost-effectiveness in the general population.

Physical examination data generally include comprehensive health information over years with longitudinal data.27 Circulating biomarkers

and physical examination information on body function, biological process, disease history, lifestyle, and living environment are readily
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Table 1. Distribution of select host characteristics of the study participants (n = 54,796)

Characteristic

Total

54796

Death

n (%)

1158 (2.1)

Alive n (%)

53638

(97.9) p Value

Balanced-

AGE

(mean G

sd, years) p value

Balanced-

AGE-ACC

(mean G

sd, years) p Value

Difference in

Balanced-

AGE-ACCa

(years) (95% CI) p value

Age group

50-59years 37154 366 (1.0) 36788 (99) <0.0001

60–69 years 13730 324 (2.0) 13406 (98)

R70 years 3912 468 (14) 3444 (88)

Sex

Female 31390 842 (3.0) 30548 (97) <0.0001 49.16 G 9.12 <0.0001 �8.55 G 6.70 Ref. <0.0001

Male 23406 316 (1.0) 23090 (99) 55.79 G 9.17 �2.04 G 5.88 <0.0001 5.36 (5.21, 5.51)

BMI

Underweight 1103 56 (5.0) 1047 (95) <0.0001 54.41 G 12.5 <0.0001 �5.40 G 8.22 <0.0001 0.66 (0.26, 1.06) 0.0012

Normal 24795 537 (2.0) 24258 (98) 52.42 G 10.0 �5.32 G 7.09 Ref.

Overweight 23066 442 (2.0) 22624 (98) 53.22 G 9.32 �4.49 G 6.73 �0.12 (�0.24, 0) 0.0420

Obese 5832 123 (2.0) 5709 (98) <0.0001 53.91 G 9.12 �3.93 G 6.70 0.36 (0.18, 0.54) <0.0001

Smoking

Never 25657 423 (2.0) 25234 (98) <0.0001 53.38 G 9.53 <0.0001 �4.96 G 6.18 <0.0001 Ref.

Current 14914 368 (3.0) 14546 (98) 55.21 G 8.41 �1.50 G 5.79 0.60 (0.33, 0.87) <0.0001

Former 2243 75 (3.0) 2168 (97) 57.70 G 9.40 �1.54 G 5.59 0.76 (0.62, 0.9) <0.0001

Drinking

Never 21362 413 (2.0) 20949 (98) <0.0001 53.66 G 9.60 <0.0001 �4.77 G 6.30 <0.0001 Ref.

Current 20748 408 (2.0) 20340 (98) 54.65 G 8.72 �2.44 G 5.90 0.55 (0.06, 1.03) 0.0266

Former 608 33 (6.0) 575 (95) 59.49 G 10.6 �0.92 G 7.02 �0.45 (�0.58, �0.32) <0.0001

BMI, body mass index.

Balanced-AGE-ACC: The difference between Balanced-AGE and chronological age (Balanced-AGE minus chronological age).

p values are based on independent t-test or ANOVA test. All p values are two-sided.
aBased on multivariable linear regression model including sex, BMI, smoking, and drinking.
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available from health examination data. Generally, in some cohort studies using physical examination data, the mortality rate is low, resulting

in imbalance between the number of the dead and the number of the living by the end of follow-up.Modelingwith imbalanced data will affect

the prediction accuracy of the model.28,29 At the same time, although some Asian studies constructed biological age using physical exam-

ination data,30,31 they did not deal with the imbalance issue in the data. Therefore, it is necessary to develop a measure of aging in a general

Chinese health physical examination population, taking into account the imbalance of the data, so as to construct a more accurate biological

aging model.

Therefore, this study aimed to develop a Chinese population-tailored age evaluation measure (Balanced-AGE), with the consideration of

imbalance issue in physical examination data to optimize the model. We further evaluated the associations of biological age with all-cause

mortality and quantified the impact of different demographic characteristics and lifestyles on the aging acceleration process.
RESULTS

Participants’ characteristics

As shown inTable 1, the females andmales accounted for 42.71%and57.29%of theparticipants, respectively. Thegroups aged50–59 years, 60–

69 years, andR70 years accounted for 67.80%, 25.06%, and 7.14%of the study population, respectively. Nearly half of the study population had

either a normal or overweight BMI. 45.25% of participants were in normal BMI. The mean age was 57.78 G 695 years (Table 2). The mean of

Balanced-AGE was 56.90G 9.09 years in the general population, 58.13G 8.87 years in males, and 55.21G 9.13 years in females.

All participants had complete laboratory biomarker records (Table 2), including renal, hematological, inflammation, diabetes, lipid, liver,

cardiovascular, cancer-related biomarkers, and physical anthropometry.

The scatterplots between the two estimated biological ages (Balanced-AGE and Imbalanced-AGE) and chronological age, and the resid-

uals are shown in Figure 1. Chronological age was highly correlated with Balanced-AGE (Figure 1A, r = 0.701, p < 0.001) and Imbalanced-AGE

(Figure 1B, r = 0.873, p < 0.001). Distributions of the Balanced-AGE-ACC estimations in the different sub-groups are shown in Table 1. The

AGE-ACC of Balanced-AGE and Imbalanced-AGE was reasonably normally distributed (Figures 1E and 1F).
2 iScience 27, 108891, March 15, 2024



Table 2. Physical examination items and model weights for Balanced-AGE and Imbalanced-AGE

Marker Category Variable Mean G Sd Unit

Biomarkers in

Balanced-AGE model

Biomarkers in

Imbalanced-AGE model

Age Age 57.78 G 6.95 Year 0. 0455 0.1052

Sex Sex NA N/A �0.3421

Renal Albumin (ALB) 44.55 G 3.00 G/L �0.0266

Uric acid (UA) 341.48 G 85.00 Umol/L –

Serum creatinine (CR) 65.22 G 15.93 Umol/L – 0.0068

Urea nitrogen (BUN) 5.43 G 1.32 Mmol/L –

Hematological Mean corpuscular hemoglobin

concentration (MCHC)

335.6 G 11.65 U/L �0.0131

Red blood cell distribution

width (RDW)

12.98 G 0.92 U/L 0.1093 0.2650

White blood cell count (WBC) 6.01 G 1.58 G/L – –

Hematocrit (HCT) 42.72 G 4.16 – –

Mean corpuscular volume (MCV) 91.8 G 4.95 Fl – –

Mean platelet volume (MPV) 9.93 G 1.52 FL – –

Inflammation Lymphocyte percentage (LY%) 33.49 G 7.84 % �0.0151 �0.0316

Blood platelet count (PLT) 202.25 G 54.48 % – –

Basophil percentage (BA%) 0.51 G 0.24 % – –

Monocytes percentage (MO%) 6.77 G 1.76 % – –

Neutrophil percentage (NE%) 56.82 G 8.35 % – –

Eosinophil percentage (EO%) 2.40 G 1.99 % – –

Diabetes Hemoglobin (HGB) 138.55 G 28.36 G/L 0.0034 –

Fasting blood glucose (FPG) 5.56 G 1.38 G/L – –

Fasting insulin (FINS) 59.47 G 41.61 Mmol/L – –

Lipid Apolipoprotein A1(Apo A1) 1.33 G 0.21 G/L –

High-density lipoprotein (HDL) 1.36 G 0.35 Mmol/L – –

Total cholesterol (TC) 5.19 G 1.01 Mmol/L – –

Triglycerides (TG) 1.80 G 1.45 Mmol/L – –

Low-density lipoprotein (LDL) 2.97 G 0.78 Mmol/L – –

Apolipoprotein B (Apo B) 1.00 G 0.24 G/L – –

Direct bilirubin (DBIL) 2.86 G 1.54 Mmol/L – –

Total bilirubin (TBIL) 14.37 G 5.54 Mmol/L – –

Indirect bilirubin (IBIL) 11.51 G 4.51 Mmol/L – –

Liver Alkaline phosphatase (ALP) 84.79 G 24.96 U/L 0.0027 0.0045

Gamma-glutamyl

transpeptidase (GGT)

36.46 G 44.69 U/L 0.0008 0.0018

Alpha fetoprotein (AFP) 3.37 G 7.02 UG/L –

Lactic dehydrogenase (LDH) 190.29 G 35.61 U/L 0.0013 –

Aspartate transaminase (AST) 25.62 G 12.85 U/L – –

Alanine transaminase (ALT) 24.72 G 19.52 U/L – –

Total protein (TP) 72.20 G 4.32 G/L – –

Globulin (Glob) 27.62 G 3.69 G/L – –

Total protein/globulin (A/G) 1.64 G 0.26 0.3636 –

Cancer CA199 11.40 G 24.15 KU/L 0.0011 0.0032

CA125 11.80 G 11.12 KU/L 0. 0018 0.0063

Alpha fetoprotein(AFP) 3.58 G 30.12 UG/L

(Continued on next page)
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Table 2. Continued

Marker Category Variable Mean G Sd Unit

Biomarkers in

Balanced-AGE model

Biomarkers in

Imbalanced-AGE model

Cardiovascular Creatine kinase (CK) 111.25 G 215.10 U/L – –

Systolic blood pressure (SBP) 131.34 G 18.39 Mmhg – –

Diastolic blood pressure (DBP) 78.36 G 11.86 Mmhg – –

Pulse 77.07 G 11.38 Times

Constant �7.6540 �22.2614

g 0.0007 0.0004

Balanced-AGE, Biological age calculated based on balanced model.

Imbalanced-AGE, Biological age calculated based on Imbalanced model.

The model weight, Constant, g is the constant terms and parameters obtained by Gompertz regression.
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After adjustment for sex, smoking status, drinking status, and BMI (Table 1), we found that males were physiologically older than females

(difference in Balanced-AGE-ACC = 5.36 years, p < 0.0001). Compared with never smokers, Balanced-AGE-ACC of former smokers and cur-

rent smokers increased by 0.76 and 0.60 years (p < 0.0001), respectively. Compared with never drinkers, the Balanced-AGE-ACC for former

drinkers and current drinkers increased by �0.45 and 0.55 years (p < 0.0001), respectively. Compared with those with normal BMI, those with

Obese or underweight BMI had higher Balanced-AGE-ACC; particularly, those with underweight BMI had the greatest acceleration in

Balanced-AGE-ACC by of 0.66 years (p < 0.0001).

Model performance

As shown in Figure 2, in general, Balanced-AGE and Imbalanced-AGE outperformed chronological age in predicting the risk of mortality.

Balanced-AGE, chronological age and Imbalanced-AGE had small differences in AUC values of predicting mortality at 3 years (AUC: 0.778

vs. 0.734 vs. 0.798, Bonferroni p < 0.0001) and 5 years (AUC: 0.802 vs. 0.763 vs. 0.803), yet the predictive precision of the Balanced-AGE effect

achieved its optimumwith an AUC of 0.908 (AUC: 0.908 vs. 0.773 vs. 0.811, Bonferroni, p < 0.0001) at 10 years. Overall, Balanced-AGE had the

optimal discrimination for predicting the risk of mortality at longer follow-up period, compared with Imbalanced-AGE and chronological age.

Therefore, further analyses focused on Balanced-AGE.

Risk estimates of association with mortality

As shown in Figure 3A, theBalanced-AGEwas strongly related to all-causemortality. Participantswith a higherBalanced-AGEat baseline had a

higher risk of mortality (Figure 3A, per 5 years increase). After adjusting for chronological age, sex, smoking, drinking, and BMI, each 5-year

increase in Balanced-AGEwas associatedwith a 45%higher risk ofmortality (HR= 1.45, 95%CI: 1.38–1.52, p< 0.0001). Given the need togener-

alizemeasuresof agingacross variouspopulations,weexamined theassociations in subgroups. For example, each5-year increase inBalanced-

AGEwas associatedwith a 53%higher risk ofmortality in the 50–59 years agegroup (HR=1.53, 95%CI: 1.41–1.65, p< 0.0001), in the 60–69 years

and >70 years age groups the associated increase in risk of mortality was 46% and 38%, respectively. Furthermore, when examining the asso-

ciations within subgroups by sex, smoking, drinking, and BMI, we found that Balanced-AGE was predictive in all subgroups. Among the sub-

groups, the association of Balanced-AGE with mortality was the strongest in former drinkers (HR: 1.70, 95%CI: 1.40–2.06, p < 0.0001).

Balanced-AGE-ACC was also used to predict the risk of all-cause mortality. Figure 3B presents the association between Balanced-AGE-

ACC andmortality. Overall, each quartile increase in Balanced-AGE-ACCwas associatedwith a 36% higher risk of mortality (HR= 1.36, 95%CI:

1.26–1.46) after adjusting chronological age, sex, smoking, drinking, and BMI. In stratified analysis by sex, the association was more pro-

nounced in males than in females (per quartile increase, HR = 1.62 vs. HR = 1.30). The associations were consistent among various subgroups

by smoking, drinking, and BMI.

DISCUSSION

We developed and validated a novel aging measure (Balanced-AGE) based on a large-scale physical examination database. This is the first

modeling study to consider data imbalance in the development of biological age in a Chinese population. After using the repeated sub-sam-

pling to address the problem of imbalanced data, we significantly improved the performance of biological age (Balanced-AGE) in predicting

all-causemortality. Meanwhile, we found that this predictivemeasure for mortality remained effective across different subgroups by age, sex,

smoking status, and alcohol consumption status. In addition, we verified that people who were overweight, smokers, or drinkers had accel-

erated biological age. Our results have important clinical implications for the identification of at-risk aging populations for healthy aging

counseling and intervention.

Ideally, all possible biomarkers should be available for the estimation of biological age, but the optimal biomarker panel should include

the representative biomarkers.13,32 The majority of the selected aging biomarkers are related to multiple physiological functions, including

renal, hematological, inflammatory, diabetes, lipid, liver, and cancer. In this study, we considered the effect of aging onmortality and used the
4 iScience 27, 108891, March 15, 2024
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Figure 1. Characterization of CA, BA, AGE-ACC and included predictors

(A)The correlation between Balanced-AGE and CA, (B) the correlation between Imbalanced-AGE and CA, (C) Residual plot of Balanced-AGE on CA, (D) Residual

plot of Imbalanced-AGE on CA, (E) Distribution of AGE-ACC of Balanced-AGE, (F) Distribution of AGE-ACC of Imbalanced-AGE, (G) Pearson correlation matrix

of the biomarkers included for predictive model construction. Since AGE-ACC is defined as the difference between BAs and CA, a score of 0 indicates no

difference between individuals’ BA and CA; positive values mean that the individuals’ BAs are larger than their CAs, indicating accelerated aging, while

negative values indicate decelerated aging.

ll
OPEN ACCESS

iScience
Article
(LASSO)coxmethod to select 13 biologicalmarkers (ALB, ALP, A/G,GGT,HGB, LDH, LY%,MCHC, RDW,CA125, CA129, CA, and Sex). RDW33

appeared to be one of themost significant biomarkers of aging andmortality accessed byGompertz weight (weight = 0.1093). Recent studies

have shown that markers associated with red blood cells, such as RDW,MCHC, and HGB are associated with a significant increase in multiple

indicators of adverse health status such as multimorbidity, cognitive impairment,34 disability, and mortality in the elderly.35 A previous study

found that CA125 and CA199, known tumor biomarkers, were significantly associated with risk of cancer-related mortality36 and a composite

mortality endpoint of cardiovascular (CV).37 Elevated ALP and GGT levels were associated with higher all-cause mortality, consistent with

linear dose-response relationships.38 ALB and A/G are among the potential indicators to reflect chronic liver injury.39 In the context of life

extension and health promotion, those biomarkers can be used in clinical research and practice to discover new molecular targets of aging,

to subsequently delay aging, and to identify participants at increased risk of multiple ageing-related conditions.

The concept of biological age has been applied and validated in a large number of population cohort studies. Examples include biological

age derived from principal component analysis (PCA)40 and multiple linear regression (MLR).21 Klemera and Double method (KDM)22 and

Levine method17 both construct corresponding biological age models based on different sets of aging biomarkers. These measures were

constructed with the relative weight of each marker given by its ability to predict chronological age rather than the risk of incident diseases

or mortality. Levine et al. selected chronological age and nine clinical blood markers based on the penalty Cox regression model, and then

constructed PhenoAge by the parametric proportional hazards model of the Gompertz distribution of mortality risk. PhenoAge correlated

well (r = 0.94) with chronological age. We therefore applied the Levine method to construct our Balanced-AGE.

Although many studies have shown that biological ages are valid independent predictors of mortality with good predictive performance,

these studies ignored the problem of data where the number of non-events is much larger than the number of the events, which is defined as
iScience 27, 108891, March 15, 2024 5
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Figure 2. Receiver operating characteristic curves for 3-year, 5-year, and 10-year all-cause mortality prediction: comparison across CA, Balanced-AGE,

and Imbalanced-AGE

Balanced-AGE: Biological age calculated based on a balanced model. Imbalanced-AGE: Biological age calculated based on an Imbalanced model. AUC: Area

under the curve. (A) 3-year time-dependent ROC.

(B) 5-year time-independent ROC.

(C) 10-year time-independent ROC.
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the phenomenon of ‘‘data imbalance.’’29,41 Data imbalance severely affect the predictive power of models, and themedical field usually faces

with data imbalance problem.28 In predicting mortality risk by biological age, the 10-year AUC was 0.6177 for Levin’s DNAm PhenoAge,

0.5605 for Horvath‘s DNAmAge, and 0.5670 for Hannum‘s DNAmAge, respectively.17 Noticeably in our study, we addressed the imbalanced

data issue from lowmortality rate in health examination cohort data based on repeated random sub-samplingmethod, and greatly improved

the power of biological age (Balanced-AGE) for predicting mortality with a 10-year AUC of 0.908.

In the Cox regression predictionmodel for the risk of mortality, the Balanced-AGE estimate predicted the risk of all-cause death indepen-

dently of chronological age. The strength of the association of Balanced-AGEwith risk of death wasmore pronounced in younger groups (50–

59 years and 60–69 years), which may show that changes in physiological status, as reflected by aging biomarkers, may play a greater role in

accelerating human aging in the younger groups compared to the older group (R70 years). The National Institutes of Health found that

abstaining from alcohol doubled the risk of mortality,42 and in our study we found former drinkers had the greatest mortality risk at the

same biological age level, suggesting the long-term harm of alcohol consumption on human mortality and aging. In terms of early aging

health intervention, attention should be paid to this part of the population that is ignored due to alcohol abstinence.

In this study, we demonstrated that sex, smoking, alcohol consumption, and obesity can accelerate the aging process in humans. Smokers

had shorter telomere lengths than never-smokers. Dose-responsemeta-analyses showed an inverse trend between pack-years of smoking and

telomere length.43 At the same time, studies have shown that even small amounts of alcohol consumption are associated with the premature

aging of the brain,44 which in turn affects the aging process of the organism. NAD(+) (Nicotinamide adenine dinucleotide) can slow down the
6 iScience 27, 108891, March 15, 2024



Figure 3. Stratified analysis to assess the association of Balanced-AGE and Balanced-AGE-ACC with mortality

(A) Associations of Balanced-AGE with all-cause mortality in subgroups (per 5 years increase), (B) Associations of Balanced-AGE-ACC with all-cause mortality in

subgroups (per quartile years increase).
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aging process,male’s blood levels ofNAD(+) decline faster with age compared to female, andmale aremore prone to acquiring poor lifestyles

(e.g., smoking, drinking), somale aremore susceptible to aging than female.45 Obesity is associated with the acceleration of cellular processes

observed during normal aging, and inflammation and oxidative stress appear to be important mediators of this association.46 For example,

obesity increases inflammationandoxidative stress, andoneof themajorhallmarksof aging is increased levels ofpro-inflammatorymolecules.47

Our study has a few strengths. First, our data came from a database of individuals who had completed at least one independent physical

examination at baseline and had rich and accurate blood biomarker data. Mortality data were obtained from the Hangzhou Public Security

Bureau database, which provides reliable follow-up for death. Second, this study applied a complex sampling design andmaximally avoided

the biased estimation that was potentially introducedby the imbalanced data problem, which greatly improved the death prediction accuracy

of the model. Third, by exploring associations between Balanced-AGE and mortality risk after adjusting for health behaviors, our results

showed the robustness of these associations across subgroups. Fourth, we assessed the potential impact of smoking and drinking behaviors

on biological aging and verified that smokers and drinkers have accelerated biological aging than never smokers or drinkers.

Overall, we developed an effective approach to estimate biological age (Balanced-AGE) with highly imbalanced physical examination

data, and this aging measure is a promising predictor of mortality. The Balance-AGE could be used as an independent indicator of the aging

process. More importantly, its prediction power for mortality is robust regardless of chronological age and lifestyles. In addition, this measure

revealed the impact of sex, smoking, drinking, and BMI on aging process. These findings suggest that this new agingmeasuremay be used to

identify high-risk individuals for early intervention and evaluate the efficacy of aging intervention.
Limitations of the study

However, a few limitations should be noted. This study did not exclude death due to accidents or other reasons that are not directly related

aging. Also, the lack of physical activity and dietary data limited our ability to assess their impact on biological aging. Our study had no

detailed information on the amount and frequency of cigarette or alcohol consumption, and additional information on such aspects could

help explore their impact on biological aging more comprehensively.
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KEY RESOURCES TABLE
REAGENT or RESOURCE SOURCE IDENTIFIER

Software and algorithms

SAS 9.4 SAS https://www.sas.com/en_us/home.html

R Studio R-Tools Technology, Inc https://www.rstudio.com/

STATA 16.0 StataCorp LLC https://www.stata.com/

Levine method Levine et al.17 https://doi.org/10.18632/aging.101414

Repeated sub-sampling approach Khalilia et al.41 https://doi.org/10.1186/1472-6947-11-51

Gompertz algorithms Kirkwood et al.48; Dey et al.49 https://doi.org/10.1098/rstb.2014.0379;

https://doi.org/10.1016/j.chest.2020.03.015

Balanced-AGE This paper N/A

Imbalanced-AGE This paper N/A

Balanced-AGE-ACC This paper N/A

Imbalanced-AGE-ACC This paper N/A
RESOURCE AVAILABILITY

Lead contact

Further information and requests for resources and reagents should be directed to and will be fulfilled by the lead contact, Xifeng Wu

(xifengw@zju.edu.cn).
Materials availability

This study did not generate new unique reagents.
Data and code availability

� All data reported in this paper will be shared by the lead contact upon request.

� This paper does not report original code.
� Any additional information required to reanalyze the data reported in this paper is available from the lead contact upon request.
EXPERIMENTAL MODEL AND SUBJECT DETAILS

Study population

This study collected a wide range of baseline data through routine physical examinations from 73261 individuals aged 50 years or older at the

Second Affiliated Hospital, Zhejiang University School of Medicine from January 01, 2008 and October 28, 2020. Information on mortality was

collected through October 28, 2021. We excluded participants with the missing physical examination items or with incomplete records or

invalid government issued IDs (n = 18465). The final valid analytic sample included 54796 participants at baseline enrollment. The study

was approved by the Institutional Review Board of the Second Affiliated Hospital of Zhejiang University, School of Medicine.
Follow-up for mortality

Information on survival status and date of death were retrieved from the Hangzhou Public Security Bureau database, and matched with par-

ticipants’ physical examination data through unique government issued IDs. By the end of October 28, 2021, 1158 (2.11%) out of 54796 par-

ticipants died. The median follow-up time was 80 (IQR, 79.6–80.4) months.
Health measurements

BMI was categorized into four levels (underweight: <18.5 kg/m2; normal: 18.5%BMI<24.9 kg/m2; overweight: 25% BMI< 24 kg/m2; obese:

R28.0 kg/m2).29 Age was categorized into three groups (50–59, 60–69, and R70 years old). According to participants’ smoking and alcohol

consumption history, the smoking status was classified as never smoker, former smoker and current smoker. Drinking status was classified as

never drinker, former drinker and current drinker.50
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Data pre-processing and biological age estimation

An imbalanced data problem is a phenomenon where there is a large gap between the number of event cases and non-event cases in training

data, which will cause low prediction accuracy.28 In this study, the proportion of mortality was 2.11%. The number of death cases was far

smaller than the number of alive cases, which is extremely imbalanced. Therefore, to improve the validity and accuracy of the model adopted

in this study, we used a repeated sub-sampling design41 to address the issue of data imbalanced51 and then construct the Balanced-AGE

(Figure S1). To evaluate the effect of the complex sampling design, we randomly split the original datasets at a 7:3 ratios and formed an imbal-

anced training set and validation set. The imbalanced training set was used to establish Imbalanced-AGE. Before being selected, each var-

iable was standardized [(X-mean)/SD] to ensure the objectivity of the subsequent algorithm calculation. For the balanced training set which

consisted of multiple sub-samples, the (LASSO)cox algorithm was performed to select biomarkers in each sub-sample. Biomarkers that were

selected in more than 80% of the subsamples were included in the construction of Balanced-AGE. Besides chronological age and sex, 12

additional biomarkers (Albumin (ALB), Alkaline phosphatase (ALP), Total protein/globulin (A/G), Globulin (Glob) Gamma-glutamyl transpep-

tidase (GGT), Hemoglobin (HGB), Lactic dehydrogenase (LDH), Lymphocyte percentage (LY%), Mean corpuscular hemoglobin concentration

(MCHC), Red blood cell distribution width (RDW), CA125, CA129) were selected.We did not includeGlob due to its high correlation with A/G

(r = �0.89, p < 0.05, Figure 1G) and relatively small contribution to the mortality. Finally, 13 biomarkers were included in the final Balanced-

AGEmodel. For the Imbalanced training set, the (LASSO)cox algorithmwas applied directly, besides chronological age, another 7 biomarkers

(Alkaline phosphatase (ALP), Gamma-glutamyl transpeptidase (GGT), Serum creatinine (CR), Red blood cell distribution width (RDW), CA199,

CA125, Lymphocyte percentage (LY%)) were selected to construct Imbalanced-AGE.

According to the Gompertz48,49 (age-mortality) distribution and the Levine method,17 13 and 8 biomarkers obtained from the screening

stage were included in the model, respectively, and finally, Balanced-AGE and Imbalanced-AGE were obtained. The formula is shown below:

BA =
ln½ � g � lnð1 � Fðt; xbÞÞ�

exp ðgtÞ � b0

b1

Where Fðt; xbÞ is the Gompertz model based on the selected biomarkers, t denotes the longest follow-up time (months), and xb repre-

sents the linear combination of biomarkers from the Gompertz model.

In our study, t = 165 months. The b0;b1;g are parameters estimated based on the Gompertz regression which contains only chronolog-

ical age.

For Balanced-AGE:

Fð165; xbÞ = ð � ALB � 0:0266 + ALP � 0:0027 � A =G � 0:3636 + GGT � 0:0008 + HGB � 0:0034

+ LDH � 0:0013 � LY% � 0:0151 � MCHC � 0:0131 + RDW � 0:1093 + AGE � 0:0455 + CA125 � 0:0018

+ CA199 � 0:0011 � Sex � 0:3421 � 7:654Þ= 0:0547+ 231:5667

For Imbalanced-AGE:

Fð165; xbÞ = ðALP � 0:0045 + GGT � 0:0018 + CR � 0:0068 + RDW � 0:2650 + AGE � 0:1052 + CA199 � 0:0032
+ 0:0063 � CA125 � LY% � 0:0316 � 22:2614Þ+ 125:2547

To eliminate the effect of chronological age on the aging process, we adopted the concept of age acceleration (AGE-ACC)50,52 in later

analysis, which is defined as the difference between Balanced-AGE (or Imbalanced-AGE) and chronological age, symbolized as Balanced-

AGE-ACC (or Imbalanced-AGE-ACC). AGE-ACC represents Balanced-AGE (or Imbalanced-AGE) after adjustment for chronological age,

when AGE-ACC = 0 means no difference between individuals’ Balanced-AGE (or Imbalanced-AGE) and chronological age; AGE-ACC>0

means that an individual is physiologically older compared with the corresponding chronological age; AGE-ACC<0means that an individual

is physiologically younger compared with the corresponding chronological age.
QUANTIFICATION AND STATISTICAL ANALYSIS

The baseline characteristics of the participants were reported as MeanG Sd or n (%). T-test and ANOVA analysis were used to compare the

differences between groups. BMI, age, smoking, and drinking status were collected and considered for stratified analysis.

The model discrimination was assessed in the validation set. 3-year, 5-year, and 10-year-time-dependent areas under the receiver oper-

ating characteristic curves (AUC) were calculated and compared for the Balanced-AGE, Imbalanced-AGE, and chronological age.

The COX proportional hazards model was used to assess the estimated risk between Balanced-AGE and all-cause mortality. To exclude

potential confounding effects, we: 1) adjusted chronological age, sex, BMI, smoking, and drinking status; 2) employed stratified analyses with

chronological age, sex, BMI, smoking, and drinking status.
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We also used the COXmodel to assess the association between Balanced-AGE-ACC andmortality with adjustment of chronological age,

sex, BMI, smoking, and drinking status. Multivariable linear regression which adjusted sex, BMI, smoking, and drinking was applied to calcu-

late the effect of different lifestyles on Balanced-AGE-ACC.

All data were processed and analyzed by software SAS 9.4; statistical graphics were plotted by R Studio; the Gompertz model was per-

formed by STATA 16.0. p values were two-sided. p values < 0.05 and Bonferroni p values < 0.0167 were considered statistically significant.
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