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Objective: Intractable epilepsy and uncontrolled seizures could affect cardiac function

and the autonomic nerve system with a negative impact on children’s growth. The aim of

this study was to investigate the variability and complexity of cardiac autonomic function

in pre-school children with pediatric intractable epilepsy (PIE).

Methods: Twenty four-hour Holter electrocardiograms (ECGs) from 93 patients and 46

healthy control subjects aged 3–6 years were analyzed by themethods of traditional heart

rate variability (HRV), multiscale entropy (MSE), and Kurths–Wessel symbolization entropy

(KWSE). Receiver operating characteristic (ROC) curve analysis was used to estimate

the overall discrimination ability. Net reclassification improvement (NRI) and integrated

discrimination improvement (IDI) models were also analyzed.

Results: Pre-school children with PIE had significantly lower HRV measurements than

healthy controls in time (Mean_RR, SDRR, RMSSD, pNN50) and frequency (VLF, LF, HF,

LF/HF, TP) domains. For the MSE analysis, area 1_5 in awake state was lower, and areas

6_15 and 6_20 in sleep state were higher in PIE with a significant statistical difference.

KWSE in the PIE group was also inferior to that in healthy controls. In ROC curve analysis,

pNN50 had the greatest discriminatory power for PIE. Based on both NRI and IDI models,

the combination of MSE indices (wake: area1_5 and sleep: area6_20) and KWSE (m = 2,

τ = 1, α = 0.16) with traditional HRV measures had greater discriminatory power than

any of the single HRV measures.
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Significance: Impaired HRV and complexity were found in pre-school children with PIE.

HRV, MSE, and KWSE could discriminate patients with PIE from subjects with normal

cardiac complexity. These findings suggested that the MSE and KWSE methods may

be helpful for assessing and understanding heart rate dynamics in younger children

with epilepsy.

Keywords: pre-school children, intractable epilepsy, heart rate variability, multiscale entropy, symbolization

entropy

INTRODUCTION

Epilepsy is a brain disorder affecting patients of all ages (1)
with approximately 10.5 million children in the world suffering
from uncontrolled seizures (1, 2), and 20–30% of these children
are resistant to antiepileptic drugs (AEDs) and other clinical
therapies (3). Sudden unexpected death in epilepsy (SUDEP) has
been reported to account for 15 and 50% of all deaths in patients
with epilepsy and drug-resistant epilepsy, respectively (4), and
the regulation of the autonomic nervous system (ANS) has
been highlighted (5). Specifically, alterations of the sympathetic
and parasympathetic systems resulting in cardiac arrhythmia,
apnea, or cerebral electrical shutdown have been linked to
SUDEP (6, 7). Recurrent seizures have higher negative impact on
physical growth, sleep, behavior, and mental development (such
as depression, anxiety, psychosis, suicide) later in life, bringing
heavy burdens to families and society (2, 3, 8–13). Apart from
recurrent and unprovoked seizures, epilepsy also contributes
to alterations of cardiac autonomic modulation, exhibiting an
impairment of sympathetic and/or parasympathetic modulation
of cardiac activity (14, 15). Children with intractable epilepsy
demonstrate age-related seizure expression (2); thus, more
attention should be paid to younger children, especially pre-
school children, for their better future development. However,
few studies have focused on the cardiac autonomic nerve system
(CANS) of pre-school children with intractable epilepsy, and
whether epilepsy and seizures impair the function of CANS in
such younger age range is still unknown.

Heart rate variability (HRV) is considered one of the
accurate biomarkers of the sympathovagal balance of the CANS
by a noninvasive method. Generally, a high HRV reflects
the sympathovagal balance or well-conditioned adaptability of
CANS, and a low HRV relates to a sign of deficient and abnormal
function of the ANS (16). HRVmeasurements have been effective
and independent predictors for cardiovascular and neurological
diseases (17, 18). Previous studies of autonomic modulation in
children with epilepsy published different results, most of which
indicate the impairment of CANS regulation considering HRV
measurements in the time and frequency domain (14, 15, 19–
26). In addition to 24-h long-term analysis, recent studies also
focused on ictal or peri-ictal characters with the HRV method to
investigate heart activity abnormalities or detect seizures (27–30).
The inconsistency in the results, however, was probably owing to
different designs of the experiments in sample size, epilepsy type,
recording time, and analysis detail. Moreover, HRV index from
24-h Holter electrocardiogram (ECG) recording in pre-school

children was still not covered in patients with intractable epilepsy
and their healthy control subjects.

Heart rate signals have typical non-linear features because
they are the results of the interaction of multiple physiological
systems and are influenced by various internal and external
factors (18). There are some limitations for traditional non-linear
domain HRV measures to assess the complexity of heart rate
dynamics (18). For example, classical entropy-based complexity
measures quantify only the regularity of time series on a
single scale without considering more scales from interaction
and consolidative capability of time and space in CANS.
Under the postulation that the healthy allow for responding to
transient stressors for adaptation to the demands of an ever-
changing environment, the multiscale entropy (MSE) method
was proposed (31, 32). Diseased and/or aged systems are less
adaptable, so the complexity of the human body should be
reduced, which could be observed by MSE analysis but could
not be observed using traditional HRV entropy. MSE has been
extensively used and developed in diagnostics, classification, risk
stratification, and prognosis for patients undergoing peritoneal
dialysis as well as patients with diseases such as stroke,
heart failure, primary aldosteronism, Alzheimer’s disease, autism
spectrum disorder, and Parkinson disease. Actually, MSE analysis
is a kind of direct and fixed coarsening of RR intervals. Besides
this, symbolization entropy is also a normal coarsening process
to time series with adjustable control parameters for observing
the effects of parameters and choosing the stable parameters.
Kurths–Wessel symbolization entropy (KWSE) is a relatively
easy symbolization method to implement and is closely related
to heart rate signals, finally forming a four-symbol static time
series transformation method (scope of recommendations for α:
[0.03, 0.07] in original papers) (33–35). It has been used in the
discrimination of elder, cardiac heart failure, and adult epilepsy
from healthy people and seems to be a stable and reliable marker
for cardiac complexity (36). However, MSE and KWSE analyses
of heart rhythm dynamics in pre-school patients with intractable
epilepsy have not yet been studied.

In our previous study, we looked into the difference of HRV
andMSE features between adult patients with intractable epilepsy
and healthy controls (37). Several indicators were found to
have significant results. In this study, we aimed to investigate
the variability and complexity of long-term ECG signals using
not only HRV and MSE analysis, but also KWSE analysis
in pre-school children with intractable epilepsy. Furthermore,
the results of MSE and KWSE analysis were compared with
traditional complexity measures.
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MATERIALS AND METHODS

Participants
Pediatric patients with intractable epilepsy (PIE) as defined by the
International League Against Epilepsy (38) were screened strictly
based on the inclusion and exclusion criteria in the VNS-PIE
clinical trial. A total of 11 centers participated in the VNS-PIE
study. These included Peking University First Hospital (Principal
Unit), Chinese PLA General Hospital, Shenzhen Children’s
Hospital, Qilu Hospital of Shandong University, Shandong
Province Hospital, the First Hospital of Jilin University,
the Second Affiliated Hospital of Xi’an Jiaotong University,
Xiangya Hospital Centeral South University, the Children’s
Hospital Zhejiang University School of Medical, Fujian Medical
University Union Hospital, and the Affiliated Hospital of Zunyi
Medical College. Pediatric patients had undergone routine pre-
surgical examinations, including clinical history, biochemical
examination, long term video-electroencephalograph (EEG),
imaging examination (magnetic resonance or MR), cognitive
development testing (Gesell scale), and 24-h Holter ECG
recordings. Inclusion criteria were as follows (1) age 3–6 years,
(2) at least six seizures per month, (3) refractory epilepsy,
(4) in good health except for epilepsy, (5) family members of
patients can understand the method and sign the informed
consent, and (6) patients with good compliance and can complete
post-operative follow-up. Exclusion criteria were as follows: (1)
results of MRI showed epilepsy was caused by intracranial space-
occupying lesions; (2) tumor, cardiopulmonary anomaly, heart
failure, progressive neurological diseases, asthma, mental disease,
peptic ulcer, diabetes, poor health, and other contraindications
toward surgery; (3) vagal nerve lesion or damage; (4) could
not write the epilepsy diary; (5) participating in another
clinical trial; (6) could not complete the operation; (7) could
not complete the post-operative follow-up; or (8) could not
complete the programming. Pediatric healthy control (PHC)
subjects with matched age and gender were recruited into
this study based on their clinical history, physical examination
results, and 24-h Holter ECG results. This trial (VNS-PIE) was
approved by the Clinical Trial Ethics Committee of Peking
University First Hospital (Protocol Number: G112L31101; Date:
31/7/2017) and registered on ClinicalTrials.gov protocol system
(Clinical Trials Identifier: NCT03062514). The parents of all
the pediatric participants provided informed consent in written
form before the start of the study. The observed variables of
participants included demographic data, seizure type, epilepsy
duration, etiology, seizure frequency, number of AEDs used, pre-
surgical MRI findings, ictal scalp video-EEG characteristic and
ECG recordings.

ECG Recording and Pre-processing
A 12-lead ambulatory ECG monitoring device (MIC-12H-3S;
JincoMed, Beijing, China) with a sampling rate of 500 samples/s
per channel was used to record a consecutive 24-h ECG in
all participants. Wearing this Holter ECG device, participants
(patients and healthy controls) were in freely moving conditions
and normal daily style to avoid strenuous activities or restricted
movement. Their parents were asked to keep a record of

the children’s main activity and observed seizures every hour,
including the time, duration, and type of each activity and
seizure. The chest lead V5 with stable and reliable signal quality
was selected as the main analysis lead and the standard limb lead
II as the secondary analysis lead. If the above two lead signals
were missing or their signal-to-noise ratios were low, we selected
other lead as an auxiliary analysis lead, which was recorded as
a normal and stable waveform. The ECG segments with possible
seizures along with the segments within at least 15min before and
from seizure onsets were discarded to avoid their potential effects
on further analyses.

Based onMatlab (R2020a, Mathworks, Natick, MA, USA) and
Kubios (Kubios Premium 3.4.1, University of Eastern Finland,
Kuopio) softwares, the ECG fragments and abnormal QRS waves
submerged by noise or motion artifacts were removed. The long-
term RR interval time series were formed, whose abnormal R-
wave markers were <10%, and the length of each record was not
<20 h. Then 4-h periods of RR intervals in the awake and sleep
state were selected, respectively, by researchers for each recording
according to the heart rate characteristics and activity recordings
(39, 40).

Measures From RR Intervals
Traditional HRV measures always include time and frequency
domain analysis according to the recommendations of the
European Society of Cardiology and the North American Society
of Pacing Electrophysiology (18). Mean RR was the mean RR
interval values. SDRR was calculated as the standard deviation
of RR intervals and taken to represent the overall variability of
autonomic modulation. RMSSD was the root mean square of
successive differences between successive RR intervals. pNN50
was calculated as the percentage of absolute differences in normal
RR intervals >50ms. RMSSD and pNN50 were regarded as the
variability of parasympathetic nerve function on the heart rate.
The frequency domain parameters, including high frequency
(HF; 0.15–0.4Hz), low frequency (LF; 0.04–0.15Hz), and very
low frequency (VLF; 0.003–0.04Hz) power, were calculated by
Fast Fourier transformation (FFT) algorithm. The total power
(TP) was the sum of HF, LF, and VLF power, and the ratio of
LF to HF (LF/HF) was also calculated. LF was taken to reflect
the modulations of both the parasympathetic and sympathetic
nervous systems, whereas HF primarily demonstrated the
function of parasympathetic nerve. It was suggested that the
VLF power appeared to be generated intrinsically by the heart
itself (41).

Traditional non-linear HRV measures included ApEn (42)
and SampEn (43) in this study. Instead of merely estimating the
complexity of a time series with a single scale, the MSE method
presents the meaningful structural richness of information
embedded in multiple spatial and temporal scales (31, 32). In
the analysis of MSE, we selected two 4-h periods of RR intervals
in the quiet awake state and sleep state to reduce the variability
of the circadian rhythm and physical activity. Similar processing
can be found in previous research (37, 39, 40). The MSE
method comprises two steps: (1) Coarse-graining process: the RR
intervals were reconstructed as different time scales. For example,
for a given RR interval, in which N is the number of time series,
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the multiple coarse-graining time series y(τ )j was the average of n
non-overlapping consecutive beats with an increasing scale factor
τ .The equations were calculated according to Equation (1):

y
(τ )
j =

1

τ

jτ
∑

i=(j−1)τ+1

RRi, 1 ≤ j ≤ N/τ (1)

(2) Quantified by sample entropy with parameters m = 2 and r
= 0.15 ∗ SDRR, where m was the embedding dimension, r was
the size of the cell for coarse-graining the phase space, and SDRR
was the standard deviation of the 4-h RR interval time series as
defined in the paper in which themethod was originally proposed
(31, 32). The implementation of the parameters corresponded
to normalizing the time series so that the sample entropy
results depended only on the sequential ordering rather than
the variance of the original time series. For each of the 4-h
periods, including periods in the awake and sleep states, four
different measures were calculated from theMSE profile: the area
of entropy values of scales 1–5 (area 1_5), which quantified the
complexity of RR dynamics in a short time scale; 6–15 (area 6_15)
and 6–20 (area 6_20), which quantified the complexity of RR
dynamics in long time scales; and the linear-fitted slope of scale
1–5 (k1), which characterized the modulation pattern in short
scales (37, 39, 40). Such indices were proved to be efficient in our
previous study discriminating adult patients with epilepsy and
healthy controls (37). To avoid underestimation of entropy due to
nonstationary artifacts, especially trends of RR intervals series, a
detrending process was used on RR intervals before MSE analysis
to adaptively extract the trends and subtract them (44, 45).

Besides the coarse graining on different scales in the MSE
method, the symbolization of time series was also a coarse
process by transforming the original sequence into a sequence
containing only individual values, which showed fast, antinoise,
and robust features in practical application. A static time series
transformation method of four symbols determined KWSE with
three steps (33–35). (1) In symbolization, the RR intervals
were transformed to a symbolization series Si(RRi) based on
Equation (2):

Si(RRi) =















0 : µ < RRi ≤ (1+ α)µ
1 : (1+ α)µ < RRi ≤ ∞
2 : (1− α)µ < RRi ≤ µ

3 : 0 < RRi ≤ (1− α)µ

, 1 ≤ i ≤ N (2)

where µ was the mean of the RR intervals series and α was the
parameter to control the symbolization range. (2) Coding for the
symbolization series, Ci was constructed bym points with τ delay
based on Equation (3):

Ci =
m

∑

j=1

2m+1−jSi+(j−1)τ , 1 ≤ i ≤ N −mτ (3)

(3) With the Shannon entropy calculation, H was finally
calculated by a classical Shannon entropy of Ci denoting the
complexity of RR intervals based on Equation (4):

H = −
∑

Ci Ci (4)

Statistical Analysis
Continuous variables were presented as mean ± standard
deviation (SD). Comparisons of continuous data between the
PIE and control groups were made using the Mann–Whitney
U-test. Differences between qualitative or categorical variables
were assessed using the chi-square test or Fisher’s exact test. To
compare the ability of different Holter parameters to differentiate
the PIE patients from the healthy control patients, a receiver
operating characteristic curve (ROC) was constructed from the
sensitivity and specificity with logistic regression models, and the
area under the ROC curve (AUC) was used to estimate the overall
discrimination ability. C-statistics were used to describe the
discrimination of the models before and after adding non-linear
parameters (46–48). Net reclassification improvement (NRI) and
integrated discrimination improvement (IDI) were used to assess
improvement of the discriminating power by using two different
logistic regression models with 0.2 and 0.4 as the cutoff points,
which are commonly used cutoff values (46, 48). All statistical
analyses were performed using SPSS (Version 20, IBM Corp.,
Armonk, NY, USA) and Matlab (R2020a, Mathworks, Natick,
MA, USA). Statistical significance was set at p < 0.05.

RESULTS

Demographics and Clinical Factors
A total of 93 patients with PIE and 46 healthy control participants
were included in this study, according to the protocols. Among
the 93 patients, based on their epileptic diary, 25 were reported
to have possible seizures during the 24-h ECG recording, and 21
reported to have focal seizures lasting <60 s.

Demographic data and clinical factors of patients with PIE
(n= 93, range 3.1–5.6 years old) and healthy controls (n = 46,
range 3.0 to 5.5 years old) are presented in Table 1. Demographic
data, including gender, age, and body mass index (BMI),
showed no significant differences between patients and controls.
However, there were significant statistical differences in each
subitem of the Gesell scale, indicating that patients with PIE were
undergoing general heavy mental and cognitive degradation.
Other clinical factors included epilepsy duration, use of AEDs,
seizure frequency, seizure type, and cerebral lesions. Twelve
types of therapeutic AEDs were reported to be previously used,
among which valproate was the most administered one, taken
by 72 subjects. Detailed information of clinical and therapeutic
characteristics of patients are also shown in Table 1.

ECG Signals Analysis
The measurements of traditional HRV analysis including time
and frequency domain from long-term RR intervals were
significantly lower in patients with PIE than that in healthy
controls, whereas non-linear parameters (ApEn and SampEn)
could not differentiate the two populations (Table 2). The result
imply impairment of the function of CANS in PIE patients
compared with healthy controls as expected.

The results of MSE are shown in Figure 1 and Table 2. The
profiles of MSE were different based on the wake/sleep state,
which might show the influence of circadian rhythm and the
state of the brain. In comparison to pediatric healthy controls, we
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TABLE 1 | Demographic data and clinical data of the patients.

Characteristics PIE

(n = 93)

PHC

(n = 46)

P-value

Male, no. (%) 60 (64.5) 27 (58.7) 0.50

Age (years) 4.5 ± 0.8 4.2 ± 0.8 0.09

Body mass index (kg/m2) 15.9 ± 2.1 15.6 ± 1.9 0.31

Gesell scale

Adaptability 25.5 ± 21.1 97.5 ± 7.3 <0.001

Gross motor 30.8 ± 19.4 93.7 ± 9.4 <0.001

Fine motor 27.2 ± 21.9 95.5 ± 7.2 <0.001

Language 24.6 ± 20.1 96.4 ± 9.5 <0.001

Individual and social

interaction

26.9 ± 21.4 97.2 ± 9.5 <0.001

Epilepsy duration (months) 39.7 ± 13.4 N.A. N.A.

No. of previous AEDs 5.4 ± 2.1 N.A. N.A.

No. of present AEDs 2.9 ± 1.2 N.A. N.A.

Seizures per month 370.3 ± 488.6 N.A. N.A.

Seizure type, no. (%)

Tonic seizure 38 (40.9) N.A. N.A.

Atypical absence 10 (10.8) N.A. N.A.

Atonic seizure 6 (6.5) N.A. N.A.

Myoclonic seizure 17 (18.3) N.A. N.A.

Spasm 45 (48.4) N.A. N.A.

Others 20 (21.5) N.A. N.A.

Cerebral lesions (MRI), no. (%)

Temporal 2 (2.2) N.A. N.A.

Frontal 7 (7.5) N.A. N.A.

Parietal 12 (12.9) N.A. N.A.

Occipital 11 (11.8) N.A. N.A.

Diffusing or multiple lesions 10 (10.8) N.A. N.A.

Negative 57 (61.3) N.A. N.A.

Previous usage of AEDs, no. (%)

Valproate 72 (77.4) N.A. N.A.

Topiramate 48 (51.6) N.A. N.A.

Levetiracetam 39 (41.9) N.A. N.A.

Clonazepam 33 (35.5) N.A. N.A.

Lamotrigine 24 (25.8) N.A. N.A.

Oxcarbazepine 16 (17.2) N.A. N.A.

Clobazam 15 (16.1) N.A. N.A.

Zonisamide 5 (5.4) N.A. N.A.

Vigabatrin 5 (5.4) N.A. N.A.

Carbamazepine 3 (3.2) N.A. N.A.

Phenobarbital 2 (2.2) N.A. N.A.

Rufinamide 1 (1.1) N.A. N.A.

Data were presented as mean value ± standard deviation or number (percentage). No.

denotes “number.” N.A. denotes “not available,” and five patients’ BMI were not available.

found the MSE of PIE patients in a scale of 3–9 in the wake state
to be significantly lower as well as scale 10–20 in the sleep state
significantly higher. Also, we found that, in PIE patients, area 1_5
in the wake state was significantly lower and areas 6_15 and 6_20
in the sleep state were significantly higher than the PHC group.
No significant differences were found in other measures of MSE.

TABLE 2 | Traditional HRV and MSE measurements of PIE and PHC participants.

Measures PIE

(n = 93)

PHC

(n = 46)

P-value

Mean_RR(ms) 580.4 ± 52.8 616.4 ± 58.7 0.003

SDRR(ms) 33.6 ± 21.8 45.1 ± 15.9 <0.001

RMSSD(ms) 36.7 ± 25.7 50.6 ± 23.3 <0.001

pNN50(%) 9.0 ± 8.8 19.0 ± 11.4 <0.001

VLF(ms2) 105.3 ± 169.7 155.7 ± 77.3 <0.001

LF(ms2) 482.8 ± 512.4 815.0 ± 452.4 <0.001

HF(ms2) 714.4 ± 865.9 1428.9 ± 1235.3 <0.001

LF/HF(ms2) 1.1 ± 0.8 0.8 ± 0.3 0.04

TP(ms2) 1304.4 ± 1406.2 2401.7 ± 1683.5 <0.001

ApEn 1.42 ± 0.07 1.42 ± 0.05 0.58

SampEn 1.55 ± 0.15 1.53 ± 0.10 0.42

MSE

Wake

area1_5 4.43 ± 0.97 4.93 ± 1.05 0.02

area6_15 12.88 ± 2.30 13.75 ± 1.95 0.05

area6_20 20.41 ± 3.60 21.62 ± 2.98 0.08

k1 0.05 ± 0.06 0.06 ± 0.06 0.35

Sleep

area1_5 5.34 ± 0.93 5.39 ± 0.95 0.66

area6_15 11.94 ± 2.01 11.09 ± 1.95 0.02

area6_20 18.48 ± 3.26 16.74 ± 3.09 0.003

k1 −0.05 ± 0.07 −0.07 ± 0.06 0.08

Data were presented as mean value ± standard deviation.

The significant results show the potential discriminating power
of MSE measures between PIE patients and PHC, indicating
the impairment in the complexity of CANS in PIE patients.
Although, as we can observe from the results, some of the
measures of MSE might not work as efficiently as traditional
time and frequency domain HRV analysis to distinguish PIE and
PHC participants.

The profile of KWSE is presented in Figure 2. The larger the
m parameter, the higher the amplitude of the total KWSE curve.
Also, no matter which of the six combinations of m (2, 3, 4) and
τ (1, 2) selected, the entropy values between the two groups were
significantly different when α ≥ 0.12, and especially, the p-value
did not exceed 0.001 when α was between 0.14 and 0.61.

From the results above, we can also find that, in quantifying
the complexity of the heart rate signals, the MSE and KWSE
worked better than the traditional HRV non-linear parameters
ApEn and SampEn. This provided evidence of potentially higher
discriminating power when traditional HRV andMSE/KWSE are
combined during the modeling.

ROC Curve Analysis
In the ROC curve analysis of a single variable, for traditional
HRV parameters, pNN50 (AUC = 0.746) had the greatest
discriminatory power for patients with PIE and healthy control
subjects and complexity measures (Figure 3). In quantifying the
complexity, the AUC of non-linear HRV parameters ApEn and
SampEn were 0.536 and 0.505, respectively. For the MSE results,
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FIGURE 1 | MSE profiles for PIE and PHC. Data are shown as mean value

and bars denoted the standard error (SE = SD/
√
n). (A) Participants were on

wake state; (B) Participants were on sleep state. τ was the scales. P-value

was calculated by Mann-Whitney U-test. *p < 0.05; **p < 0.01; ***p < 0.001.

in the wake state, the AUC of area1_5, area6_15, area6_20, and
k1 were 0.568, 0.550, 0.546, and 0.528, respectively, and in the
sleep state, the AUC of area1_5, area6_15, area6_20, and k1
were 0.504, 0.624, 0.648, and 0.603, respectively. The result of
KWSE (m = 2, τ = 1, α = 0.16) was 0.783, which had the
maximum distinguishing ability. This again showed that theMSE
measures andKWSE overall hadmore discriminating power than
the non-linear HRV when quantifying the complexity of the RR
time series.

Then, we looked at the combination of one of the traditional
HRV parameters and one of the heart rate complexity measures
(MSE or KWSE). In this analysis, according to the profiles of
MSE and KWSE exhibited in section ECG Signals Analysis, we
selected MSE indices (wake: area1_5 and sleep: area6_20) and
KWSE (m = 2, τ = 1, α = 0.16) to construct the model. As a
result, we found remarkable improvement in the discriminating
power as shown in Table 3. The results show that all of the AUCs
of the combined models for each of the traditional HRVmeasure
are over 0.783, larger than that of any single HRV measure
alone. Among them, the HRV adding KWSE models always had
larger AUC than that adding MSE models with the largest being
0.861 of pNN50+KWSE. In both the NRI and IDI indices, the
results confirm that the combination of the traditional HRV and
MSE/KWSE had greater discriminatory power than any of the
single HRV measures with all the NRI and IDI values positive,

and all p-values < 0.05. This result proved that the combination
of the traditional HRV and MSE/KWSE was more efficient
than single variable models, and the HRV+KWSE models
seemed to be the most promising indices for the improvement
of discrimination.

DISCUSSION

The main findings of this study were (1) the pre-school children
with PIE had worse heart rhythm complexity than age- and
gender-matched healthy control children, which was first studied
to the best of our knowledge; (2) in all linear and non-
linear measures based on heart rate, pNN50, VLF, and KWSE
had the greatest discriminatory power to detect the patients
undergoing PIE as a single parameter, and these were superior
to the traditional non-linear measures; (3) the combination
of traditional HRV measures and MSE/KWSE increased the
discriminatory power to differentiate PIE from healthy controls,
and the HRV+KWSE models had the most promising results.
The demographics and clinical factors did not demonstrate
significant impact on our results.

Traditional time and frequency domain analysis of HRV is a
conventional and useful tool to evaluate the cardiac autonomic
system and is commonly used to stratify the risk of patients
with cardiovascular and neurological diseases (17, 18). Aging
and disease have long been the main factors to be focused
on for dynamic characteristics of heart rate (18). According
to our results, we can not only find a major degradation in
behavior and cognition based on the Gesell scale, but also observe
a general impairment of the cardiac autonomic function by
analyzing the RR time series. By the method of traditional HRV,
the values of the time and frequency domain parameters of
the pre-school PIE patients, including SDRR, RMSSD, pNN50,
VLF, LF, and HF, are significantly lower than the paired healthy
controls, reflecting prominent autonomic dysfunction in both the
sympathetic and the vagal tone. This result is consistent with
most of the previous studies on CANS functions of children
with epilepsy, which indicate the impairment of CANS regulation
with multiple decrease in HRV measurements in the time and
frequency domain, such as HF, LF, RMSSD, and pNN50 (17,
19, 20, 22). We also noticed that the LF/HF result of the PIE
group was significantly higher than the PHC group, indicating
the imbalance of the CANS in patients. Several studies as well
found the imbalance of sympathetic vagal with LF increase or
LF/HF increase (23, 26, 49). However, some studies found no
alterations on HRV measures (14, 24). The difference of these
results may be owing to inconsistent sample size, epilepsy type,
recording time, and analysis detail and so on. Still, few studies
concern pre-school children with PIE even in the healthy state.
Our result first offers evidence of the impairment of cardiac
autonomic function in epilepsy patients of pre-school age group,
which supports the extension of the previous conclusion to a
wider age range.

Non-linear features are important to characterize and quantify
the dynamic variation of physiological systems including CANS
(18). Apart from traditional non-linear domainmeasures of HRV,
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FIGURE 2 | KW entropy profiles for PIE and PHC. Data are shown as mean value. α was the parameter to control the symbolization range for symbolization series Si ,

m was the size of word of coded series Ci , τ was the delay of coded series Ci . *p <0.05; **p <0.01; ***p <0.001.

FIGURE 3 | ROC curves. Analysis of the discrimination power of the two groups by ROC curve analysis. TheAUC of Mean_RR, SDRR, RMSSD, pNN50, VLF, LF, HF,

LF/HF, TP, ApEn, SampEn, area1_5_wake, area6_15_wake, area6_20_wake, k1_wake, area1_5_sleep, area6_15_ sleep, area6_20_ sleep, k1_ sleep, KWSE (m = 2,

τ = 1, α = 0.16) were 0.680, 0.727, 0.706, 0.746, 0.743, 0.734, 0.732, 0.531, 0.736, 0.536,0.505, 0.568, 0.550, 0.546, 0.528, 0.504, 0.624, 0.648, 0.603, and

0.783, respectively.
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TABLE 3 | AUC, NRI, and IDI models of traditional HRV parameters adding heart rate complexity parameters.

Measures AUC R square NRI NRI:p-value IDI IDI:p-value

SDRR 0.727 0.273

Wake:area1_5 0.781 0.418 0.451 0.002 0.142 0.001

Sleep:area6_20 0.798 0.425 0.452 0.002 0.146 0.001

KWSE* 0.814 0.428 0.488 0.001 0.152 0.001

RMSSD 0.706 0.226

Wake:area1_5 0.802 0.402 0.387 0.006 0.143 0.002

Sleep:area6_20 0.798 0.394 0.409 0.003 0.107 0.009

KWSE* 0.828 0.427 0.481 0.001 0.142 0.001

pNN50 0.746 0.234

Wake:area1_5 0.829 0.432 0.562 <0.001 0.155 < 0.001

Sleep:area6_20 0.831 0.432 0.568 <0.001 0.159 < 0.001

KWSE* 0.861 0.455 0.604 <0.001 0.167 < 0.001

VLF 0.743 0.231

Wake:area1_5 0.812 0.421 0.543 <0.001 0.147 < 0.001

Sleep:area6_20 0.814 0.423 0.567 <0.001 0.139 0.001

KWSE* 0.836 0.439 0.573 <0.001 0.161 < 0.001

LF 0.734 0.229

Wake:area1_5 0.825 0.428 0.341 0.004 0.122 0.004

Sleep:area6_20 0.832 0.429 0.419 0.002 0.125 0.004

KWSE* 0.841 0.443 0.498 0.001 0.149 0.001

HF 0.732 0.228

Wake:area1_5 0.819 0.417 0.507 <0.001 0.156 0.001

Sleep:area6_20 0.823 0.424 0.517 <0.001 0.154 0.001

KWSE* 0.843 0.429 0.533 <0.001 0.161 0.001

TP 0.736 0.231

Wake:area1_5 0.828 0.431 0.541 <0.001 0.162 < 0.001

Sleep:area6_20 0.825 0.428 0.531 <0.001 0.161 < 0.001

KWSE* 0.839 0.439 0.587 <0.001 0.185 < 0.001

AUC, areas under the curve; NRI, net reclassification improvement; IDI, integrated discrimination improvement; MSE, multiscale entropy. KWSE, Kurths–Wessel symbol entropy. *m = 2,

τ = 1, α = 0.16.

the MSE and KWSE methods were also included in our analysis,
which consider more scales of temporal and spatial interaction in
CANS (31–35). From our data, although traditional non-linear
domain HRV ApEn and SampEn failed to reveal the decrement
of the complexity in the patients, the MSE and KWSE methods,
however, successfully proved this alteration. Several scales and
indices of MSE and KWSE of the PIE group showed significant
differences from the PHC group. The decrease of complexity
under free-running conditions reflected a declined ability of the
systems to function in certain dynamical regimes, possibly due to
dysregulation or impairment of autonomic control mechanisms.
The results demonstrate the dysfunction of CANS in PIE and, in
the meantime, proved the efficiency of the multiscale methods
compared with the traditional single-scale methods, which
matched our previous expectation. However, no previous study
has reported the results of MSE and KWSE analysis in pre-school
children with PIE. Recent studies of MSE on pediatric patients
with epilepsy focused mainly on the EEG signals, which all
showed that healthy controls had more complexity than epilepsy
patients (50–54). Our result complemented this conclusion with

the ECG signals and might provide new insights into cardiac
complexity in epilepsy.

In the modeling of the discrimination of the patients and
healthy controls, we also found that models including multiscale
measures worked better than any single-index model. The largest
AUC of the models increased from 0.783 with HRV indices alone
to 0.861 with HRV and MSE/KWSE combined. Among them, we
found that the HRV+KWSE seemed to work the most efficiently.
The results show the effectiveness of the MSE/KWSE as auxiliary
methods in the modeling of discrimination. Particularly, the
KWSE method seemed to be the most promising method for
the improvement of the models for pre-school children with
epilepsy. In addition to the results, we also chose the parameters
carefully to get the dynamic features on the heart rate. The
original recommendation range for α in analysis of KWSE was
not suitable for pre-school children in our data, and the interval
[0.12, 0.99] had more stable discrimination power. We selected
the set of parameters as m = 2, τ = 1, α = 0.16, to simplify the
calculation while preserving the discriminating power. In short,
this is the first modeling of the discrimination of PIE patients
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and healthy controls of the pre-school age group based on ECG
signals, and by the HRV with MSE/KWSE measures, the models
exhibited enough efficiency.

There were also some limitations in our study: (1)
Although the age range was focused and narrow, we recruited
heterogeneous children with various epilepsy etiologies, epilepsy
durations, kinds of AEDs, seizure frequency, seizure type,
cerebral lesions, mental development, and so on. These factors
may have potential impact on variability and complexity for
CANS. For example, for studies focusing on specific syndromes,
Hattori et al. (26) found that LF significantly improved from
10-min ECG in sleep state for children with West syndrome
aged <1 year. Other studies focusing on Dravet syndrome found
a total decline in multiple HRV indices on 24-h ECG (22, 55),
and Delogu et al. (22) also found no significant results in all
HRVs for patients with other syndromes. These results show that
complicated factors that affect the results can be significant. (2)
We only roughly deleted possible seizure episodes based on ECG
data by visual inspection. Because the EEG data is considered as
the gold standard of identification of the seizure episodes, there
might remain undetected seizure episodes in our pre-processed
ECG data. They might impact our results because some studies
have published the effects of seizure episodes on heart rate and
HRV (27–30). Further studies are needed to explore the impact
of seizures on the CANS of pre-school children.

CONCLUSION

PIE in pre-school children is associated with diminished HRV,
MSE, and KWSE measures, thereby reflecting the loss of
sympathetic vagal balance and function of autonomic system on
heart rate. More importantly, when modeling with traditional
HRV measurements, the combinations with MSE and KWSE
significantly improve the power to differentiate PIE from healthy
subjects. These quantification methods of HRV could also be

used in younger children and may provide new insights into the
cardiac complexity in epilepsy.
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