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Abstract

Changes in the composition of the microbiome over time are associated with myriad human

illnesses. Unfortunately, the lack of analytic techniques has hindered researchers’ ability to

quantify the association between longitudinal microbial composition and time-to-event out-

comes. Prior methodological work developed the joint model for longitudinal and time-to-

event data to incorporate time-dependent biomarker covariates into the hazard regression

approach to disease outcomes. The original implementation of this joint modeling approach

employed a linear mixed effects model to represent the time-dependent covariates. How-

ever, when the distribution of the time-dependent covariate is non-Gaussian, as is the case

with microbial abundances, researchers require different statistical methodology. We pres-

ent a joint modeling framework that uses a negative binomial mixed effects model to deter-

mine longitudinal taxon abundances. We incorporate these modeled microbial abundances

into a hazard function with a parameterization that not only accounts for the proportional

nature of microbiome data, but also generates biologically interpretable results. Herein we

demonstrate the performance improvements of our approach over existing alternatives via

simulation as well as a previously published longitudinal dataset studying the microbiome

during pregnancy. The results demonstrate that our joint modeling framework for longitudi-

nal microbiome count data provides a powerful methodology to uncover associations

between changes in microbial abundances over time and the onset of disease. This method

offers the potential to equip researchers with a deeper understanding of the associations

between longitudinal microbial composition changes and disease outcomes. This new

approach could potentially lead to new diagnostic biomarkers or inform clinical interventions

to help prevent or treat disease.

Author summary

Evaluating how changes in the human microbiome influence the onset of disease could

lead to the development of novel approaches for diagnosis and treatment. Although
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various methods exist to determine significant differences in the microbial compositions

between disease outcomes, no methods exist to measure how much changes in the micro-

biome affect disease onset. This deficiency in analytic methods can be attributed to the dif-

ficulty of determining associations between time-dependent covariates and time-to-event

outcomes in conjunction with unique challenges of microbiome data analysis. Here we

propose a new methodology capable of quantifying the effects of longitudinal microbiome

data on time-to-event outcomes that overcomes these obstacles, demonstrating its perfor-

mance and utility via simulation study and application to real data from a case-control

study.

This is a PLOS Computational Biology Methods paper.

Introduction

Multiple studies have found differences in microbial compositions among people with various

illnesses, including depression, obesity, asthma, and autism spectrum disorder [1–7]. Impor-

tantly, the microbiome can fluctuate over time due to diet or other exposures [8–10]. Further-

more, longitudinal studies have shown that changes in the composition of the microbiome

over time are associated with disease outcomes [11–14]. Understanding the complex trajecto-

ries of different microbes within a community and the relationship of these trajectories to the

onset of human disease is important to uncovering the origins of dysbiosis. This enhanced

understanding may eventually help researchers develop new methods for diagnosing and treat-

ing disease.

Many methods have been developed to find associations between changes in the micro-

biome and different outcomes [15]. First, cross-sectional analyses compare microbial composi-

tions between phenotypic groups at a single time point and are extended to longitudinal data

by contrasting the results across time points [16, 17]. Second, longitudinal regression models

determine significant associations between data covariates and taxa abundances over time

[18–20]. Third, multiple methods use smoothing splines to determine the time intervals in

which microbial compositions significantly differ between phenotypic groups [21–23]. While

all of these methods analyze associations between longitudinal microbiome data and an out-

come, they do not account for how these changes affect time-to-event disease outcomes. Two

methods for determining associations between microbial compositions and event times have

been developed [24, 25], but they only examine the microbiome composition at a single time

point.

Evaluating associations between time-dependent biomarkers, such as longitudinal micro-

biome data, and time-to-event outcomes requires a specialized analytic approach. Typically

time-to-event models such as the Cox proportional hazards model are used to determine asso-

ciations between covariates and event times. However, the inclusion of time-dependent bio-

markers in a time-to-event model exposes parameter estimates to increased bias due to

potential measurement error, imputation of data at event times, or correlation with other

covariates and often violates proportional hazards assumptions [26, 27]. A joint modeling

approach was developed to address these issues, allowing the incorporation of time-dependent

biomarkers as covariates in a time-to-event model [28–31]. This joint modeling method simul-

taneously estimates a longitudinal submodel for the time-dependent biomarker and an event

submodel for the time-to-event outcomes. The event submodel determines associations

between the time-dependent biomarker and event times by including their estimated values
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from the longitudinal submodel, rather than the observed values, as a covariate [31]. Given

that longitudinal microbiome data are time-dependent biomarkers, this joint modeling

approach could be used to determine associations between longitudinal microbiome data and

time-to-event outcomes. However, microbiome data do not meet the Gaussian assumption of

the longitudinal submodel.

Indeed, microbiome data analysis presents unique challenges. Typically, researchers use

16S rRNA gene sequencing or whole-genome shotgun sequencing as the basis for classifying

microbes in a sample. This methodology results in a dataset containing counts of each taxon

across all samples (microbiome count data). However, the total number of sequence read

counts, or library size, varies across samples. This variation is generally recognized as an exper-

imental artifact of the next-generation sequencing procedure and not biologically informative.

To address these differences in library sizes, the data are often transformed into relative abun-

dances (microbiome compositional data). This transformation, however, also has limitations.

Indeed, microbiome compositional data cannot be analyzed using typical analytic techniques

since the data are 1) non-Gaussian and 2) subject to a unit-sum constraint resulting in a sim-

plex sample space [32, 33]. Other data normalization techniques (e.g., edgeR, DESeq2, cumula-

tive sum scaling) have been developed to allow researchers to analyze microbiome data

without transforming the data into relative abundances [34–36]. Unfortunately, these normali-

zation methods hinder the interpretability of the resulting statistical models. Another approach

to dealing with varying library sizes is to rarefy the data (i.e., subsample sequence read counts

so the total number of read counts is consistent across all samples). While rarefying micro-

biome count data has become a common approach, this methodology reduces statistical power

by discarding useful sample data and thus, results in less precise models [37]. More recent ana-

lytic approaches have turned away from the Gaussian distribution and instead directly model

microbiome count data using discrete probability distributions, such as the Dirichlet multino-

mial distribution [38] or negative binomial distribution [18].

We hypothesize that a direct methodological extension of the joint model which accounts

for the discrete nature of microbial abundances and the variation in library sizes will identify

quantitative associations between longitudinal microbiome data and time-to-event outcomes.

In turn, these methodological contributions lead to improved sensitivity and specificity in

determining time-to-event outcomes influenced by microbial composition changes. To evalu-

ate this hypothesis we develop a joint modeling framework with its longitudinal submodel for-

mulated as a negative binomial mixed effects model that includes an offset term to adjust for

library size. We additionally introduce a parameterization that represents the estimated longi-

tudinal submodel values as scaled relative abundances in the event submodel to address the

proportional nature of microbiome data [39] and to improve model interpretability. We then

outline how to simulate event times associated with longitudinal microbiome data and apply

our joint modeling approach to simulated datasets to illustrate its improved performance over

existing alternative methods. Finally, we demonstrate the utility of this methodology by quan-

tifying a previously detected association between longitudinal Prevotella abundances in the

vaginal microbiome during pregnancy and earlier delivery times [40].

Methods

The joint model for longitudinal microbiome count data

The joint model for longitudinal and time-to-event data (joint model) determines associations

between endogenous time-dependent covariates and event times [27]. The joint model accom-

plishes this goal by using a longitudinal submodel to model the time-dependent covariate and

then incorporating those model values into the time-to-event model. We extended this joint
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modeling approach to appropriately model unrarefied microbiome count data in the longitu-

dinal submodel and incorporate the model values into the time-to-event submodel in a way

that allows for interpretable results.

Longitudinal submodel. We modified the longitudinal submodel of the joint model to

model subject-specific taxon abundances over time. We analyze taxon abundances in the form

of unrarefied sequence read counts, which are non-Gaussian and overdispersed. Rarefying

sequencing data essentially subsamples the counts so that the total number of sequence reads

in each sample is the same. This throws away potentially useful data and decreases the power

of analyses. Although it would be possible to use transformed relative abundances in the joint

model assuming a Gaussian distribution, relative abundances often do not follow a Gaussian

distribution even after performing common transformations.

To appropriately represent this overdispersed count data, we use a negative binomial distri-

bution. For subject i with sample j, we assume the abundance of a single taxon in a sample yij
follows a negative binomial distribution with probability mass function given in Eq 1. This

parameterization of the negative binomial distribution has expected value E[yij] = μij and vari-

ance VarðyijÞ ¼ mij þ ðm2
ij = yÞ. The shape parameter θ> 0 ensures that Var(yij)> E[yij] and

controls the amount of overdispersion in the distribution.

PðY ¼ yijÞ ¼
Gðyij þ yÞ
yij!GðyÞ

�
y

mij þ y

 !y

�
mij

mij þ y

 !yij

ð1Þ

We model the subject-specific taxon abundances over time using a negative binomial linear

mixed effects model. The linear predictor with log link function for the jth sample for subject i
at time t (Eq 2) has fixed effects β for covariates xij(t) and random effects bi�MVNormal(0,

D) for covariates zij(t). To account for the varying library sizes across samples, we introduced

an offset variable into the linear model representing the log of the total number of sequence

reads in a sample Cij.

ZijðtÞ ¼ log ðmijðtÞÞ ¼ xijðtÞ
T
bþ zijðtÞ

Tbi þ log ðCijÞ ð2Þ

To represent the subject-specific abundances, we include the subject as the random inter-

cept covariate. We ensure the time variable is included as a fixed or random effect to analyze

the abundances over time.

Event submodel. The original implementation of the joint model determines associations

between the linear predictor values ηij for the time-dependent covariate and the time-to-event.

In the case of the negative binomial linear mixed effects model, the linear predictor is the log

of the expected sequence read counts for a given sample. However, the event submodel also

needs to account for the total number of sequence reads in a sample. Rearranging Eq 2 shows

how we can easily determine the predicted relative abundances using the linear predictor.

mijðtÞ
Cij
¼ exp xijðtÞ

T
bþ zijðtÞ

Tbi
� �

ð3Þ

We include these relative abundance values (Eq 3) in the hazard function for the event sub-

model (Eq 4) to determine the effect size α between the relative abundance of the taxon and

the time-to-event. The hazard function has baseline hazard h0(t) and effect sizes γ for covari-

ates w. The hazard function uses the entire longitudinal history up to time t, MiðtÞ.

hiðtjMiðtÞ;wiÞ ¼ h0ðtÞ exp ðgTwi þ a � � � exp ð xTi ðtÞbþ z
T
i ðtÞbi ÞÞ ð4Þ
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The parameter α represents the increase in the expected log hazard of disease onset for each

one unit increase in relative taxon abundance. However, a unit increase in relative abundance

indicates going from 0% to 100% abundance of the taxon, which is uncommon. Therefore, the

model may not be able to determine the effect size if the relative abundances are very small

and do not show a unit increase. To improve the performance and interpretability of the

model, we incorporated a scaling factor ϕ for these relative abundance terms. The scaling fac-

tor allows for flexibility in the model depending on the types of relative abundances and abun-

dance changes in the data. Using ϕ = 10 will make the unit a 10% change in abundance, and

using ϕ = 100 will make the unit a 1% change in abundance.

The microbiome joint model simultaneously estimates the two submodels with shared

fixed effects β and random effects bi parameters.

Software implementation. This methodology can be implemented using the rstanarm
R package, which provides tools for Bayesian statistical inference of applied regression models,

including the joint model for longitudinal and time-to-event data [41, 42]. We have extended

the joint modeling rstanarm software to provide the functionality necessary to apply this

approach. Code for replicating our analyses is included in supplemental file S1 Code. Further-

more, a tutorial for preprocessing and analyzing data using our methodology is available

online and is also included here as S1 Appendix.

Simulation study

Longitudinal microbiome count data. We simulated the taxon abundances for multiple

microbiome samples for each subject over time. We modeled the association between the

microbial abundances and sample covariates using the model structure given in Eq 5. The

fixed effects include a binary time-independent sample covariate X1, the continuous time vari-

able tij, and their interaction. To emulate the taxon abundance trajectories for each subject, we

also included a subject-specific random intercept and a random slope based on the time vari-

able.

Y � X1 þ Timeþ X1 : Timeþ ðTime j IDÞ þ offsetð log ðCountsÞÞ ð5Þ

We assume the taxon abundances Y follow a negative binomial distribution. Using the log

link function, Eq 6 gives the linear predictor for the jth sample from subject i.

Zij ¼ b0 þ b1X1ij þ b2tij þ b3X1ijtij þ b0i þ b1itij þ log ðCijÞ ð6Þ

We set the parameter values for the fixed effects β1, β2, and β3. We sampled the random

effects bi� Normal2(0, D), where D is the variance-covariance matrix with d11 = Var(b0) =

0.003, d22 = Var(b1) = 0.001, correlation parameter ρ, and covariance term d12 = d21 = ρ �
d11d22.

We then determined the model covariates by randomly sampling N values for the time-

independent covariate X1i� Bernoulli(0.5) and N × K values for the time covariate tij� Uni-

form(0, 8). We assumed the total number of sequence reads for each sample followed a normal

distribution with Cij� Normal(10000, 1000).

Using these simulated covariates and parameter values, we then evaluated the linear predic-

tor ηij. However, because μij should give values representing relative abundances, we must

restrict its range to μij 2 [0, 1]. Noting that the intercept term β0 scales μij multiplicatively (Eq

7), we initially set β0 = 0 when calculating ηij. We then set β0 = −max(ηij + �) and recalculated
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ηij and μij using the new value for β0.

mij ¼ expðZijÞ

¼ expðb0 þ b
T
� 0
Xij þ bTi Zij þ logðCijÞÞ

¼ expðb0Þ � expðb� 0
TXij þ bTi Zij þ logðCijÞÞ

ð7Þ

Finally, the longitudinal abundances Yij were determined by taking N � K samples from

NegativeBinomial(μij, θ), where θ is the dispersion parameter.

Event times. Generally, event times can be simulated using the event function S(t) = exp

(−H(t)), where HðtÞ ¼
R t

0
hðuÞdu is the cumulative hazard function for h(t), by applying the

probability inverse transform. The cumulative hazard function is determined by evaluating the

integral of the hazard function from 0 to t. However, the integral over the hazard function for

the joint model for microbiome count data (Eq 8) is intractable.

hðtjMðtÞ;wÞ ¼ h0ðtÞ exp ðgTwþ a � � � exp ½ xTðtÞbþ zTðtÞb�Þ: ð8Þ

Crowther and Lambert present a solution for generating event times in instances where the

hazard function cannot be integrated analytically to determine a cumulative hazard function

[43]. Briefly, the method derives an approximation for the cumulative hazard integral by using

Gaussian quadratures. Once the cumulative hazard is calculated, a root finding procedure is

then applied in order to solve for the event time t. To simulate microbiome joint model event

times we apply this methodology, which is implemented in the simsurv R package [44].

For the event submodel, we extended the hazard function for a Cox proportional hazards

model with covariates W1 and W2. The hazard function for this joint model (Eq 9) incorpo-

rates the model values μij from the longitudinal submodel scaled by ϕ = 10 with effect size α.

hiðtÞ ¼ l exp ðg1W1i þ g2W2i þ a � � � exp ðb0 þ b1X1ij þ b2tij þ b3X1ijtij þ b0i þ b1itijÞÞ ð9Þ

We assumed an exponential baseline hazard h0 = λ = 0.1 for the simulated event times.

After setting the parameters γ1 and γ2, we sampled variables W1� Bernoulli(0.5) and W2�

Bernoulli(0.3). The parameters and covariates for both the longitudinal and time-to-event sub-

models were then used by the simsurv R package, to simulate event times for the hazard

function (Eq 9). Once the event times are simulated, all longitudinal observations after a sub-

ject’s event time are removed from the dataset for time-to-event analysis. The simulated event

times are right censored at tmax = 10. Example R code for simulating event times associated

with microbiome count data is included in supplemental file S1 Code.

Results

Model overview

We developed a joint modeling framework to determine associations between longitudinal

microbiome count data and time-to-event outcomes that accommodates the distribution of

microbiome data while still respecting the inherent proportional characteristic of the micro-

biome. The model, outlined in Fig 1, consists of a longitudinal and a time-to-event submodel.

The longitudinal component models taxon abundance over time using a negative binomial

distribution. The longitudinal model structure addresses the issue of varying library sizes by

incorporating an offset variable of the log number of sequence reads for each sample. The

model values from the longitudinal submodel are incorporated into the time-to-event submo-

del in the form of scaled relative abundances. The scaling of the relative abundances improves

detection and interpretability of the effect sizes.
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The parameter estimates from the joint model quantify the effect of microbial abundances

on the time-to-onset of disease. These parameter estimates can then be used to determine

posterior predictions for the longitudinal and time-to-event submodels. Additionally, the

joint model’s event-free probability predictions can be updated as more longitudinal data is

included in the model.

Simulation study

To assess model performance on data with known parameter values, we analyzed simulated

data for N = 1000 subjects over K = 10 time points. This simulation analysis illustrates that our

Fig 1. Overview of joint model for longitudinal microbiome count data. The inputs, model structure, and output of the joint model for longitudinal microbiome

count data. (Inputs) The taxa abundance table contains the sequence read counts for all taxa across samples. The abundances for a single taxon following a negative

binomial distribution and the total reads for each sample are passed to the longitudinal submodel. Additionally, metadata for the longitudinal microbiome samples are

passed to both the longitudinal and time-to-event submodels. (Model) The longitudinal submodel analyzes subject-specific taxon abundances over time using a

negative binomial mixed effects model. The model values for the taxon abundance are transformed to relative abundances before being included in the event

submodel. The event submodel determines associations between longitudinal sample data, including the taxon abundances, and the time-to-event for an outcome.

(Output) Parameter estimates from the joint model quantify the associations between the time-to-event and model covariates via hazard ratios.

https://doi.org/10.1371/journal.pcbi.1008473.g001
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model accurately estimates parameter values. While no other methodology exists with the

direct aim of quantifying the associations with microbiome data, we show that the joint model

performs better than existing alternatives.

Model performance. We applied the joint model for longitudinal microbiome count data

to a simulated dataset with taxon abundance effect size of α = 0.5. The posterior high density

intervals (HDIs) for the longitudinal and time-to-event parameter values are shown in Fig 2A,

with true parameter values denoted by the vertical dotted line. For both the longitudinal and

time-to-event submodels, the true parameter values fall within their respective 95% HDIs. In

particular, the effect size of the taxon abundance parameter α is accurately detected by the

joint model, falling in the 50% HDI.

To assess the predictive performance of the microbiome joint model, we predicted the pos-

terior longitudinal trajectories and event-free probabilities using varying amounts of longitu-

dinal data. Fig 2B shows plots of the predicted longitudinal abundances and event-free

probabilities using longitudinal data up to t = 1 and t = 4 split by true event outcome. This fig-

ure shows that the model is able to detect the difference in longitudinal trajectories between

event outcomes, particularly when predicting the longitudinal trajectory at the later time.

Additionally, the model predicts lower event-free probabilities for subjects without the event.

This separation becomes more apparent as more longitudinal data is included in the model

predictions for event-free probabilities.

Comparison to alternative methods. Although no other methods exist to analyze asso-

ciations between longitudinal microbiome data and time-to-event outcomes, we were able to

compare the performance of our joint model for microbiome count data to existing analytic

alternatives. Namely, we compare the performance of our model to the Cox proportional

hazards model and the joint model using log-transformed relative abundances. The Cox

model does not include the effect of microbial abundances on the time-to-event outcomes.

The original formulation of the joint model is the only currently available event model

method to include longitudinal microbiome data, but it expects a Gaussian distribution for

its longitudinal submodel. To accommodate microbiome data, we normalize the count val-

ues to relative abundances and perform a log transformation to shift the data closer to a

Gaussian distribution.

Using the same parameter values as above, we simulated event times using various α values

and compared the results from these three approaches (Fig 3). The posterior distributions of

the model parameters using the moderate α = 0.5 taxon abundance effect size are shown in Fig

3A. The parameter estimates for our joint model for microbiome count data always fall in the

95% high density interval (HDI) of the posterior distributions for both the longitudinal and

time-to-event submodels. Noting that the Cox model does not have a longitudinal submodel

or taxon abundance parameter, we can see that its parameter estimates are close to their true

values but that the model compensates for the taxon effect via its baseline hazard. The joint

model with transformed relative abundances does have a longitudinal submodel, which has an

inaccurately low intercept term. Because the longitudinal model values included in the event

submodel are less accurate, the parameter estimates in the event submodel are affected as well.

Specifically, the effect of the taxon abundance and the baseline hazard on the time-to-event are

both overestimated relative to our method. While we do not expect these models to perform as

well as our model since they are not explicitly suited for the simulated data, these results show

how analyzing a dataset where this effect is present could skew analytic results.

We also compared the predictive performance of the different models based on the amount

of longitudinal data and the true effect size α of taxon abundance. Fig 3B shows the receiver

operating characteristic (ROC) curves comparing the ability of the predicted event-free proba-

bilities to differentiate between event outcomes. For α = 0.1, the models all have similar
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Fig 2. Model results for simulated data. Parameter estimates and predictive ability of the joint model for longitudinal

microbiome count data on a simulated dataset. (A) Posterior high density intervals (HDIs) for parameters from the

longitudinal and time-to-event submodels. Dotted lines show true parameter values. All parameter values fall within

the 95% HDIs for the posterior distributions. (B) Marginal predicted longitudinal trajectories and event-free

probabilities from the joint model using longitudinal data up to t = 1 (left) and t = 4 (right) split by true event outcome.

As more longitudinal data is provided for the predictions, there is more separation between the marginal event-free

probability predictions.

https://doi.org/10.1371/journal.pcbi.1008473.g002
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performance since the taxon abundance does not have a large effect on the time-to-event.

However, for increasing alpha our model performs successively better than the other models.

Additionally, the facets across the x-axis show the model performance using different amounts

of longitudinal data to predict the event-free probabilities. As more longitudinal time points

are included, the other models perform worse. In fact, when we include longitudinal data up

to time t = 8 (all longitudinal data), the Cox model actually performs worse than random when

the effect size of the taxon abundance is moderate α = 0.5. Because the Cox model does not

gain any new longitudinal information, its performance only changes with larger values of t
since the predicted event-free probabilities are conditioned on not having the event by time t.

Fig 3. Model performance compared to alternative methods. Analysis of the simulated dataset using the joint model for longitudinal microbiome count data, the

original joint model with transformed relative abundances, and the Cox proportional hazards model shows that our model best detects relationships within the data.

(A) Posterior high density intervals (HDIs) of the parameter estimates for each of the models. The association with taxon abundance is over estimated in the original

joint model. Both the Cox model and joint model poorly estimate the baseline hazard, likely accounting for the differences introduced by the effect of the taxon

abundance. (B) Receiver operating characteristic (ROC) curves comparing the performance of the event-free probability predictions compared to the true event

outcome for the three models. The panels across the x-axis vary the amount of longitudinal data included in the model, and the panels across the y-axis vary the true

taxon abundance effect sizes. (C) Comparison of the area under the ROC curves (AUC) for increasing taxon abundance effect size across all three models. As the effect

size increases, the performance of the microbiome joint model improves. The microbiome joint model always performs better than the alternative models.

https://doi.org/10.1371/journal.pcbi.1008473.g003
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Looking only at the models with longitudinal data up to time t = 4, we compared the area

under the ROC curves (AUC) across different taxon abundance effect sizes (Fig 3C). This

comparison of the AUCs between the models illustrates that our model always performs better

than the alternatives, even for lower values of α, and improves for larger values of α. The joint

model with transformed relative abundances performs about the same regardless of the effect

size, while the Cox model predictions deteriorate with larger effect sizes.

Sample size analysis. To understand how this methodology performs on datasets of vary-

ing size, we examined how the number of subjects N and number of longitudinal samples K
affect the model’s accuracy in estimating the taxon abundance effect size. For each combina-

tion of N 2 {50, 100, 100} and K 2 {3, 5, 10}, we simulated 100 microbiome joint model data

sets using randomly selected parameter values consistently across all combinations. We com-

pared the taxon abundance effect sizes estimated using our methodology to the true parameter

values. The results for this performance analysis, shown in S1 Fig, illustrate that the error

rates for parameter estimates did not increase dramatically with fewer subjects or longitudinal

samples.

Application to pregnancy dataset

To demonstrate the utility of our methodology, we applied this joint modeling technique to a

pregnancy dataset published by Zhang, et al. [19]. The dataset originated from a case-control

study on preterm birth outcomes by DiGiulio, et al. [40] which examined the microbiome of

various anatomic sites in women throughout pregnancy. For our analysis, we focused on only

vaginal swab samples collected from 40 women prior to birth.

DiGiulio, et al. found that women with microbiome profiles with high abundances of Lacto-
bacillus were less likely to experience preterm births, defined as delivery before 37 gestational

weeks. However, the Lactobacillus count abundances did not fit a negative binomial distribu-

tion, so Lactobacillus was not appropriate for our model. The study also determined a specific

microbiome profile containing high amounts of Prevotella that had a higher occurrence of pre-

term births. Looking at the longitudinal Prevotella abundances based on preterm outcome (Fig

4A), we found that women who experienced preterm births had higher levels of Prevotella
throughout pregnancy than those who did not experience preterm births. Therefore, we chose

to examine the association between longitudinal Prevotella abundances, which follow a nega-

tive binomial distribution, and time to delivery outcomes.

Using microbiome samples combined at the genus level, we modeled the longitudinal

abundance of Prevotella using a generalized linear mixed effects model adjusted for gestational

week of collection, history of preterm births, preeclampsia, and race/ethnicity with random

slope based on trimester and random intercept by subject. The longitudinal model was offset

by the log library size for each sample. The time-to-event component modeled the association

between the relative abundance of Prevotella and the time to delivery and was adjusted for pre-

eclampsia, race/ethnicity, and income.

The resulting posterior predictions for the parameters of the longitudinal and time-to-

event submodels (Fig 4B) show a positive association between longitudinal Prevotella abun-

dance and the time to delivery (HR: 1.5; 80% HDI: 1.17-1.97). Because we used a scaling factor

of ϕ = 10, this result indicates that a 10% increase in Prevotella abundance is associated with a

1.5-fold increase in hazard of delivery.

Discussion

We present a discretized extension of the joint model for longitudinal and time-to-event data

[30, 42] to evaluate associations between microbial abundances and the onset of disease. As
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hypothesized, our approach correctly quantifies associations between longitudinal micro-

biome data and time-to-event outcomes. Additionally, this joint modelling approach offers

improved sensitivity and specificity relative to existing alternative methods in predicting sub-

ject-specific event-free probabilities.

In constructing this joint model, we acknowledged the underlying structure of microbiome

data by tailoring an existing method to use statistical assumptions appropriate for the data,

rather than transforming data to fit the model’s assumptions. First, we modified the longitudi-

nal submodel to reflect the characteristics of microbiome count data by using a negative bino-

mial distribution. Second, we included an offset term in the longitudinal submodel that adjusts

for the library size of each sample, avoiding the statistically undesirable process of rarefying

microbiome data [37]. Third, we parameterized the event submodel to represent microbial

abundances estimated by the longitudinal submodel as scaled relative abundances, which

addresses the proportional nature of the microbiome [39] and provides interpretable model

results.

Using a simulated dataset, we demonstrated that our method accurately models the effects

of microbial abundances and other model covariates on time-to-event outcomes. We have also

shown the beneficial predictive properties of this model which allow for improved event pre-

dictions with additional longitudinal data [31, 42]. Furthermore, we illustrate how this method

could be applied in longitudinal microbiome studies via analysis of a pregnancy microbiome

dataset [40]. Our results support an association between Prevotella abundance and preterm

Fig 4. Analysis of longitudinal pregnancy microbiome dataset. Joint model for longitudinal microbiome count data analysis of a longitudinal pregnancy

microbiome dataset. (A) Observed longitudinal relative abundances of Prevotella split by preterm outcome, defined as time to delivery less than 37 gestational weeks.

Subjects with a preterm birth outcome initially have higher levels of Prevotella that decrease over time. (B) Posterior predictions for the effect sizes of the longitudinal

submodel covariates. (C) Posterior predictions of the hazard ratios for the event submodel covariates. The Prevotella abundance parameter shows a positive

association with the time to delivery outcome.

https://doi.org/10.1371/journal.pcbi.1008473.g004
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birth detected in previous studies [45–49]. However, in addition to reinforcing this finding of

Prevotella as a biomarker, we also determined that a 10% increase in the relative abundance of

Prevotella indicates a 1.5-fold increase in the hazard of early delivery. This quantification of

the relationship between Prevotella abundance during pregnancy and time to delivery is a new

result that was unattainable using prior approaches.

Although our novel methodology solves a problem not previously addressed in the field of

microbiome research, there remain opportunities for future research in this area. In its current

implementation, our model examines the relationship of an individual microbiome taxon and

additional covariates with a time-to-event outcome. This approach can be applied in parallel

across individual taxa to perform a comprehensive analysis. We recommend using this parallel

analysis approach on a methodically selected subset of individual taxa. The Bayesian hierarchi-

cal modeling approach utilized in the joint modeling software produces conservative model esti-

mates that obviate the need for multiple testing corrections [50]. An alternative approach is to

model the combined longitudinal dynamics and correlations of many taxa at once within the

joint modeling framework. Although of interest, the actualization of joint modeling for many

taxa is difficult due to the computational complexity of hierarchical Bayesian analyses, where

the model complexity grows exponentially in the number of parameters considered [51]. The

current implementation of the joint model provides functionality for a multivariate joint model

that could model up to three taxa; however, this implementation could violate model assump-

tions due to the dependency issues intrinsic to microbiome and compositional data [32, 33]. In

the future high dimensional Bayesian approaches may enable such model estimation [52].

We argue that the single taxon joint analysis is effective for two reasons. First, we note that

clinicians and biologists focus their interest on the largest and most easily interpretable effects

—such as the risk impact of individual taxa on outcomes that we demonstrated in the preterm

birth application. Higher order effects of many taxa are less interpretable and therefore less

actionable. Second, we note that commonly used analytic methods that consider the entire

microbial community by clustering data often result in microbiome profiles dominated by a

single taxon [40, 48, 53–56]. In these instances, a cluster that is driven by an individual taxon is

used in downstream association analyses, which is analogous to our approach.

Another limitation of our model is the restriction of the longitudinal submodel to a negative

binomial distribution, which precludes the analysis of taxa with bimodal distributions or

excess zeroes. The number of taxa with these distributional complications is often low but can

be highly dependent on the microbial diversity within the dataset. Taxa with an overabun-

dance of zero counts might be better modeled using zero-inflated or hurdle models, but these

solutions not currently implemented in existing joint model software. In these situations our

negative binomial approach could still be applied but with a reduction in statistical power and

performance due to lack of model fit. We advise performing preliminary analyses on micro-

biome data to determine taxa of interest and to ensure model assumptions are satisfied.

Despite its limitations, our methodology could be a powerful tool in understanding the rela-

tionship between changes in the human microbiome and disease. While we have discussed

this approach in the context of the human microbiome, this joint model is also applicable to

general microbiome studies. Furthermore, this analytic method could generally be applied to

any dataset with a time-dependent endogenous covariate that follows a negative binomial dis-

tribution and that also has time-to-event outcomes.

Supporting information

S1 Code. Example R code for analysis and simulation.

(R)
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S1 Appendix. Tutorial for preprocessing and analyzing data.

(PDF)

S1 Fig. Taxon abundance effect size errors using varying sample sizes. Application of the

joint modeling methodology on simulated data sets with varying sizes for the number of sub-

jects (N) and number of longitudinal samples (K) shows that the model retains accuracy with

smaller sample sizes. The mean squared errors (MSEs) for the effect size predictions remain

low with sample sizes as small as N = 100 with any number of longitudinal samples. The MSEs

for effect size predictions are larger with sample size N = 50, but the MSEs are reduced with an

increased number of longitudinal samples K.

(TIF)
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