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Abstract: Three diplatinum(II) complexes [{PtL}2(m-thea)]
(H4thea = 2,3,6,7-tetrahydroxy-9,10-dimethyl-9,10-dihydro-
9,10-ethanoanthracene) have been prepared, with diphos-
phine or bipyridyl “L” co-ligands. One-electron oxidation
of these complexes gave radical cations containing
a mixed-valent [theaC]3� ligand with discrete catecholate
and semiquinonate centers separated by quaternary
methylene spacers. The electronic character of these radi-
cals is near the Robin–Day class II/III border determined
by UV/Vis/NIR and EPR spectroscopies. Crystal-structure
determinations and a DFT calculation imply that oxidation
of the thea4� ligand may lead to an increased through-
space interaction between the dioxolene p systems.

Metal complexes of dioxolenes can exhibit a fascinating
ligand-based redox chemistry, involving conversion between
catecholate (“cat”), semiquinone (“sq”), and quinone (“q”)
ligand oxidation levels.[1–3] Complexes of dinucleating dioxo-
lenes add another layer of complexity to this behavior with
multiple metal and ligand redox sites,[2–4] which may give rise
to ligand-based mixed valency.[5] One example is 4,4’-bis-
(catechol) (H4bis(cat), Scheme 1), whose derivatives form delo-
calized radicals at the sq/cat oxidation state, but are spin cou-
pled at the sq/sq level reflecting formal oxidation of the cen-
tral C�C bond.[6–8] Conversely, cat/sq radicals generated from

spiro4� complexes (H4spiro = 3,3,3’,3’-tetramethyl-1,1’-spiro-bis-
{5,6-dihydroxyindane}, Scheme 1) are localized on individual di-
oxolene rings,[2] with electron hopping between the dioxolene
groups occurring near the EPR timescale.[9] Transition-metal di-
oxolene complexes can also exhibit valence tautomerism and
spin-transition equilibrium involving metalÐligand charge
transfer,[10] but few examples of these phenomena in bis(dioxo-
lene) ligand systems have been reported to date.[2, 9, 11]

Herein, we report the redox chemistry of 2,3,6,7-tetrahy-
droxy-9,10-dimethyl-9,10-dihydro-9,10-ethanoanthracene
(H4thea) when complexed to platinum(II) (1–3, Scheme 1).
Others have used thea4� as a component in metallacycle and
cage complexes, but the redox chemistry of those products
was not reported.[12, 13] The dimethyl-bicyclo[2.2.2]octyl spacer
prevents formal conjugation of the thean� dioxolene groups
but places them close in space. Therefore, we predicted
that the cat/sq species [theaC]3� should exhibit mixed-valence
behavior intermediate between [bis(cat)C]3� and [spiroC]3�

(Scheme 1).
The synthesis of compounds 1–3 was achieved by reacting

H4thea with two equivalents of preformed [PtCl2L] (L = dppb,
dppe, or tBu2bipy) in the presence of base. The complexes can
be handled in air in the solid state and in solution, but must
be stored under an inert atmosphere for extended periods.
X-ray structure determinations of 1 and 2 were achieved
from solvate crystals grown from dichloromethane/pentane
(Figure 1). Although both structures are crystallographically

Scheme 1. Compounds reported herein and other complexes referred to in
the discussion. Co-ligand abbreviations: dppb = 1,2-bis(diphenylphosphino)-
benzene; dppe = 1,2-bis(diphenyl-phosphino)ethane; and tBu2bipy = 4,4’-
bis(tert-butyl)-2,2’-bipyridyl.
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non-routine,[14] the metric parameters about the thea4� ligands
confirm that the dioxolene rings are at the catecholate oxida-
tion level (�1.7(3)�D��2.1(2),[15] Table 1). The dihedral angle
between the thea4� dioxolene groups (q, Table 1) is approxi-
mately 108 larger in 2 than in 1, showing that there is some
conformational flexibility in the thea4� framework.

Cyclic and differential pulse voltammetry of 1–3 in CH2Cl2/
0.5 m nBu4NPF6 at 298 K revealed two chemically reversible
low-potential oxidations at �0.37�0.02 and �0.11�0.02 V
versus [FeCp2]/[FeCp2]+ .[16] These were assigned to the
[thea]4�Ð[theaC]3�Ð[theaCC]2� (cat/catÐcat/sqÐsq/sq) redox
series. The separation of these processes (DE) is 250�20 mV,
between complexes of bis(cat)4� (DE = 320–500 mV)[2, 6, 7] and of
spiro4� (140–170 mV).[2, 9] The subsequent [theaCC]2�Ð[theaC]�Ð-
[thea]0 (sq/sqÐsq/qÐq/q) oxidations occurred near + 0.75 V,

were more closely separated (DE�110 mV) and were only
partly reversible at room temperature.

The green oxidized products [1]+ and [2]+ , and purple [3]+ ,
can be generated by treatment of the neutral precursors with
one equivalent of [FeCp2]PF6 in CH2Cl2. Solutions of [1]+ and
[2]+ are stable for hours at 298 K under an inert atmosphere,
which allowed [1]PF6 and [2]PF6 to be isolated and crystallized
(see below), but [3]PF6 decomposes slowly under those condi-
tions. The oxidations were monitored by UV/Vis/NIR titrations,
which proceeded isosbestically for 1 and 2 (Figure 2). In both
cases, ingrowth of a new intervalence charge transfer (IVCT)

transition at lmax = 1810 nm with
at least one low-wavelength
shoulder was observed, along
with a smaller increase in inten-
sity of the dioxolene!L (L =

dppb or dppe) ligand-to-ligand
charge transfer (LLCT) band near
690 nm.[7] The intensity of the
IVCT band is around three times
greater in [2]+ than in [1]+ .
An IVCT band with lmax =

1917 nm is also formed during
the oxidation of 3, reaching

Figure 1. “A” disorder site of the [{Pt(dppb)}2(thea)] molecule in
[1·x C5H12 � (4�x)CH2Cl2] (top),[12] and the [{Pt(dppe)}2(thea)]+ cation in
[2]PF6·3 CH2Cl2 (bottom). Displacement ellipsoids are at the 50 % probability
level, and all hydrogen atoms have been omitted for clarity. Symmetry code:
(i) 3/2�x, 1/2�y, z. Additional crystallographic Figures and Tables are given
in the Supporting Information.[16]

Table 1. Selected metric parameters from the crystal structures in this work. D is a bond-valence sum parame-
ter giving the oxidation state of dioxolene groups, which takes the values of 0, �1, and �2 for the q, sq, and
cat levels, respectively.[15] q is the dihedral angle between the least squares planes of the thean- dioxolene
rings. More detailed information about the structures is given in the Supporting Information.

Pt�O [�] Pt�P [�] D q [8]

1 1.98(2)–2.05(2) 2.201(3)–2.207(3) �1.7(3)�D��1.9(2)[a] 140.8(5)–141.1(5)[a]

2 molecule A 2.026(8)–2.048(8) 2.202(4)–2.227(3) �1.77(15), �2.1(2) 130.8(5)
molecule B 2.006(13)–2.049(9) 2.205(4)–2.236(4) �1.86(14), �2.1(2) 131.1(6)
molecule C 2.034(9)–2.071(15) 2.195(6)–2.222(4) �1.90(15)[b] 129.8(9)–131.5(6)[a]

[2]PF6
[c] 2.042(4), 2.060(4) 2.2101(14), 2.2197(14) �1.57(15) 117.14(11)

[a] Range of values given for disorder sites in this residue.[14] [b] D for the second Pt/dioxolene center in this
molecule was not determined because of restraints applied in the crystallographic refinement. [c] There is only
one unique Pt/dioxolene center in this crystal structure.[14]

Figure 2. UV/Vis/NIR titrations for the chemical oxidation of 1 (top) and 2
(bottom) by up to one equivalent of [FeCp2]PF6 (CH2Cl2, 296 K). The spectra
of pure 1, [1]+ , 2, and [2]+ are highlighted as black lines, whereas the inter-
mediate stoichiometries are in grey. Isosbestic points are shown as insets.[16]
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emax = 6.3 � 103
m
�1 cm�1 for [3]+ , which is twice as intense as

that exhibited by [2]+ (Figure 2). That titration was not isosbes-
tic, however, which indicates slow decomposition of [3]+

under these conditions.
The width at half height, Dn1=2

, of the IVCT bands in [1]+ and
[2]+ is �2300 cm�1, taking account of the low-wavelength
shoulder. That is smaller than predicted by Equation (1) for
[1]+ and [2]+ , which gives Dn1=2

�3550 cm�1 for a class II
mixed-valent system with an IVCT maximum of 1810 nm (E =

5525 cm�1).[17]

Dn1=2
¼ ð2310EÞ1=2 ð1Þ

Although this criterion should be applied with care, the
[theaC]3� framework is clearly approaching the class III formal-
ism. In the class III limit, the electron-coupling energy HAB for
[1]+ and [2]+ is approximately 1150 cm�1 according to Equa-
tion (2):[5, 17]

HAB¼
1=2Dn1=2 ð2Þ

That is comparable to cyclophane radical ions and related
species, which show through-space coupling between stacked
aromatic rings.[18] Solutions of [2]+ exhibit a correlation be-
tween the IVCT maximum and the donor number of the sol-
vent,[19] in the order DMF (lmax = 1883 nm)>THF (1847)>ace-
tone (1829)>CH2Cl2 (1810). The maximum variation in IVCT
energy between these solvents (215 cm�1) is smaller than ex-
pected for a class II organic radical,[20] and again implies
a degree of delocalization between the [theaC]3� dioxolene
groups.[5] The IVCT linewidth Dn1=2

does not vary significantly in
these spectra, but the relative intensities of the IVCT band and
the LLCT absorption near 700 nm show a much stronger sol-
vent dependence.[16]

The S band and X band EPR spectra of [1]+ and [2]+ in
CH2Cl2/THF 10:1 fluid solution are very similar, with g values
close to that of the free electron (Table 2 and Figure 3). Al-
though hyperfine coupling was not clearly resolved, features

on the S-band line shape could be modelled by considering
hyperfine coupling to two 195Pt (I = 1=2, 34 % abundant) and
four 31P (I = 1=2, 100 % abundant) nuclei. The spectrum of [3]+

contains five resolved lines that more obviously arise from hy-
perfine coupling to two 195Pt nuclei. This demonstrates elec-

tron hopping between the [theaC]3� dioxolene rings that is
rapid on the EPR timescale at these temperatures. The X-band
line widths of [1]+ and [2]+ are almost invariant between 200–
300 K, but the spectrum of [3]+ broadens considerably below
230 K, which could indicate the slowing of this electron hop-
ping[9] and/or aggregation of the complex in solution (see
below).[16] In contrast, frozen solution X-band spectra of [1]+

–[3]+ are near-axial and show coupling to just one 195Pt nu-
cleus, and for [1]+ and [2]+ , two 31P nuclei (Figure 3). There-
fore, electron hopping between their dioxolene groups is
frozen out, apparently coinciding with freezing of the solvent
medium.[9] Although the hyperfine coupling for [3]+ is poorly
resolved in the frozen solution spectrum, the g anisotropy
and195Pt couplings in [3]+ are over double those in [1]+

and [2]+ . This indicates a greater Pt contribution to the frontier
orbital in the presence of the more strongly p-accepting
tBu2bipy ligand.[21]

Single-crystal X-ray structures were obtained of
[2]PF6·3 CH2Cl2 and a solvate of [1]PF6, although the latter
structure was of too low resolution for a detailed analysis of its
metric parameters.[14] The complex cation in [2]PF6·3 CH2Cl2 has
crystallographic C2 symmetry, meaning that the oxidized and
unoxidized dioxolene groups are crystallographically equiva-
lent (Figure 1). Although the bond lengths to the Pt atom are
indistinguishable from the neutral complexes, the metric pa-
rameters in the unique dioxolene center are consistent with
a singly oxidized [theaC]3� ligand (D=�1.57(15), Table 1; the ex-
pected value is �1.5[15]). The dihedral angle between the diox-
olene groups (q) in [2]+ is contracted to 117.14(11)8, which is
approximately 148 lower than in 2 (Table 1; the corresponding
values for the two unique complex cations in [1]PF6 are
108.7(5) and 112.8(7)8). Although they are not isomorphous, in
both structures the radical cations associate into nested dimers

Table 2. Simulated EPR spectroscopic parameters for [1]+–[3]+ in CH2Cl2/
THF 10:1 solution. Hyperfine couplings are related to 195Pt, and are re-
ported in 10�4 cm�1.

210 K g (A[a]) 100 K g1 (A1
[b]) g2 (A2

[b]) g3 (A3
[b])

[1]+ [c] 2.0011 (4.9) 2.0045 (20) 2.0031 (19) 1.9844 (�10)
[2]+ [c] 2.0012 (4.7) 2.0055 (19.5) 2.0032 (19) 1.9833 (�10)
[3]+ 2.0019 (13.5) 2.0292 (48) 1.9872 (48) 1.9796 (40)

[a] Coupling to two 195Pt nuclei. [b] Coupling to one 195Pt nucleus. [c] Ad-
ditional superhyperfine coupling of 1–3 � 10�4 cm�1 to 31P nuclei can also
be extracted from the line shapes of these spectra.

Figure 3. Fluid solution S band and frozen solution X band EPR spectra of
[1]+ and [3]+ in CH2Cl2/THF 10:1. Simulation parameters are given in
Table 2.[16]
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(Figure 4). The assignment of these dimers as charge-transfer
assemblies is uncertain, because there are no interatomic con-
tacts between the nested molecules shorter than the sum of
their van der Waals radii. However, a dimerization equilibrium
of this type could explain the EPR line broadening observed
for [3]+ below 230 K.[16] Notably, unoxidized 1 and 2 do not di-
merize in this manner in the crystals of those compounds. The
PF6

� ions in both radical structures only associate with the cat-
ions through peripheral van der Waals contacts.[14, 16]

A DFT calculation of the model complex [{Pt(bipy)}2(thea)]
showed that the HOMO lies predominantly on the thea4�

ligand and has p-antibonding character between the two diox-
olene rings.[16] The reduced q values in [1]PF6 and [2]PF6 com-
pared to 1 and 2 (Table 1) are consistent with depopulation of
this HOMO upon oxidation, which would strengthen any bond-
ing interaction between the dioxolene groups. The HOMO�1
is the corresponding in-phase combination between the
thea4� dioxolene rings. The calculated energy gap between
the HOMO and HOMO�1, 0.24 V, is a good match for the elec-
trochemical separation between the cat/sq oxidations in 1–3
(DE�250 mV).

In conclusion, oxidation of 1–3 gave [theaC]3� radical deriva-
tives. Although their dioxolene centers are not directly conju-
gated, [1]+–[3]+ show electron hopping between the dioxo-
lene rings in fluid solution by EPR, and a degree of electron de-
localization that is comparable to cyclophane-derived radi-
cals.[18] The strength of this electron coupling may reflect the
proximity of the dioxolene rings, which are only 2.4 � apart at
their closest approach in [2]PF6. More detailed spectroscopic
and theoretical studies are in progress to characterize the
other redox states of 1–3 and to clarify the electronic struc-
tures of radical species based on thean� and related bis- and
tris(dioxolenes).

Experimental Section

Synthetic procedures and characterization data for 1–3, as well as
details of the instrumentation and computational procedures used
for the spectroscopic and electrochemical measurements, crystal-

structure determinations, and DFT calculations, are given in the
Supporting Information.[16]
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