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1  |  INTRODUC TION

Glioblastoma has a sophisticated immune microenvironment that 
is different from other solid tumors. The central nervous system 
was once considered an immune exemption organ because of the 
lack dedicated lymphatic channels and the limited presentation 
of antigens derived from the brain to the peripheral immune cells. 
In 2015, Louveau et al.1 defined a new lymphatic system. Most 

antigen- presenting cells that leave the brain may migrate into the 
deep cervical lymph nodes, where they activate T and B lympho-
cytes. Since then, immunotherapy for glioblastoma has attracted 
the interest of researchers. However, systemic immunity, especially 
the cellular immune function, is suppressed in patients with glioblas-
toma or in mouse models of glioblastoma.2 Therefore, enhancing 
the patient's adaptive immunity, or turning “cold tumor” into “hot 
tumor,” has become the primary goal for glioblastoma research. 
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Abstract
Glioma is a malignant tumor with the highest incidence among all brain tumors (about 
46% of intracranial tumors) and is the most common primary intracranial tumor. 
Among them, glioblastoma (GBM) is highly malignant and is one of the three refractory 
tumors with the highest mortality rate in the world. The survival time from glioblas-
toma diagnosis to death is only 14– 16 months for patients with standard treatment 
such as surgery plus radiotherapy and chemotherapy. Due to its high malignancy and 
poor prognosis, in- depth studies have been conducted to explore effective thera-
peutic strategies for glioblastoma. In addition to the conventional surgery, radiother-
apy, and chemotherapy, the glioblastoma treatments also include targeted therapy, 
immunotherapy, and electric field treatment. However, current treatment methods 
provide limited benefits because of the heterogeneity of glioblastoma and the com-
plexity of the immune microenvironment within a tumor. Therefore, seeking an effec-
tive treatment plan is imperative. In particular, developing an active immunotherapy 
for glioblastoma has become an essential objective in the field. This article reviews 
the feasibility of CD47/CD24 antibody treatment, either individually or in combina-
tion, to target the tumor stem cells and the antitumor immunity in glioblastoma. The 
potential mechanisms underlying the antitumor effects of CD47/CD24 antibodies are 
also discussed.
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There have been several potential treatments for glioblastoma, such 
as immune checkpoint inhibitors and CAR- T. However, the enthu-
siasm toward immunotherapy has been dampened because not all 
patients with glioblastoma benefit from these treatments. Studies 
on the microenvironment of glioblastoma indicate that the number 
of microglial cells and macrophages in the tumor exceeds the infil-
trating T cells.3 The lack of T cells in the tumor microenvironment is 
different from other tumor types, such as melanoma or lung cancer.4 
Therefore, myeloid- derived cells may be the key to glioblastoma, and 
controlling their differentiation and polarization may bear the same 
importance as activating adaptive immunity.

It is recently discovered that the tumor conveys the "don't eat 
me" signal of innate immune surveillance through CD47- SIRPα5 
and CD24- Siglec- 106 action. In preclinical studies, antibodies tar-
geting CD47/CD24 yield encouraging results in various types of 
tumors.7- 11 A variety of anti- CD47 antibodies have entered clinical 
trials (Table 1). Further studies have found that CD47 can affect the 
polarization of tumor- associated macrophages,12 while CD24 has 
no relevant reports. The M2- type polarization of tumor- associated 
macrophages can promote tumor growth, invasion, blood vessel for-
mation, etc.13,14 In addition, CD47/CD24 is expressed in tumor stem 
cells and cause the emergence of tumor resistance and promote 
tumor recurrence.15,16

The primary target cells of anti- CD47/CD24 antibodies are mi-
croglia/macrophages.6,9 Thus, we believe that these antibodies may 
trigger an antitumor immune response by activating myeloid innate 
immune cells. When used together with immune checkpoint inhibi-
tors that activate systemic immunity, this treatment could offer sur-
prising effects.

2  |  GLIOBL A STOMA

Glioblastoma (GBM) is a common malignant tumor that originates 
in the brain. According to CBTRUS (Central Brain Tumor Registry 
of the United States), glioblastoma accounts for 14.9% of all brain 
tumors in the United States. This tumor is characterized by its promi-
nent invasiveness and poor prognosis. The 5- year survival rate for 
GBM is as low as 5.5%.17 At present, the standard treatment of 

GBM is mainly the extensive surgical resection, supplemented by 
radiotherapy and temozolomide chemotherapy.18 An array of new 
biomarkers for glioblastoma has been identified recently.19– 21 The 
mechanisms underlying tumor cell growth and invasion have been 
elucidated.22,23 New treatment strategies for glioblastoma have 
been under active research, including the targeted therapy based 
on molecular biomarkers,24– 26 alternating electric field therapy that 
acts on mitosis of tumor cells,27,28 and immunotherapy that targets 
different aspects of tumor immunity.29– 33 Based on current research 
results, we need to pay attention to two key factors that affect the 
effectiveness of glioblastoma treatment: tumor stem cells (TSC) and 
tumor immune microenvironment.

2.1  |  Glioma tumor stem cells

In 2016, the World Health Organization classified glioblastoma into 
four different subtypes based on gene mutations and high expres-
sion of specific biomarkers: anterior, neurological, classic, and in-
terstitial glioblastoma.34,35 Glioblastoma is viewed as an aggressive 
tumor with substantial heterogeneities.36 Sottoriva et al. performed 
a complete genomic analysis on biopsies of various parts of the tu-
mors from 11 glioblastoma patients. The results revealed extensive 
intratumoral heterogeneities.37 Among many different subtypes of 
glioblastoma cells are a subpopulation of tumor stem cells, which 
have the characteristics of stem cells and the ability to differenti-
ate into tumor cells.38 Numerous studies have suggested that this 
relatively small subset of cells may be the driving force behind tumor 
recurrence.39,40 Kamalakannan et al. used graded- dose radiotherapy 
and temozolomide to isolate a subset of cells called treatment- 
resistant tumor- initiating cells (TRTICs) from xenotransplanted 
gliomas.41 They found that the cloning, self- renewal, continuous 
xenotransplantation, and differentiation potential of TRTICs are sur-
prisingly similar to tumor stem cells. Furthermore, they discovered 
that TRTICs could tolerate both radiotherapy and chemotherapy, 
and these cells are characterized by the expression of surface mark-
ers such as CD44 and CD24.41

It is believed that the vast heterogeneities of tumor cells con-
tribute to the current failures in treating glioblastoma in the clinic.42 

Tumor Immune Regulatory Factors

Intrinsic Factors in Tumor Cells External Factors of Tumor Cells

Signaling via mitogen- activated
protein kinases131

Expression of immune checkpoint
molecules

Acquired mutations encoding
the phosphatase PTEN131

Infiltration by myeloid- derived 
suppressor cells132

Activation of the WNT– β- catenin pathway133 Desmoplastic tumor stroma (a barrier to 
lymphocyte infiltration)134

Alterations signaling via the cytokine IFN- γ133

Loss of heterozygosity of loci containing genes 
encoding human leukocyte antigens133

Downregulation of neoantigens135

TA B L E  1  Regulatory factors of tumor 
immunity



    |  1107WU et al.

Since these heterogeneous tumor cells may have been differenti-
ated from TSCs,43,44 a logical strategy for glioblastoma treatment 
would be targeting the TSCs. To do so, one must understand the 
mechanism by which TSCs escape from therapeutic targeting. An in-
creasing body of evidence suggests that specific anti- apoptotic and 
pro- survival pathways are activated, and the drug effluxes increased 
in TSCs (Figure 1A,B), which all contribute to the development of 
glioblastoma resistance to antitumor therapies.45 Due to the func-
tional differences between TSCs and their differentiated offspring 
cells at the transcriptome, epigenetics, and metabolic levels,46 no 
single treatment is currently effective for glioblastoma. Therefore, 
the development of new therapies targeting TSCs may be the key to 
“eradicating” the tumor.

2.2  |  Immunosuppression of glioblastoma

After the body recognizes a tumor antigen, antigen- presenting cells 
present it to effector cells. The effector cells then carry out immune 
responses to specifically kill tumor cells. This process, which is de-
fined as tumor immunity, is quite complex and is regulated by multi-
ple pathways. See Table 1 for details.

To achieve effective immunotherapy for glioblastoma, one must 
overcome two significant obstacles: 1. immune- privileged; and 2. 
immunosuppression.

It is previously believed that the central nervous system is an 
immune- privileged organ lacking antigen- presenting cells. Microglia 
cells present in brain tissue under noninflammatory conditions and 
play a limited antigen- presenting role but are less effective than the 
peripheral macrophages.47 The expression of major histocompat-
ibility complexes is reduced in microglia.48 In addition, a single- cell 
sequencing research reported that tumor- associated macrophages 
overexpressed genes encoding MHCII components (H2- Aa, H2- Ab1, 
ANDH2- Eb1), as well as CD52, a costimulatory signal, which medi-
ates T- cell activation and proliferation. There indirectly suggested 
that tumor- associated macrophages may also be involved in antigen 
presentation during tumor immunity.49 Although activated microglia 
can present antigens to active lymphocytes,13,50 the presentation of 
tumor antigens and cross- activation of T lymphocytes are mainly per-
formed by dendritic cells rather than microglia.51 Whether microglia 
can perform effective antigen presentation and activate cellular im-
munity in the central nervous system requires further research.

Numerous studies have confirmed that patients with glioblas-
toma experience both systemic and local immunosuppression. 
Systemic immunosuppression, characterized by impaired cell- 
mediated immune function,52,53 occurs in glioblastoma patients 
after radiation or astemizole chemotherapy. In these patients, bone 
marrow T cells fail to enter the circulation.54 Among glioblastoma 
patients treated with amide, 73% exhibit significant decreases in pe-
ripheral CD4+ T cells.55 Immune suppression also occurs locally in 
the tumor microenvironment. It is regulated by glioma cells, tumor- 
related macrophages, Treg cells, effector T cells, and cytokines such 
as IL- 1, IL- 10, TGF- β, and FGL256,57 (Figure 1C).

Compared with other malignant solid tumors, glioma tissue 
contains many tumor- associated macrophages (TAMs), while 
lacks effector T lymphocytes and dendritic cells. Such cell com-
position promotes tumor development and suppresses antitumor 
immunity.58

Microglia are differentiated tissue macrophages entering in the 
central nervous system during embryonic development.59– 61 Some 
border- associated macrophages (BAM), such as choroid plexus 
meninges, or perivascular macrophages,62 are also important CNS 
myeloid cells and some of them can be partially supplemented by 
circulating monocytes.63,64 Like the traditional macrophages, all 
the above cells in the brain possess many functions, including scav-
enging, phagocytosis, antigen presentation, and migration.60 It is 
believed that although glioblastoma contains myeloid cells such 
as microglia and tumor- associated macrophages, it usually lacks 
antigen- presenting dendritic cells, and tumor- infiltrating lympho-
cytes.3,65,66 Chu et al. reported that due to the upregulation of en-
dogenous TLR2 ligand in tumor tissues, the expression of MHC II 
in microglia is suppressed,67 which ultimately hinders the antigen 
presentation and promotes tumor escape.

Recently, it has been suggested that tumor- infiltrating mi-
croglia and macrophages, so- called tumor- associated microglia 
(TA- MG) and tumor- associated macrophages (TA- MAC), respec-
tively, play essential roles in shaping the microenvironment that 
influences glioma growth.68 While the classically activated pro- 
inflammatory macrophages (M1) may orchestrate an antitumor im-
munity, the alternately activated anti- inflammatory macrophages 
(M2) promotes tumor growth.13,14,69 The transformation of TA- MG 
and TA- MAC to the M1 or M2 phenotype depends on the clues 
provided by the local microenvironment, for example, cytokines. 
Many inflammation- resolving cytokines such as TGFbeta, M- CSF, 
IL- 13, IL- 4, and IL- 10 can polarize TA- MAC or TA- MG into the M2 
phenotype, whereas cytokines including INFgamma, MCP- 1, and 
TNFalpha promote the M1 phenotype. Therefore, from a future 
clinical translation perspective, strategies that mobilize M1 mi-
croglia and macrophage to boost antitumor immunity would have 
therapeutic potentials.

3  |  CD47

CD47 is a transmembrane protein widely distributed on the surface 
of normal cells. It consists of a highly hydrophobic transmembrane 
region and a hydrophilic carboxyl- terminal cytoplasmic region. Signal- 
regulated protein alpha (SIRPα), thrombospondin 1 (TSP- 1), and integrin 
are all CD47 ligands. Under physiological conditions, CD47 mediates 
cell proliferation, migration, phagocytosis, apoptosis, and activation 
of T cells through the action of corresponding ligands.70– 72 SIRPα is a 
membrane protein of the immunoglobulin superfamily and is particu-
larly abundant in myeloid hematopoietic cells such as macrophages 
and dendritic cells.73,74 CD47 binds to SIRPα expressed on mac-
rophages, activates the Src homology 2 domain containing tyrosine 
phosphatase, inhibits the accumulation of myosin in the phagocytic 
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synapse, and finally produces “don't eat me” signal.75– 77 Therefore, 
CD47 plays an important role in the normal body.

3.1  |  CD47 and tumor

CD47 is involved in regulating tumor invasion and metastasis, and 
the underlying mechanisms have been extensively studied.78,79 

Studies have shown that CD47 is overexpressed in almost all types 
of tumors and tumor stem cells, including gliomas, acute myeloid 
leukemia, non- Hodgkin's lymphoma, and breast cancer. This over-
expression is positively correlated with poor prognosis.5,15,80,81 
Therefore, an anti- CD47 antibody therapy is warranted.

Numerous preclinical studies indicated that the monoclonal 
anti- CD47 antibody has an excellent antitumor effect. The under-
lying mechanism mainly includes the following: (1) CD47 antibody 

(A) (B)

(C)
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blocks the CD47- SIRPα axis, thereby promoting the phagocytosis 
of tumor cells by macrophages (Figure 2A). This mechanism has 
been validated in studies of various tumors such as glioma,8 lym-
phoma,9 and myeloid leukemia.9 (2) CD47 antibody can induce 
tumor cell apoptosis. CD47 antibody directly induces apoptosis 
in cultures of several types of hematopoietic cancer cells.7 CD47 
antibody- induced apoptosis appears to be caspase- independent.82 
Morphologically, this type of apoptosis manifests typical features 
of apoptosis, including cell contraction and decreased mitochon-
drial transmembrane potential, without chromatin condensation 
or DNA fragmentation. (3) CD47 antibody induces cell- mediated 
cytotoxicity through Fc receptors.5 (4) CD47 antibody promotes 
the antigen presenting by dendritic cells (DCs),83 thus improving 
the recruitment of T cells.51,84 In vivo studies have shown that 
blocking CD47 enhances the phagocytosis of macrophages and 
cytoplasmic sensation of tumor cell DNA, thereby activating the 
innate immunity through the STING signal and activating T cells 
through DCs.85 (5) Several studies showed that CD47 could facil-
itate the transformation of TA- MACs to the M1 phenotype and 
therefore inhibit tumor growth.12 In a similar mechanism, CD47 
antibody can promote the phagocytosis of glioma cells in the cen-
tral nervous system by activating TA- MG.86 Clinical trials testing 
the monoclonal anti- CD47 antibody have been carried out in a va-
riety of solid cancers and hematopoietic cancers (see Table 2). The 
anti- CD47 antibody was used either alone or in combination with 
other antibodies (Rituximab, Cetuximab, Nivolumab) or adjuvant 
therapy. However, these combination treatment trials are primar-
ily in phase I.

3.2  |  CD47 and the treatment of glioblastoma

At present, the application of CD47 antibodies glioblastoma remains 
at the preclinical stage. The main reasons for the delayed testing of 
CD47 antibodies in clinical gliomas are related to the concerns about 
the antibody itself as described below and the possible resistance of 
gliomas to such therapy.

3.3  |  CD47 antibody: concerns about safety and 
reliability

First, the off- target effect of the CD47 antibody includes the 
blockage of CD47 signaling in normal erythrocytes, thus increasing 
the expression of calreticulin, an “eating me” signal.87 Meanwhile, 
the Fc- mediated killing of target cells is activated, making natural 
killer cells (NK) attack red blood cells and cause anemia. Second, 
the binding of antibodies to T lymphocytes may cause T cell apop-
tosis and immunosuppression.88 Finally, the interaction between 
the antibody Fc fragment and the Fc receptor on macrophages 
plays a critical role in activating macrophages. Therefore, it is not 
enough to activate macrophages only by blocking CD47- SIRPα. 
Taking these facts into consideration, IgG1 should be selected to 
make the antibody function effectively (such as TTI- 621, the ef-
fect of Ig G4 that has on activating macrophages is weaker than 
IgG1), which, however, would inevitably lead to attacking on RBCs 
and T lymphocytes by immune cells. In order to avoid cytotox-
icity, IgG4 has been selected in most studies— that is, to obtain 
the safety at the expense of effectiveness (such as CC- 90002, 
Hu5F9- G4, and IBI188), consequently, the expected result can 
only be achieved when other antibody drugs with ADCC/ADCP 
activities are combined.

3.4  |  Treatment resistance: Immune privilege and 
immunosuppression

Compared with other organs, brain parenchyma is separated from 
blood circulation by the blood- brain barrier. The lack of profes-
sional antigen- presenting cells in the brain makes antigen rec-
ognition and presenting difficult. Although CD47 antibodies can 
promote the conversion of TA- MG and TA- MAC to the M1 phe-
notype12 and upregulate the expression of MHC- II,67 a marker 
of antigen- presenting function, the activated microglia, or mac-
rophages may not be enough to boost the antitumor cellular im-
munity. A study on colon cancer and lymphoma pointed out that 

F I G U R E  1  Characteristics of tumor stem cells and composition of immunosuppressive microenvironment in glioblastoma. Cancer stem 
cells (CSCs) are the main cause of tumor resistance and recurrence. (A) current research shows that the drug resistance mechanisms of 
tumor stem cells can be divided into 11 aspects. (B) After standard treatment, most of the sensitive tumor cells are cleared. However, 
tumor stem cells undergo self- renewal, proliferation, and differentiation through complex mechanisms to escape host defense, and 
eventually lead to tumor recurrence. Therefore, targeting tumor stem cells to eradicate the tumor is a promising treatment. (C) Glioblastoma 
immunosuppressive microenvironment. Driven by increased expression of STAT3, glioblastoma cells (1) Secrete immunosuppressive factors 
such as TGF- β2, PGE, IL- 1, IL- 10, and FGL2, which are involved in suppressing the activity of effector cells. (2) Up- regulate PD- L1 expression 
on their surface, which binds to PD- 1 on the effector cells and further inhibits effector cell activity. (3) Produce M- CSF, TGF- β1 and IL- 10 to 
polarize macrophages and microglia to immunosuppressive M2 phenotype. (4) M2 tumor- associated macrophages secrete TGF- β1 and IL- 10, 
which are also involved in suppressing effector T cells. (5) TGF- β secreted by glioma cells causes T cells to express FoxP3 and differentiate 
into Treg cells. (6) Treg cells secrete TGF- β1 and IL- 10 and expresses PD- L1, which further suppress immunoreactive T cells. (7) Treg cells 
with high expression of FoxP3 inhibit the maturation of dendritic cells and hinder the effective presentation of antigen upon activation 
by costimulatory signals of CD80/86 and CD28. (8) The MHC molecules of dendritic cells present antigens to effector T cells and induce 
antigen- specific immunity. However, CD80/86 may also inhibit the activity of effector T cells by binding to the highly expressed CTLA4 
receptor. ROS: reactive oxygen species, ALDH: acetaldehyde dehydrogenase, EMT: epithelial– mesenchymal transition, TGF- β: Transforming 
Growth Factor- β, PGE: Prostaglandin E, IL: interleukin, FGL2: fibrinogen- like protein 2, PD- L1: programmed death ligand 1, PD- 1: 
programmed death 1, M- CSF: macrophage colony- stimulating factor, MHC: major histocompatibility complex
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the therapeutic effect of CD47 blockade on immunocompetent 
mice relies on dendritic cells rather than the cross- initiation of 
macrophage responses to T cells.51

Immunosuppression is prevalent in patients with glioblastoma. 
The brain homing of T lymphocytes leads to a decrease in periph-
eral T lymphocytes.54 Glioblastoma cells secrete anti- inflammatory 
factors such as TGFβ, PGE, IL- 1, IL- 10, and FGL2, which suppress the 
effector cells. Myeloid suppressor cells in the local microenviron-
ment recruit and differentiate Regulatory T cells (Treg), and restrict 
DC activation89,90 (Figure 1C). Since single immunotherapy cannot 
target many pathways, it is reasonable that the development of clin-
ical immunotherapy for glioblastoma, including the use of CD47 an-
tibodies, has progressed slowly.

Considering these reasons, it is necessary to combine CD47 
antibody with other anti- GBM therapies to increase efficacy while 
reducing drug resistance. A recent report revealed that administra-
tion of RRx- 001, an anti- CD47- SIRPα small molecule with vascular 
normalizing properties, prior to temozolomide or irinotecan results 
in increased drug uptake in orthotropic glioma tumors.91 In terms 
of combination of immunotherapy, the CD47 antibody that focuses 
on re- education of TA- MG and TA- MAC needs to be combined with 
other immunotherapy such as dendritic vaccines and adoptive T- 
cell therapy to treat gliomas. Future glioblastoma immunotherapy 
should aim to promote efficient innate immunity, improve antigen- 
presenting efficiency, enhance cellular immune activity, and relieve 
tumor immune tolerance and immunosuppression.

4  |  CD24

CD24 is a protein anchored to the cell membrane by glycosylphos-
phatidylinositol (GPI). CD24 proteins from different tissues or cell 
types possess different molecular weights (ranging from 20 to 
70 kD92– 95). Because the glycosylation of CD24 is highly variable and 
cell type- specific, it binds to different cell ligands to perform various 
functions. For example, in the brain, CD171, Tag- 1, and contactin can 
bind to CD24 and induce nerve growth inhibition.96– 98 In hematopoi-
etic cells, CD24 binds to danger- associated molecular pattern (DAMP) 
molecules and sialic acid- binding immunoglobulin- like lectins to form 
a three- molecule complex, thereby blocking Toll- like receptor (TLR)- 
mediated inflammation and macrophage phagocytosis99 (Figure 2B). 
As a GPI anchor molecule, it also recruits Src family protein tyrosine 
kinase (Ptk) through membrane rafts to mediate signal transduction 
and participate in the development and apoptosis of B cells and T 
cells, cell binding, and granulocyte oxidative burst.100– 107

4.1  |  CD24 and tumor

CD24 is widely expressed on various hematopoietic cells108– 110 and 
nonhematopoietic cells.94,111– 113 A review by Fang et al. suggests that 
CD24 is expressed at higher levels in progenitor cells or metaboli-
cally active cells but lower levels in terminally differentiated cells.114 
CD24 showed substantially high expression levels in various cancers 

F I G U R E  2  Antitumor mechanisms of CD47 and CD24 antibodies. (A) Anti- CD47 antibodies promote macrophage phagocytosis of 
tumor cells by blocking the “don't eat me” signal. (B) CD24 antibody promotes tumor immune clearance and its potential adverse reactions. 
After blocking the highly expressed CD24 molecule on the surface of tumor stem cells, CD24 antibody prevents the activation of CD24- 
Siglec- g/10 signal, allowing macrophages to recognize tumor cells for immune clearance. In the inflammatory state, binding of TLR and 
DAMPs (such as HMGB1) activates the NFκB pathway, which ultimately leads to the release of pro- inflammatory factors. The binding of 
CD24 and Siglec- g/10 on the surface of macrophages to DAMPs through immune receptors tyrosine inhibitory motif (ITIM) signals blocks 
inflammatory process. In the presence of CD24 antibody, this inflammatory "braking" signal is seriously affected, leading to the emergence 
of cytokine storms. HGF/SF: hepatocyte growth factor/scatter factor, MCP- 1: monocyte chemoattractant protein- 1, M- CSF: macrophage 
colony- stimulating factor, CL3CL1: fractalkine, CXCL, CCL: Chemokine Ligand, GD3: tumor- derived ganglioside, iGb3: endogenous antigen, 
MICA/B (MHC class I chain- related molecules A/B). DAMPS: damage associated molecular patterns, HMGB1: high mobility group box 
1 protein, HSP: heat shock Proteins, TLR: toll- like receptors, MYD88: myeloid differentiation factor 88 [Colour figure can be viewed at 
wileyonlinelibrary.com]

https://onlinelibrary.wiley.com/
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and cancer stem cells, such as breast cancer,115,116 pancreatic can-
cer,117 and glioma.118 CD24 overexpression is positively correlated 
with the pathological grade or prognosis of cancer. This information 
is of great significance for targeting cancer stem cells and formulat-
ing appropriate treatment plans for rapidly proliferating cancers.

Lipid rafts are cholesterol- rich environments in cell membranes 
and participate in cell signal transduction. CD24 is linked to various 
signaling pathways through GPI. Simultaneously, through highly 
variable glycosylation, CD24 also affects the growth of tumors 
(Table 3). Studies have shown that CD24 promotes cancer cell ad-
hesion,119 growth,116 proliferation,120 invasion,121 and metastasis,116 
while inhibits cancer cell apoptosis.122 In addition, CD24 has been 
proposed as a biomarker for the active proliferation of several types 
of cancer stem cells. Therefore, CD24 has attracted much attention 
as a potential molecule to target cancer cells/cancer stem cells.

Although CD24 has been extensively studied for its role in tumor 
growth, there are few reports identify CD24 as a therapeutic target. 
Klapdor et al. designed the third- generation chimeric antigen receptor 
(CAR) for CD24, which demonstrates a high degree of cytotoxic effect 
on ovarian cancer cells.123 CD24 monoclonal antibodies have been 
reported to inhibit tumor growth and prolong the overall survival in 
the mouse models of metastatic cancers.10,11 The most important dis-
covery is by Amira and colleagues,6 who revealed that CD24 is func-
tionally complementary to CD47 and programmed cell death ligand 
1 (PD- L1). As an important “don't eat me” signaling molecule, CD24 
binds to Siglec- G (mice) or Siglec- 10 (humans) in cancer cells, trigger-
ing the immune escape reactions. Thus, blockage of the CD24 effect 
by its monoclonal antibodies effectively enhances the ability of TA- 
MACs to attack various types of cancer cells.6 Finally, the combined 
blockage of both CD24 and CD47 confers an additive phagocytosis- 
mediated cancer- killing effect.6 Thus far, anticancer therapy using 
the anti- CD24 antibodies has not been tested in clinical trials, and its 
potential adverse effects are largely unknown. Although the mouse 
erythrocytes express CD24a, it does not appear that the anti- CD24 
monoclonal antibodies interact with or kill human erythrocytes.6

4.2  |  CD24 and the treatment of glioblastoma

The expression of CD24 is up- regulated in glioblastoma stem cells 
and functionally involved in the migration, infiltration, and metasta-
sis of glioblastoma cells.41,124 An overexpression of CD24 by more 
than two fold has been associated with poor overall survival in GBM, 
the poor survival may be related to increased “stemness” of tumor 
cells,16 which provides a potential therapeutic target for glioblastoma. 
From the translation perspective, the combined application of CD24 
antibody with the CD47 antibody offers an additive effect against 
glioblastoma compared to either treatment alone. Further clinical 
evaluation on this combined treatment on glioblastoma is warranted.

The mechanism by which the anti- CD24 antibody promotes 
M1 polarization of TA- MAC and TA- MG should be further investi-
gated. Through M1 conversion, the anti- CD24 antibody may fun-
damentally alter the microenvironment that otherwise supports 
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tumor growth. In addition, CD24 serves as an innate immune 
checkpoint. It is still unknown whether CD24 blockade in vivo 
can effectively bridge innate immunity and adaptive immunity, 
thereby enhancing the immune clearance of cancer cells. Protein 
complex formation involving DAMPs and Siglect- 10 (human) 
or Siglec- G (mouse) helps avoid excessive immune responses, 
thus maintaining an immune homeostasis by binding to CD24.99 
Another question is whether CD24 blockage with the anti- CD24 
antibody leads to the over- activation of TLR- mediated pro- 
inflammatory reactions, which in turn triggers a cytokine storm, 
attacks normal cells, and results in autoimmune diseases. The lat-
ter is a particularly relevant concern for glioma therapy, as CD24 
is widely expressed in brain parenchyma cells. The immunother-
apy resistance of glioblastoma to CD24 antibody treatment needs 
to be further investigated (Figure 2B).

4.3  |  Perspectives

Immunotherapy has been developed as a novel treatment for glio-
blastoma. Such treatment needs the participation of the systemic 

immune system that orchestrates a strong and persistent cytotoxic 
response to brain glioma. However, due to the unique immune mi-
croenvironment within the central nervous system and in the glio-
blastoma, the development of clinical feasible immunotherapy for 
glioblastoma has been relatively slow.

With the increased understanding of the mechanisms underly-
ing cancer immunology in the glioblastoma, especially the role of the 
“don't eat me” CD47- SIRPα signaling and CD24- Siglec10 signaling, 
we propose here that the combined blockage of these two pathways 
may effectively activate the innate immune responses toward glio-
blastoma. CD47 and CD24 are highly expressed in cancer stem cells. 
The combination of anti- CD47 and anti- CD24 antibodies could offer 
robust cancer cell- killing effects and block the vicious cycle for tumor 
recurrence from cancer stem cells. Previous studies have demon-
strated that the anti- CD47/anti- CD24 dual- antibody approach could 
effectively activate the myeloid immunity in the brain. We further 
propose that the local application of the anti- CD47/anti- CD24 anti-
bodies, combined with CAR- T, tumor vaccines, immune checkpoint 
inhibitors, or other systemic immunotherapies will likely improve the 
overall efficacy for clinical treatment of glioblastoma (Figure 3). This 
may represent an emerging new strategy to treat glioblastoma.

TA B L E  3  Mechanisms of CD24 involved in tumorigenesis due to glycosylation characteristics and different binding ligands

The Role of CD24 in Cancer Development

Glycosylation Mediate Mechanisms Ligand Mediated Mechanisms

Sialyl- Lewis (x) promotes Metastasis153 P- selectin Metastasis153

N- acetylglucosamine CSCs Self- renewal and tumorigenicity154 E- selectin (CD62E) Transfer and Scrolling155

L1 (CD171 or
L1CAM)

Progress and Proliferation156

Siglec- G (mice) or
Siglec−10 (humans)

Immune Evasion99,157

Abbreviation: L1CAM, L1 Cell Adhesion Molecule.

F I G U R E  3  Conception of combining 
local immunotherapy with systemic 
immunotherapy. In the central nervous 
system, anti- CD47/CD24 antibodies 
promote the phagocytosis of tumor cells 
by macrophages and microglia. Activating 
the peripheral immune system by adaptive 
immune system cancer vaccines (such 
as dendritic cell vaccines), genetically 
modified CAR- T, and various immune 
checkpoint inhibitors (such as PD- 1, 
PD- L1 antibodies) plays a synergistic 
antitumor therapeutic effect. This 
combined immunotherapy may reduce the 
occurrence of immune- related adverse 
reactions while synergizing the antitumor 
effects [Colour figure can be viewed at 
wileyonlinelibrary.com]

https://onlinelibrary.wiley.com/
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Some recent studies have suggested that the levels of CD47 
and CD24 expression are positively correlated with increased an-
giogenesis in solid tumors,125,126 respectively. Hence, blockage of 
CD47 signaling could potentiate the therapeutic effects of anti- 
angiogenic therapy in certain cancer.127 Whether CD47 or CD24 is 
directly involved in angiogenesis within glioblastoma is unknown, 
this should be investigated in future studies. Nevertheless, given 
the importance of microenvironment, especially angiogenesis, in 
the prognosis of glioblastoma treatment, future immunotherapy 
against CD47 or CD24 should include the quantitative evaluations 
of hemodynamic changes within and surrounding the glioblastoma. 
Several imaging modalities have been developed,128– 130 which can 
be applied to future studies as both an outcome endpoint and a 
potential biomarker for prognosis of immunotherapy against 
glioblastoma.
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