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Abstract

Motivation: A global effort is underway to identify compounds for the treatment of COVID-19. Since de novo

compound design is an extremely long, time-consuming, and expensive process, efforts are underway to

discover existing compounds that can be repurposed for COVID-19 and new viral diseases.

Model: We propose a machine learning representation framework that uses deep learning induced vector

embeddings of compounds and viral proteins as features to predict compound-viral protein activity. The

prediction model in-turn uses a consensus framework to rank approved compounds against viral proteins

of interest.

Results: Our consensus framework achieves a high mean Pearson correlation of 0.916, mean R2 of 0.840

and a low mean squared error of 0.313 for the task of compound-viral protein activity prediction on an

independent test set. As a use case, we identify a ranked list of 47 compounds common to three main

proteins of SARS-COV-2 virus (PL-PRO, 3CL-PRO and Spike protein) as potential targets including 21

antivirals, 15 anticancer, 5 antibiotics and 6 other investigationalhuman compounds. We perform additional

molecular docking simulations to demonstrate that majority of these compounds have low binding energies

and thus high binding affinity with the potential to be effective against the SARS-COV-2 virus.

Availability: All the source code and data is available at: https://github.com/raghvendra5688/

Drug-Repurposing and https://dx.doi.org/10.17632/8rrwnbcgmx.3. We also implemented

a web-server at: https://machinelearning-protein.qcri.org/index.html.

Contact: Raghvendra Mall and Ehsan Ullah

Supplementary information: Supplementary data are available at Bioinformatics online.

1 Introduction

The breakout of COVID-19 started in December 2019, in China’s Hubei

province [1], and to date, this pandemic has caused over 95 million infec-
tions and over 2 million deaths worldwide [2]. There is an immediate need
for effective treatment and vaccines to contain the spread of this pandemic.

Based on the time and resources required to develop new compounds to
treat COVID-19 and emerging viral diseases, it is not feasible to rely com-
pletely on the traditional process of compound discovery, which takes an

average 15 years and costs $2-3 billion to bring a new compound to market
[3]. A more pragmatic approach would be to perform drug repurposing,
more specifically, accurately identify a set of candidate compounds which

can exhibit high activity against viral proteins and potentially inhibit them
using novel in-silico techniques.

In this paper, we present a consensus framework of in-silico
embedding-based modeling techniques, which utilizes different combi-

nation of representations for compounds and viral proteins including:

• Morgan Fingerprints (MFP) [4] as chemoinformatic descriptors of
compounds + a convolutional neural network (CNN) [5] autoencoder

based vector representation for viral protein sequence.
• A teacher forcing - long short term memory neural network (TF-

LSTM) [6] autoencoder based vector representation for compounds

+ CNN autoencoder based vector representation for viral proteins.
• Canonical SMILES based sequential representation of compounds

+ Primary structure (linear chain of amino acid) based sequential

representation of viral proteins.

The goal of the consensus framework is to identify known and inves-
tigational compounds as candidates for viral diseases, using COVID-19
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as a specific use case. The crux of our approach is that when new viruses
emerge, already collected information on other viruses might be useful for
inferring virus-specific compound activity. This is further suported by ob-

servations in quantitative structure-activity relationship (QSAR) models
[7], where the intuition that compounds with similarities in structure and
physio-chemical properties tend to have similar activities against given

viral proteins is commonly utilized. For our use case, we focus on primary
protein targets of severe acute respiratory syndrome-related coronavirus 2
(SARS-CoV-2).

In the recent literature, a plethora of AI and network medicine
based approaches have been applied for drug repurposing/repositioning
[8, 9, 10, 11]. The most commonly solved problem is prediction of in-

teraction/activity/binding affinity between compound and protein targets
using variety of AI methods [12]. One of the limitations of these ap-
proaches is that they are often trained on human protein sequences (kinases,
nuclear receptors, G-protein-coupled receptors) which are very different

from viral protein sequences and hence they need not generalize well for in-
silico compound-viral protein activity prediction. In another recent work,
AtomNet [13], the authors predict the compounds-protein binding affin-

ity using the 3d structural information extracted by convolutional neural
network (CNN). However, high-quality 3d structure for novel viruses is
seldom available. In [14], compound-target interactions were predicted

using a hybrid approach of graph neural network [15] and recurrent neu-
ral network (RNN) [14] approach. Similarly, in [16], a hybrid CNN and
RNN model called Molecule Transformer Drug-Target interaction predic-

tor was proposed using known antiviral drugs for the potential treatment
of SARS-CoV-2 infection [10]. One limitation of these approaches is that
these models are trained on labelled compound-viral protein interactions

in databases such as ChEMBL and do not benefit from viral protein se-
quences (∼2.5 million) available in other databases such as Uniprot, as
well as compounds (∼2.5 million) in databases such as PubChem due to

missing labelled interaction information. However, as shown in [17] that
unsupervised or self-supervised learning on unlabelled data (i.e. learn-
ing a vector representation for a given data type) can greatly benefit the

downstream supervised learning task.
Furthermore, there also exist network medicine based approaches

which use knowledge graph representations [9, 8, 11] in combination with

graph-theoretic (network-propagation, network proximity and diffusion)
as well as graph neural network-based approaches to identify potential
compounds targeting the COVID-19 as a disease. The knowledge graph

is constructed using the interaction between multiple entities such as dis-
eases, compounds, genes, human proteins and viral protein interactome.
The goal is usually to identify links between existing approved compounds

and new diseases such as COVID-19. Authors in [9] highlighted that the
quality of the originally constructed knowledge graph from noisy sources
was a potential limitation, which could impact their downstream Cov-KGE

models. Additionally, these techniques can benefit from the vector repre-
sentation learned for compounds and viral proteins using unsupervised
learning framework as proposed in our work. The vector representation

can be used in addition to the node representation learned through graph
embedding procedure. In [11], the authors indicated that their deep graph
neural network approach doesn’t consider node features and are currently
based only on the topology of the underlying graph.

In this work, we try to address several of these limitations follow-
ing a data-driven perspective. We collect information about various viral
organisms, their main proteins and their known compound interactions

from plethora of resources including ChEMBL [18], PubChem [19], NCBI
[20], UniProt [21], DrugBank [22] etc. In this work, we use the term

compounds for small molecules and compounds interchangabley. The

traditional approach for estimating compound (ligand) activity for a par-
ticular viral protein (enzyme) is through molecular docking [23]. For
performing molecular docking, an inherent requirement is the availability

of high-quality 3d crystal structure of the protein of interest as well as
annotation information about the presence of active sites [24]. Moreover,
it is computationally expensive to perform the docking simulations for

a large number of compounds in combination with many viral proteins.
However, it is relatively easy to collect information about the primary
structure (linear chain of amino acids) for proteins associated with viruses

from resources such as UniProt. Moreover, chemical information for com-
pounds in the form of SMILES strings is readily available in resources
such as DrugBank and ChEMBL. Finally, standardized activity (inhibi-

tion/potency/affinity) information for a plethora of compound-viral protein
combinations is available in databases such as PubChem and ChEMBL.

These are essential resources required to build in-silico embedding-

based compound-viral protein activity predictors using machine learning
(ML) techniques. The primary notion is that by providing a large dataset
of compound-viral protein activity, ML models can identify frequently
occurring patterns in the form of presence of k-mers in the viral protein

sequences and subsequences in SMILES representation of compounds (or
frequently occuring patterns in the MFP) that together drive the activity
values to be high or low.

Our primary contributions are:

• Collection and curation of compound-viral protein activity from re-

sources such as PubChem and ChEMBL leading to >60k interactions
between >50k compounds and ≈ 100 viral organisms.

• Propose autoencoder frameworks (unsupervised) to obtain numeric

vector representations for compounds (≈ 2.5 million) and viral
proteins (≈ 2.5 million) respectively, which can be utilized for down-
stream compound-viral protein activity prediction task by traditional

supervised ML techniques.
• Propose 4 different end-to-end deep learning techniques to pre-

dict compound-viral protein activity based on SMILES strings of
compounds and primary structure of viral proteins.

• Showcase the effectiveness of the consensus framework as it outper-
forms all the individual modeling techniques on the test set.

• Identify a ranked list of 47 compounds as potential therapeutic agents

for COVID-19 by targeting the three main proteins of the SARS-
COV-2 virus using our consensus framework. These include 21

antivirals, 15 anticancer, 5 antibiotics, and 6 other investigational

human compounds.
• Majority of the compounds in the top ranked list attain low binding

energies (high binding affinity) in molecular docking experiments for

each of the three viral proteins of SARS-COV-2 virus.
• Provide a general and extensible framework where individ-

ual components can be replaced to test if the respective

change helps to improves the overall results. The entire
source code is made publically available (https://github.
com/raghvendra5688/Drug-Repurposing) and a web-

server (https://machinelearning-protein.qcri.org/
index.html) is also provided for the ease of non-experts.

Figure 1 illustrates our compound-viral activity prediction framework.

2 MATERIALS

In order to build our in-silico embedding-based compound-viral protein ac-

tivity predictors, we collected information about compounds, viral protein
sequences, and compound-viral protein interactions (activity values) from
resources such as MOSES [25], ChEMBL, UniProt, PubChem and NCBI.

Below we describe the details of data collection and curation steps required
for the preparation of quality data, essential for accurate downstream
predictive models.
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Figure 1: Flowchart of our proposed consensus framework. We collect ≈ 2.5 million SMILES representations of compounds from MOSES and ChEMBL
databases. This is utilized to learn a SMILES embedding representation (numeric vector representation) via a TF-LSTM autoencoder model. We also

collect ≈ 2.5 million viral protein amino acid (AA) sequences from Uniprot database. These are passed through a CNN autoencoder to learn viral protein
embedding representation (numeric vector representation). We collect, curate and assimilate compound-viral protein activities from resources such as
NCBI, PubChem and ChEMBL to build our dataset (D). The corresponding bioactivities in these samples are transformed into a standardized pChEMBL
value and are used to build downstream regression models. These regression models are various machine learning (ML) techniques which take advantage

of different representations of compounds and viral proteins for in-silico compound-viral protein activity prediction. We then take a consensus of the top
5 predictors based on their performance w.r.t. 4 evaluation metrics on the test set. Here ‘blue’ color edges correspond to traditional ML models based
on SMILES embedding + Protein embedding representations, ‘red’ color edges represent ML models based on Morgan Fingerprint (chemoinformatic

descriptors) + Protein embedding representations and ‘green’ color edges correspond to end-to-end deep learning models based on canonical SMILES +
Protein Amino Acid (AA) Sequence representations for predicting compound-viral protein activities.

2.1 Data Collection & Curation

2.1.1 Compounds:

We initially collected 556, 134 SMILES strings for compounds used in
[26]. However, in order to have more robust and realistic set of molecules,

the dataset was augmented with 1, 936, 962 compounds available in the
MOSES dataset [25]. Together these two datasets represented ≈ 2.5 mil-
lion SMILES for compounds. We then filtered this dataset to remove salts

and stereochemical information. In [26], the authors restricted their canon-
ical SMILES sequence length to be in the range [34, 74] for their LSTM
based compound generation methodology. In [27], the authors highlighted

that increasing the sequence length to 128 characters lead to better qual-
ity compound generation using an LSTM framework. In our work, we
include compounds whose SMILES strings are in the range [10, 128] to

allow small sized compounds as well as large size ligands to be part of
our chemical search space which is more inclusive and comprehensive
than that used in [26]. As a result, our final compound set S consisted of

2, 459, 695 canonical SMILES for small molecules.
To train the majority of traditional supervised ML algorithms, it is

essential to have numeric vector representation for compounds. We used

the set S to train a TF-LSTM [28, 6] based autoencoder [29] which gen-
erates a low dimensional vector representation (LSc) for each compound.
Furthermore, to have a comprehensive comparison, we also used tradi-

tional chemoinformatic descriptors such as Morgan Fingerprints (MFP) [4]
dervied from compound structure as an alternative vector representation
for each compound.

2.1.2 Viral Proteins:

We downloaded all the viral protein sequences available in UniProt [21]
comprising a total of 2, 684, 774 protein sequences. Among these 10, 685
are deposited in SwissProt [30] i.e. are manually curated and functionally

annotated, whereas the remaining 2, 674, 089 are obtained from TrEBML
[30] and are not well-curated. These viral proteins span over 2, 742 viral
organisms. A neccessary condition for training deep learning models with
protein sequence is to have a fixed length L. In [31, 32], the authors

used sequence legths of 800 and 1, 200 for training their deep learning
models. In this work, we filter viral proteins to keep sequences with L ≤

2000 resulting in a set V of 2, 658, 225 viral protein sequences, thereby,

retaining ≈ 99% of all viral proteins available in Uniprot.
In order to train traditional supervised methods, it is essential to have

numeric vector representation for protein sequences. We utilized the set V

to train a CNN [5] based autoencoder which then generates the required
low dimensional representation (LSv) for each viral protein sequence.

2.1.3 Compound-Viral Protein Activities:

The primary focus of our use case are the 3 main proteins of the
SARS-COV-2 virus including papain-like proteinase (PL-PRO), 3C-like
proteinase (3CL-PRO also referred as cleavage protein) and the Spike

glycoprotein (S glycoprotein). We centered our work on these SAR-COV-
2 proteins due to the following reasons: (a) Availability of high-quality
3d-structures deposited in protein data bank (PDB) [33] (PDB Ids: 6W02,
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5R7Y, 6M0J respectively). This makes validation possible through molec-
ular docking experiments. (b) For several other viral organisms, the
PL-PRO and 3CL-PRO are the main proteins targeted by compounds [34].

(c) It has been shown [35], that Spike protein attaches the virion to the cell
membrane by interacting with host receptor, initiating the infection.

However, our proposed framework can easily be extended to other

viral proteins associated with the SARS-COV-2 virus as well as proteins
associated with other viruses. As the SARS-COV-2 is a new virus, it is
harder to get quality data about compound-viral protein activity. However,

information about similar viruses, their main proteins and small molecules
used to target these viral proteins are available in repositories such as
PubChem, ChEMBL and BindingDB [36].

We initially searched for compound activity information related to
SARS-COV-1 (SARS-1), Middle East Respiratory Syndrome (MERS),
Human Immunodeficiency Virus (HIV) and Hepacivirus C (HepC) using
the “PUG-REST" API of NCBI [20] which was used to download raw

information from various NCBI Assay records. We processed only those
records which contain Assay Id’s (AID). A given assay can report different
kinds of compound bioactivities depending on the objective of the study.

These bioactivities include measurements such as IC50, EC50, AC50,
Ki, Kd, Potency etc. as described in [37]. These biological activities are
standard potency measures that are derived from dose-response assays

at different concentrations designed to measure activation, inhibition of
targets, and pathways of pharmacological significance [37].

We note these bioactivity measurements may vary across assays but

to obtain a large set of compound-viral protein activities for the in-silico
modeling techniques, it is essential to combine several of these bioac-
tivites with certain restrictions. For example, we filter those records which

don’t contain a PubChem standard value for activity (as otherwise, it
makes it difficult to have an unbiased comparison of compound activities).
The PubChem standard value for bioactivity is measured in micromolar

(µM = 10−6) concentration. We initially selected records containing
IC50 value as done by [38], which is based on the concentration of a com-
pound at which 50% inhibition of a viral protein is observed. Furthermore,

it is known from enzyme kinetics (Cheng-Prusoff Equation [16]) that when
a compound binds to a protein in an uncompetitive scenario i.e. an assay,
the Ki value is equal to IC50 value. Similarly, it was shown in [12], that

records containing Kd and Potency values as bioactivities (measured in
PubChem standard value i.e. µM ) can be combined with those holding
IC50 and Ki values. Here combining corresponds to creating a dataset

which includes all compound-viral protein bioactivity samples that either
had Ki, Kd , IC50 or Potency as a label information for downstream super-
vised learning task. Thus, using these 4 measurements of compound-viral

proteins activites and filtering records based on the aforementioned se-
quence lengths of compounds and viral proteins, we obtain an interaction
set of 13, 763 compound-viral protein activities from PubChem.

We next downloaded all compounds and viral protein interactions
available in ChEMBL [18] repository. As a part of internal quality checks
provided by ChEMBL, we include only those compound-viral protein in-

teractions which have a confidence score of at least 5. The confidence
score value reflects both the type of target assigned to a particular as-
say and the confidence that the target assigned is the correct target for
that assay. As stated in [18], assays assigned a non-molecular target

type, e.g. a cell-line or an organism, receive a confidence score of 1,
while assays with assigned protein targets receive a confidence score of
at least 5. Moreover, we remove those activities for which a standard

pChEMBL value is not available. The myriad published activities from
heterogeneous resources utilized by ChEMBL are converted into a stan-
dardized activity, namely, the pChEMBL value. This value allows us to

compare different measures of half-maximal response on a negative loga-
rithmic scale. For instance, an IC50 value of 1 nanomolar (nM = 10−9)

would have a pChEMBL value of 9. The PubChem standard value is mea-
sured in micromolar (µM ) concentration whereas the pChEMBL value
is measurement in nanomolar (nM ) concentration. Hence in order to

have a change of unit and convert bioactivity measurements obtained from
PubChem to standard pChEMBL value, we use the following formulae:
pChEMBL = − log10(ActivityPubChem) + 6.

Here ActivityPubChem corresponds to either IC50, Ki, Kd or Potency.
Hence 10−3 unit of PubChem standard value or 1 nM corresponds to a
pChEMBL value of 9 (= − log10(10

−3)+6). We initially obtain a set of

92, 638 such compound-viral protein activities and after filtering for only
those records which contain IC50, Ki, Kd and Potency as standard types,
we limit the set to 62, 219 interactions. We then remove records where the

compounds contain salt and their corresponding SMILES string exceeds
128 characters. We truncated viral protein sequences to have a maximal
length L=2000 amino acids in the interaction set. This results in a final
set of 54, 756 bioactivity samples obtained and curated via ChEMBL.

We take a union of the two data sources (ChEMBL and PubChem)
resulting in the dataset D consisting of 60, 195 such interactions. These
interactions comprise 54, 617 unique compounds, 153 unique viral pro-

tein sequences (based on Uniprot accession ids), and span over 97 different
viral organisms. We randomly split the dataset D into Dtrain (54, 175 in-
teractions) and Dtest (6, 020 activities) in the ratio of 9 : 1, which are then

used as the training and independent test set respectively for the task of
building in-silico embedding-based compound-viral protein activity pre-
dictors. The independent test set is pertinent to our framework as it enables

us to take the consensus (mean) of the top k predictive models based on
their performance on the test set.

All details of the steps followed to prepare, assimilate and curate com-

pounds, viral proteins and compound-viral protein interactions is available
in the ‘README’ file in the ‘data’ folder of the github repository (https:
//github.com/raghvendra5688/Drug-Repurposing) to en-

hance the reproducibility of our approach.

3 Methods

3.1 Overview

Compound-viral protein activity prediction can be modeled as a regression
task. We learn a mapping function g that takes as input a joint compound
and viral protein representation, (xc, xv) and outputs the activity value

ycv . In Figure 2, ycv corresponds to the -log10(IC50) and is used as stan-
dardized pChEMBL activity value. If ℓ is the model-specific loss function,
then the regression task reduces to estimating the parameters w which

minimizes minw
∑

c,v ℓ(ycv, g(xc, xv;w))

In this work, the mapping function g is a ML method including Gen-
eralized Linear Model [39], Random Forests [40], XGBoost [41], Support

Vector Machines [42, 43] and ℓ is the squared loss function. For these
techniques, xc is either passed to a TF-LSTM [28] or Morgan Fingerprint
generator [4] and xv is passed to a CNN [5] to generate numeric vector

representations LSc (for compounds) and LSv (for viral proteins) which
are utilized by the aforementioned ML models to estimate activity values,
such that ŷcv = g(LSc, LSv;w).

Furthermore, we also considered end-to-end deep learning models

using CNN, LSTM, CNN-LSTM and Graph Attention Network (GAT)-
CNN as function g, where xc corresponds to canonical SMILES sequence
for compounds and xv reflects the primary structure or linear chain of

amino acids (AA) for viral protein sequences and ŷcv = g(xc, xv;w).
The SMILES representation, is parameterized by a sequence of vectors,
xc = {xc,1, xc,2, . . . , xc,l}, where xc,i is a one-hot coded vector [44]

i.e. a binary vector of length 72 (72 unique character combinations appear-
ing in SMILES using the ‘SmilesPE’ packagehttps://github.com/
XinhaoLi74/SmilesPE in python) with 1 bit active for ith character
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Figure 2: Overview figure depicting our predictive modelling process.

For each compound c and each viral protein v, we use representations
xc and xv based on SMILES strings and primary structure respectively.

For each compound-viral protein interaction, the activity value used in the
training set is obtained from myriad resources. Here -log10(IC50) value
measured in nM units i.e. -log10(10

3 × 10−9)=6 is the standardized

pChEMBL activity value (ycv).

combination in the SMILES string and l = 128. Similarly, for each viral
protein sequence (Protein AA Sequence), xv = {xv,1, xv,2, . . . , xv,L},
where xv,j is a one-hot coded vector of length 22 (20 for amino acids, 1

for gap and 1 for ambiguous amino acids) and L=2000. Figure 2 provides
an overview of our modeling process.

3.2 Compound Autoencoder: TF-LSTM

The goal of a compound autoencoder model [29] is to learn the innate low
dimensional representation LSc from SMILES strings of compounds (xc)
in an unsupervised setting such that compounds with similar patterns tend

to be closer in the low dimensional space. Our compound autoencoder
framework consists of an encoder, a decoder, and a sequence to sequence
(seq2seq) model which encapsulates the encoder and decoder and provides
a way to interface with each. We are interested in the output of LSTM en-

coder that can be represented as h = EncoderLSTM(e(xc)). Here e(xc)

represents the SMILES embedding representation for compound, h corre-
spond to hidden state representations encapsulating sequential information

used as LSc in our downstream predictive models. A detailed working
mechanism of TF-LSTM is provided in Supplementary Material.

We trained this TF-LSTM model on ≈ 2.5 million SMILES strings for

small molecules. Interestingly, 96.7% of the SMILES generated by our
TF-LSTM model were valid small molecules (tested using RDKit [45]
package) and had a mean categorical cross-entropy [46] error of 0.001.

The convergence of the reconstruction error for our TF-LSTM model is
depicted in Supplementary Figure 1a. Supplementary Figure 2a illustrates
our TF-LSTM compound autoencoder model.

3.3 Protein Autoencoder: CNN

The goal of the viral protein autoencoder model is to learn a low dimen-
sional Protein embedding representation LSv from the AA sequences of
viral proteins xv . We used a convolutional autoencoder neural network

for this purpose. Our protein autoencoder framework consists of two main
components: an encoder and a decoder as highlighted in Supplementary
Figure 2b. The autoencoder was trained in an unsupervised fashion to

learn a low dimensional space (LSv). A detailed description of the protein
autoencoder is provided in Supplementary Material.

We trained our autoencoder on 2, 685, 225 viral proteins. The mean

categorical cross-entropy [46] error for the autoencoder was 0.1. The con-
vergence of the reconstruction error for the autoencoder is depicted in
Supplementray Figure 1b.

3.4 Traditional Machine Learning Models

We used four state-of-the-art ML models, namely, Generalized Linear
Models (GLM) [39], Random Forests [40], XGBoost [41] and Support

Vector Machines (SVM) [42, 43] as mapping function g. Thus, our pre-
dicted activity value can be represented as ŷcv = g(LSc, LSv;w) for a
given compound c and viral protein v. It has been shown that non-linear

ML techniques such as Random Forests, XGBoost and SVMs can be used
efficiently for a variety of bioinformatics problems [47, 48, 49, 50, 51, 52].

Generalized Linear Model (GLM) [39] is a flexible version of lin-

ear regression model which allows the errors or residuals of the response
variable to follow a distribution other than the normal distribution. In our
work, GLM serves as a baseline comparison technique. Random Forests

(RF) belong to the class of ensemble supervised learning techniques. RF
algorithm applies the technique of bagging or bootstrapped aggregating
[40] to decision tree learners. Given Dtrain, the bagging procedure repeat-

edly selects random samples with replacement and fits separate trees to
these samples and aggreates them to build the final regressor.

Gradient boosting machine (GBM) [53] belongs to that family of pre-

dictive methods that uses an iterative strategy s.t. the learning framework
will consecutively fit new models to have an accurate estimate of the
response variable after each iteration. The advantage of the boosting proce-

dure is that it works by decreasing the bias of the model, without increasing
the variance. A more scalable and accurate version of GBM is XGBoost
[41]. It uses a scalable end-to-end tree boosting system with a weighted

quantile sketch for approximate tree learning. XGBoost can scale for a
large number of samples using very little computational resources.

Support vector machines (SVM) were originally introduced in [54, 42]

and belong to the family of linear optimization techniques where regression
task is considered as function estimation and achieved by constructing
optimal hyperplanes. They only become suitable for non-linear regression

task when a corresponding kernel is chosen [54, 42]. The choice of the
kernel enables to encodes the similarity structure in the input data in high
dimensional space. We use the radial-basis function (RBF) or universal

kernel for our non-linear SVM model which is optimized using a standard
cross-validation procedure.

We used the ‘sklearn’ package [55] available in Python for building

our optimal GLM, RF, XGBoost and SVM models after performing hyper-
parameter optimization using 5-fold cross-validation. In order to do cross-
validation, we shuffled the training dataset and then randomly split the
data into 5 parts, using a combination of 4 parts as training set and 1

part as validation set to identify the optimal set of hyper-parameters. This
process is repeated 5 times and the hyper-parameters with best average
performance are then selected as optimal hyper-parameters. These hyper-

parameters are used to build the final model on the entire training set.

3.5 End-to-End Deep Learning Models

We built 4 end-to-end deep learning models for our regression problem

where the mapping functions g were CNN, LSTM, CNN-LSTM, and GAT-
CNN. These models directly work on the compound (xc) and viral protein
(xv) representations, unlike traditional ML techniques.

3.5.1 CNN Model:

This deep learning architecture comprises two CNN encoders. For the
compound and protein CNN encoders, each of the compound (xc) and
viral protein (xv) representation is passed through an embedding layer

(e(·)) to generate compound embedding matrix and viral protein embed-
ding matrix respectively. A single convolutional layer with multiple filter
sizes, k ∈ K = {3, 6, 9, 12}, is applied on top of the embedding matrix

followed by a max-pooling operation to generate hidden state vector for
small molecules as well as viral protein sequences as depicted in Figure
3a. The hidden state vector hc for compounds and hv for viral protein
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(a) CNN model (b) LSTM model

(c) CNN-LSTM model (d) GAT-CNN model

Figure 3: Different end-to-end deep learning models used as data-driven predictive models for the task of estimating compound-viral protein activity.

sequences are then concatenated together (h) and are considered as the
output of the CNN encoders.

We then have multiple feed-forward layers on top of h which are ulti-
mately connected to the output unit corresponding to the activity value. The

CNN encoders can capture contiguous sequences in the SMILES repre-
sentations and k-mers in viral protein sequence, whereas the feed-forward
layers capture the co-occurrence of such patterns that drive the activity

value to be either high or low based on our training set Dtrain. We use
non-linear activations at every layer and optimize the model architecture
w.r.t. hyper-parameters such as filter sizes, learning rate, etc.

3.5.2 LSTM Model:

The LSTM model consists of two LSTM encoders. We have an LSTM en-
coder based on the compound representation (xc ) and another one based on
the viral protein representation (xv). The compound LSTM encoder gen-

erates the hidden state vector (hc) while the viral protein encoder generates
the hidden state vector (hv). The two hidden vectors are then concatenated
together (h) as illustrated in Figure 3b.

We again have multiple feed-forward layers on top of h which is
connected to the output unit representing the activity value. The LSTM
encoders not only capture short but long term dependencies as well, due to

the availability of memory units, based on SMILES strings and viral pro-
tein sequences and the feed-forward layers encapsulate the co-occurrence
of such patterns driving the activity value to be high or low for a given

compound-viral protein combination.

3.5.3 CNN-LSTM Model:

The CNN-LSTM model is a combination of CNN and the LSTM model. By
combining the CNN and LSTM models, this model can capture spatially
contiguous and well as long-term dependencies in the SMILES strings

and viral protein sequences. The output of each encoder is concatenated
together to generate hidden representation h which is passed to multi-
ple feed-forward layers and is ultimately connected to the output layer

consisting of one unit for the activity value.

3.5.4 Graph Attention Networks-Convolutional Neural Networks

(GAT-CNN) Model:

This deep learning architecture is composed of two parts, graph attention
networks [56] and convolutional neural networks. For a given compound,

the compound structure can be presented as a graph consisting of the atoms
(nodes) in the compound and connected by edges if a bond exists between
a pair of atoms. To convert a compound structure to the form of graph

representations, we use the RDKit package which takes SMILES strings
and converts them. Furthermore, RDKit allows us to extract different atom
features such as atom’s degree, the total number of hydrogen, the number

of hydrogen with the number of bonded neighbors, atom status as aromatic
or not, the implicit value of atoms, and atom symbol. These features
can be utilized as node properties for atoms. In total, we extract 78 such
features from the SMILES strings. Given the graph-based representation of

a compound molecule (xc ) along with the extracted node features, the GAT
model learns an embedding representation for a compound encapsulating
the topological information available in the graph of each compound.

The second component of this architecture is convolutional neural net-
works which take protein AA sequence as an input. This component is
composed of the embedding layer and multiple convolutional layers. At

each convolutional layer, a non-linear activation function is applied and is
followed by a max-pooling operator. It learns protein embedding (hv) and
concatenates it with the SMILES embedding (hc) generated by GAT to

produce h, which is then passed to feed-forward layers. The output layer
provides the value corresponding to the compound activity.

The optimal model architecture hyper-parameters (like hc = 256,

hv = 64) for each of the end-to-end deep learning models are provided
in Supplementary Table 1.

3.6 Consensus Framework

In [11], the authors demonstrate that taking an aggregation of the results ob-

tained from different methodologies can provide better performance than
individual models while identifying suitable repurposable compounds for
COVID-19. In a similar vein, we take a consensus i.e. the average of the

pChEMBL values predicted by our top performing in-silico embedding-
based compound-viral protein predictors on the independent test set. We
argue that since our models are based on myriad representations of com-

pounds (SMILES embedding or MFP or canonical SMILES) and viral
proteins (Protein embedding or AA Sequence), it is imperative to take a
consensus of the top predictive models as they learn different combinations

of non-linear patterns from diverse representations of the data to attain opti-
mal predictive performance as illustrated in Table 1. Figure 1 highlights the
various combinations of input data representations and the top compound-

viral protein predictors aggregated in the consensus framework based on
the performance on the test set as illustrated in Table 1.

4 Results

4.1 Experimental Results on Dtest

We perform 10 randomizations for each of our predictive models by ran-
domly splitting the full dataset D into Dtrain and Dtest in proportions (9:1)

for training and testing purposes respectively as mentioned earlier in the
Materials section. During each randomization, all the models are built
using the same Dtrain and evaluated on the same test set Dtest to avoid
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Model Representations MAE MSE Pearson R R2

Mean Dummy regressor 1.100 ± 0.003 1.936 ± 0.006 - -

Median Dummy regressor 1.002 ± 0.002 2.310 ± 0.004 - -

GLM SMILES Emedding + Protein Embedding 0.662 ± 0.003 0.869 ± 0.009 0.740 ± 0.003 0.548 ± 0.005

RF SMILES Emedding + Protein Embedding 0.557 ± 0.005 0.625 ± 0.010 0.826 ± 0.003 0.682 ± 0.005

SVM SMILES Emedding + Protein Embedding 0.508 ± 0.004 0.478 ± 0.011 0.869 ± 0.002 0.755 ± 0.003

XGBoost∗ SMILES Emedding + Protein Embedding 0.453 ± 0.003 0.423 ± 0.007 0.885 ± 0.002 0.783 ± 0.004

GLM Morgan Fingerprint + Protein Embedding 0.647 ± 0.003 0.775 ± 0.008 0.774 ± 0.003 0.600 ± 0.005

RF Morgan Fingerprint + Protein Embedding 0.529 ± 0.003 0.552 ± 0.004 0.849 ± 0.002 0.720 ± 0.003

SVM∗ Morgan Fingerprint + Protein Embedding 0.439 ± 0.003 0.357 ± 0.005 0.905 ± 0.002 0.818 ± 0.003

XGBoost∗ Morgan Fingerprint + Protein Embedding 0.404 ± 0.002 0.329 ± 0.003 0.911 ± 0.001 0.830 ± 0.002

CNN∗ SMILES Sequence + Protein AA Sequence 0.451 ± 0.003 0.398 ± 0.006 0.892 ± 0.002 0.795 ± 0.004

LSTM SMILES Sequence + Protein AA Sequence 0.500 ± 0.002 0.514 ± 0.006 0.863 ± 0.002 0.745 ± 0.003

CNN-LSTM SMILES Sequence + Protein AA Sequence 0.516 ± 0.004 0.551 ± 0.009 0.852 ± 0.002 0.725 ± 0.004

GAT-CNN∗ SMILES Sequence + Protein AA Sequence 0.478 ± 0.003 0.439 ± 0.007 0.880 ± 0.002 0.775 ± 0.003

µBest (Top 10 Methods) All combination 0.423 ± 0.004 0.342 ± 0.009 0.911 ± 0.003 0.829 ± 0.005

µBest (Top 5 Methods) All combinations 0.403 ± 0.002 0.313 ± 0.006 0.917 ± 0.002 0.841 ± 0.003

Table 1. Comparison of performance of devised ML techniques for our compound-viral activity prediction problem evaluated w.r.t. the 4 evaluation metrics on

Dtest. Here we report the mean performance and ± corresponds to maximal standard deviation. Top 10 models are highlighted in bold and “*” superscript is added

to top 5 models w.r.t. the 4 evaluation metrics. Last row corresponds to mean of top 5 methods.

any unwanted bias in the downstream consensus framework. For the tra-
ditional machine learning techniques (GLM, RF, SVM and XGBoost),

the optimal hyper-parameters are obtained using a 5-fold cross-validation
technique on Dtrain. However, in order to identify the optimal architecture
for the end-to-end deep learning models, the training sets (Dtrain) are di-

vided on the fly into 80% for training and 20% for validation set owing to
computational costs. The cross-validation performance of traditional su-
pervised machine learning techniques (GLM, RF, SVM and XGB) using

either SMILES embedding representation or Morgan Fingerprints repre-
sentation for compounds and Protein embedding representation for viral
proteins is depicted in Supplementary Figure 2c.

Table 1 provides a comprehensive comparison of the mapping func-
tions g utilized in our work including baseline mean, median and optimal
GLM regressors as well as optimal non-linear models such as RF, SVM,

XGBoost, CNN, LSTM, CNN-LSTM and GAT-CNN. In Table 1, we re-
port the mean and corresponding standard deviation (±) in performance
for each of the4 quality metric over the10 randomizations. These4 quality
metrics are the mean absolute error (MAE), mean squared error (MSE),

pearson correlation R (Pearson R) and the coefficient of determinination
(R2). Each of these metrics are estimated using the predicted pChEMBL
values vs the groundtruth pChEMBL values for compound-viral protein

interactions (Dtest). For metrics, MAE and MSE, the lower the value and
closer to 0, the better the predictive performance of the model, whereas
for metrics, Pearson R and R2, the higher and closer the value to 1, the

better the model’s predictive capability.
We highlight two baseline regressors i.e. the mean and the median re-

gressor to showcase the effectiveness of our non-linear predictive models in

Table 1. Here the mean regressor takes the mean value of all the compound-
viral protein activities available in the training set and considers it as fixed
output from the regressor. Similarly, the median regression outputs the

median value of all the compound-viral protein activities available in the
training set. The performance of these two baseline regressors are signif-
icantly lower than other machine learning techniques. Additionally, we

demonstrate that the GLM models built on LSc and LSv for compounds
and viral proteins respectively are two of the worst performing models
w.r.t. 4 evaluation metrics. This necessitates the usage of non-linear ma-

chine learning techniques when using numeric vector representations for
compounds (SMILES embedding/Morgan Fingerprint) and proteins (Pro-
tein embedding) for the task of accurate compound-viral protein activity

prediction as illustrated in Table 1.

From Table 1, we observe that the best individual predictive model w.r.t.
all quality metrics is the XGBoost model, highlighted in Table 1 by ‘∗’, and

is built on the LSc using the Morgan Fingerprint and LSv obtained from
protein autoencoder for the compounds and viral proteins respectively. It
is closely followed by the SVM model on similar representations, the end-

to-end CNN and GAT-CNN end-to-end deep learning models based on the
sequence representations and the XGBoost model built on the SMILES
embedding (LSc) for compounds and protein embedding (LSv) for viral

proteins. These top 5 models each achieve Pearson R > 0.85 and R2 value
in excess 0.75. Furthermore, we observe from Table 1, that when we take
a consensus (average) of the top 10 predictive models, its performance

is comparable to that of the best individual predictive (XGBoost) model.
This can partly be reasoned due to the inclusion of models with much
lower predictive capability, such as RF (SMILES Embedding/ Morgan

Fingerprint + Protein Embedding) and CNN-LSTM deep learning models
in the consensus, in comparison to the top performing predictive models.
However, when we take a consensus of the top 5 predictors, we achieve the
superior performance than the best individual predictor (XGBoost model)

as depicted in Table 1. Its superior predictive capability can be attributed
to the high Pearson R and R2 of the individual models included in the
consensus and the ability to potentially capture different combinations

of non-linear patterns from the diverse representations of the data. It is
noteworthy, that the standard deviations of each predictive model obtained
via 10 randomizations of Dtest are low w.r.t. the 4 evaluation metrics as

illustrated in Table 1, indicating low variance and high accuracy in the
generalization performance of our proposed models.

Next, we evaluate the predictive performance of the best model ob-

tained from the 10 randomizations for each mapping function g. The
predictive capability of each of these models is highlighted in Supple-
mentary Figure 3. We additionally compare the predictive performance of

the top 5 in-silico predictors w.r.t. the ground-truth compound-viral pro-
tein activites available for the same test set Dtest as illustrated in Figure
4a. It can be observed from Figure 4a that the x-axis represents the sample

id in Dtest, whereas for each such sample, we have 5 values vertically
spread along the y-axis. Each of these values corresponds to the difference
between the groundtruth and predicted interaction values by our in-silico

embedding-based models. The closer the predicted score is to the true
pChEMBL value, the smaller is the residual pChEMBL value (≈ 0). We
observe more deviations from 0 in the residual pChEMBL values i.e. rela-

tively larger errors in predictions, when the true pChEMBL value is either
too small (close to sample id ‘0’ on x-axis) or too large (close to sample
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(a) Comparison of difference in groundtruth vs predicted pChEMBL values for top 5

in-silico embedding-based compound-viral activity predictors on the same Dtest.
(b) Comparison of density distribution of pChEMBL values in training and test set.

Figure 4: In Figure 4a, the x-axis represents compound-viral protein activity samples ordered by their groundtruth pChEMBL values (lowest to highest)

and y-axis corresponds to the residual pChEMBL values. For a majority of the samples the residuals are close to zero for each of the top 5 predictors
indicating the good predictive capability of these models. We use the ‘loess’ function with default parameters available in ‘ggplot2’ package in R to fit a
smooth local regressor via a non-parametric approach for each in-silico predictor. Figure 4b shows the distribution as well as the density of the pChEMBL

values available in Dtrain and Dtest.

id ‘6000’ on x-axis). This can partly be attributed to lack of availability
of large number of compound-viral protein activity samples with small
pChEMBL values (≤ 5) or large pChEMBL values (≥ 10) in the training

set Dtrain as depcited in Figure 4b to train the in-silico embedding-based
predictors. However, for a majority of the samples the residuals are close
to 0 for each of the top 5 predictors showcasing their good predictive

capability.

4.2 Experimental Results for COVID-19 Use Case

In a recent work [57], a library of compounds encompassing approximately
12, 000 clinical-stage or Food and Drug Administration (FDA)-approved
small molecules were profiled by means of assay development and high

throughput screening based on bioactivities against SARS-COV-2 virus
in Vero E6 cells to identify candidate therapeutic drugs for COVID-19.
The authors in [57] have deposited a total of 68 assays containing 2, 483

of these compounds in a publically available library named ReFRAME
(https://reframedb.org/). As per the guidelines mentioned on
their website, a good majority of these compounds are embargoed due

to collaborations with pharmaceutical companies. Furthermore, we take
a union of these compounds with 117 FDA approved drugs which are
in some stage of clinical trial for any known viral organism as indicated

in [58] and available at http://drugvirus.info/. After filtering
these compounds based on the length of their SMILES sequences as per
the criterion defined in the Materials section, we end up with a set of

S comprising 1, 482 compounds including known antivirals, antibiotics,
anticancer and other human investigational compounds (see details about
preparing the set S in the Supplementary). We then make activity pre-

dictions (pChEMBL values) for each of these compounds on the 3 main
proteins of SARS-COV-2 virus i.e. the PL-Pro (PDB ID: 6WO2), the
3CL-Pro (PDB ID: 5R7Y) and the Spike proteins (PDB ID: 6MOJ). Ad-
ditional information about their primary AA sequence, Uniprot Ids, etc.

are provided in Supplementary Table 2.
We first obtain the predicted pChEMBL values for the top 5 in-silico

compound-viral activity predictors as indicated in Table 1 and take a con-

sensus i.e. on average of these predictions for each of the three main
proteins of the SARS-COV-2 virus. We then select the top 100 compounds
with the highest predicted activity against each of these three viral proteins.

By taking an intersection of the compounds in these lists, we obtain a set of
47 compounds which are consistently predicted to have high activity (high
pChEMBL valuess) against all the three main viral proteins and thus can

potentially be effective against the SARS-COV-2 virus. This candidate set
includes 21 antivirals, 15 anticancer, 5 antibiotics and 6 other investiga-
tional human compounds as depicted in Table 2. Our candidate list includes

antiviral therapies such as Lopinavir, Ritonavir and Filociclovir which have
been undergoing clinical trials (https://clinicaltrials.gov/)
for SARS-COV-2 as highlighted in [57]. Our consensus embedding-based

in-silico framework also identifies Remdesivir, a viral RNA polymerase
inhibitor [59], which has been granted emergency use authorization by
the FDA for the treatment of COVID-19 on the basis of clinical trial data

demonstrating a reduction in time to recovery [60].
In [8], the authors identified several compounds including Toremifene

using a network-based drug repurposing approach for SARS-COV-2 which

they further validated against the Spike viral protein using a comprehen-
sive combination of homology modeling, molecular docking, molecular
dynamics simulation, and binding affinity calculations in [61]. In a similar

vein to showcase the accuracy of our consensus framework, we perform
additional molecular docking experiments on the set of 47 compounds
which consistently had high predicted activites against the three main vi-

ral proteins of SARS-COV-2 virus. All details related to molecular docking
experiment setup are provided in the Supplementary. For each of the three
main proteins, we highlight our predicted pChEMBL value and the cor-

responding binding energy score obtained via molecular docking for the
47 candidate compounds in Table 2. We observe that a good majority of
the top ranked compounds consistently achieved low binding energy (≤

-6 Kcal/mol) in the molecular docking experiments for all the considered
viral proteins of SARS-COV-2 as illustrated in Table 2. It is noteworthy
that among all the compounds in our final candidate list, LM 565 is the

only compound which attains high binding energy score in the docking
experiments for each of the three viral proteins and thus can potentially be
a false positive. This illustrates that our consensus framework can serve
as a data-driven screening tool which helps to reduce the list of candidate

drugs from an initial set S (1, 482 compounds) to the curated list of 47
potenital compounds (≈ 3% of original set S) which can either be val-
idated through molecular docking experiments (reducing computational

costs) or through bioassays in absence of known 3d crystal structure of
viral proteins.

Furthermore from our molecular docking experiments, we identified

Rifabutin (in the set of 47 curated compounds), an antibiotic used to treat
tuberculosis and Mycobacterium avium complex, to have the lowest bind-
ing energy scores for each of the three main viral proteins of SARS-COV-2.



Compound-Viral Protein Activity Prediction Framework 9

Compound PL-Pro 3CL-Pro Spike Protein

Predicted Binding Predicted Binding Predicted Binding

pChEMBL Energy pChEMBL Energy pChEMBL Binding

Lopinavir+ 7.777 -6.3 7.851 -8.7 8.226 -5.0

Ritonavir+ 7.562 -6.4 7.777 -7.7 7.845 -5.5

Palinavir+ 7.416 -6.4 7.48 -7.2 7.699 -6

Simeprevir+ 7.646 -5.6 7.476 -6.1 8.206 -6.2

Cabotegravir+ 7.194 -7.1 6.951 -9.5 7.002 -6.8

L-870812+ 6.937 -7.1 6.895 -8.9 6.68 -7.2

MK-4965+ 7.319 -7.5 6.893 -9.6 7.302 -7.1

Tipranavir+ 6.634 -7.4 6.83 -8.3 6.794 -6.6

Zanamivir+ 6.798 -5.7 6.801 -5.9 6.748 -5.9

BMS-707035+ 6.938 -7.2 6.766 -8.8 6.511 -6.6

GSK-364735+ 7.086 -6.4 6.745 -9.6 6.552 -7

Paritaprevir+ 6.751 -6.8 6.571 5.6 7.443 -6.2

Filociclovir+ 6.542 -5.7 6.463 -7.1 6.647 -6.2

TMC-647055+ 6.717 -5.8 6.459 11.7 6.539 -5.5

Elvitegravir+ 6.462 -6.8 6.402 -8 6.236 -5.7

Dapivirine+ 6.584 -6.7 6.385 -8.7 6.32 -6.4

PLX-8394∗ 6.208 -9.1 6.358 -9.4 6.494 -7.2

Triciribine PO3
∗ 6.385 -6.7 6.354 -8.1 6.314 -6.5

Zidovudine+ 5.966 -5.7 6.279 -7.4 6.264 -5.6

API-2∗/+ 5.964 -6.7 6.175 -8.3 6.208 -5.7

Fluorouracil+ 5.965 -4.5 6.157 -5.2 6.353 -4.6

Gossypol∗ 6.029 -5.7 6.11 -4.2 6.069 -6

LM 565− 6.137 8.7 6.094 72.4 6.461 -2.9

PF-03814735∗ 6.051 -7.6 6.091 -8.2 6.126 -7.1

Barasertib∗ 6.006 -8 6.087 -8.3 6.171 -6.8

Edoxudine+ 5.925 -5.9 6.075 -7.6 6.246 -5.6

Cefozopran− 5.884 -7 6.049 -8.1 6.255 -6

Entrectinib∗ 6.231 -6.8 6.039 -9.3 6.023 -7

Clemizol∗ 6.085 -6.2 6.015 -8 6.105 -6

VBY-825+ 6.112 -6 6.006 -8 6.07 -4.7

R-763∗ 6.158 -6.6 6.002 -7.8 6.26 -6.7

Bietaserpine@ 6.054 -6.1 5.994 -2.1 6.323 -4.9

ACT-077825@ 5.916 -6.9 5.973 -6.7 6.223 -4.8

MP-412∗ 6.069 -6.6 5.971 -9 6.243 -5.6

Remdesivir+ 5.907 -6.2 5.964 -8 6.37 -6.4

ABT-263∗ 6.005 -4.2 5.925 1.9 6.211 -5.6

BMS-903452@ 5.929 -6.9 5.913 -7.8 6.174 -6.3

Brilacidin@ 6.016 -5.7 5.913 -2.2 6.266 -5.2

Taselisib∗ 5.934 -7 5.906 -8.6 6.142 -7.1

Goxalapladib@ 5.982 -6.9 5.905 -6.6 6.27 -5.1

HKI-357∗ 6.009 -6.8 5.884 -8.7 6.143 -6.2

Sitravatinib∗ 5.895 -6.3 5.879 -8.2 6.069 -7

Rifabutin− 5.904 -9.4 5.878 -12.3 6.136 -12.1

Omadacycline− 6.002 -6.1 5.865 -2.6 6.251 -5.3

Cefpiramide− 5.883 -6.8 5.851 -8.3 6.179 -5.9

VCH-286@ 5.88 -6.6 5.847 -8.1 6.028 -4.6

BMS-754807∗ 5.915 -6.6 5.833 -8.3 6.095 -7.1

Table 2. Top ranked 47 compounds for each of PL-Pro, 3CL-Pro and Spike

proteins of SARS-COV-2 virus consistently appearing in the ranked list of top

100 compounds against these viral proteins. The ‘PPS’ representS the predicted

pChEMBL value by the consensus model whereas ‘BE’ corresponding to bind-

ing energy (units: Kcal/mol) obtained via molecular docking experiment. Here

+, −, ∗, and @ correspond to antivirals, antibiotics, anticancer and other

human compounds respectively. Here Rifabutin is highlighted in bold as it con-

sistently achieves a low binding energy in the molecular docking experiments.

Similarly, LM 565 is italizied as it constantly attains high binding energy score

in the docking experiments and can potentially be a false positive.

In a recent review, the authors [62] highlighted that bacteriophages such
as Rifabutin can be a potential game changer in the trajectory of COVID-
19. Here we provide additional insights about the interaction of Rifabutin

with SARS-COV-2 viral proteins. The PL-Pro viral protein has a right-
hand thumb-palm-fingers architecture, contains a ubiquitin-like domain
(UBL) at the N-terminal (see Figure 5A). Several Van der waal as well as

hydrogen bond interactions stabilizes the PL-Pro-Rifabutin complex (see
Figures 5B and 5C).

The 3CL-Pro viral protein regulates transcription and replication pro-

cesses by cleaving the polyprotein chains into different non-structural
proteins. It has 306 AA residues with three distinct domains (I-III). The
domains I and II mainly have an antiparallel β-barrel structure, while do-

main III comprises five α-helices (see Figure 5D). Rifabutin docks at the
interface between domain II and III of 3CL-Pro and the complex is sta-
bilized by several interactions with AA residues from both domains (see

Figures 5E and 5F). The core of RBD of Spike protein consists of antipar-
allel β-sheets (b1-4 and b7) with short interconnecting loops and helices
(see Figure 5G). Rifabutin binds closer to the region of Spike protein-

ACE-2 interaction site, and the complex is stabilized by hydrogen bonds
and hydrophobic interactions (see Figures 5H and 5I).

5 DISCUSSION & CONCLUSION

In this work, we showcase that the problem of predicting activity value

for compound-viral protein interactions can be formulated as a regression
task. We illustrate that data-driven ML models (g(·)) based on a simplistic
representation of compounds (SMILES strings or Morgan Fingerprints)

and viral protein sequences (AA sequence) can be used accurately for the
aforementioned task. As our models are based on representations of com-
pounds (xc) and viral proteins (xv), we can further enhance our models

by using additional information such as 2d images of compounds. Sim-
ilarly, we can utilize information such as physio-chemical and structural
properties of proteins as showcased in [31, 32], to strengthen our models.

Our predictive framework is built onDtrain , which contains information
for over 97 different viral organisms along with their main proteins, hence
our models are generalizable. This means that our models can produce an

accurate ranked list of potential inhibitors for the next big viral threat once
its associated proteins are known and thus can be used as a data-driven
screening tool. Moreover, it known that viruses frequently mutate [63]. As

a result, the viral protein will also have multiple point mutations i.e. few
AA in the viral protein sequence might change. This can have an immense
impact on the 3d structure as well as the functionality of the viral protein

[64]. Thus, techniques based on virtual ligand screening using docking
experiments (high-quality 3d structure) such as [65, 66, 67] can suffer in
this situation. However, our models focus on the primary structure and

with point mutations, the vector representations LSv and xv will change.
But since our mapping functions are generalizable (based on frequently
co-occurring k-mers and subsequences in SMILES strings), we will end

up with a revised ranked list of compounds for the mutated viral protein
in a computationally efficient manner.

For the COVID-19 use case, our consensus framework identifies a list

of 47 compounds as potential inhibitors. By further validating this curated
list using molecular docking experiments, we identified Rifabutin as a
potential inhibitor as it consistently achieved low binding energy score

for all the three main proteins of SARS-COV-2 virus. This suggests that
a hybrid drug-repurposing approach can be developed, where in-silico
compound-viral protein activity predictors can be used initially to screen a
large set of compounds to produce a much smaller list of compounds. This

list can further be curated using molecular docking experiments (utilizing
high quality 3d crystal structures) to prioritize the potential candidates for
downstream in-vivo clinical trial stages.

Moreover, for the COVID-19 use case, our consensus framework rec-
ognized antivirals such as Remdesivir, Lopinavir, Ritonavir which have
been identified by multiple in-silico and in-vitro studies [68, 69] to be po-

tentially effective against the SARS-COV-2 virus. However, according
to the recent results from the SOLIDARITY trial [70], the aforemen-
tioned antivirals appear to have little or no meaningful effect on overall
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Figure 5: (A) Cartoon representation of the PL-Pro viral bound to Rifabutin (red). Protein was colored according to secondary structure: helices are brown

and strands are blue. (B) Surface representation of complex structure highlighting the binding surface. (C) Rifabutin interactions with the AA residues
of PL-Pro protease. (D) Cartoon representation of the 3CL-Pro viral protein bound to rifabutin (red). The three domains are shown in different color:
domain I as light green, domain II as light brown and domain III as light blue. (E) Surface representation of complex structure highlighting the binding
groove at the domain interface. (F) Rifabutin making significant interactions with the crucial AA residues of SARS-Cov-2 3CL-Pro protease. (G) Cartoon

representation of the Spike protein bound to Rifabutin (red). Protein was rendered according to secondary structure elements. (H) Surface representation
of complex structure highlighting the binding surface. (I) Rifabutin interacts with RBD of the Spike protein close to its binding to the receptor.

mortality rate in hospitals. This highlights a limitation of our work. Our

current mapping function g only considers xc and xv and doesn’t in-
clude any information about the host organism (xh). Recently, in [71], 26
SARS-CoV-2 viral proteins were expressed in human cells and 332 high

confidence human protein interactions were identified using a network-
based drug-repurposing approach. Similarly, in [11], a consensus of
network-based approaches was utilized to identify repurposing candidates.
Their drug-repurposing strategy relied on network proximity, diffusion,

and AI-based metrics, allowing to rank all approved compounds based
on their likely efficacy for COVID-19 disease leading to 81 promising
candidates. In [9], a network-based deep learning framework is used on

top of a knowledge graph constructed on multiple entities such as dis-
eases, drugs/compounds, genes and proteins (human and viral protein
interactome) with the goal to identify links between existing approved

compounds and COVID-19. Moreover, the tool CoVex [72] integrates
the human protein-protein interaction and the host-interacting proteins
to employ strategies such as trustrank or multi-steiner trees to identify

repurposable drugs for COVID-19.
All the above mentioned approaches take into consideration the in-

teraction with the human interactome, a key missing link in our current

framework. In future, we plan to extend our mapping function to become
g(xc, xv, xh;w), by considering compound-viral protein interactions,
compound-human protein target interactions, human protein-protein inter-

actions, human protein-viral protein interactions in a similar knowledge
graph representation to identify potentially repurposable compounds for
any viral disease. Another strand of work that we can be explored, is the use

of Transformer Networks which use self-attention to capture long range
dependency in sequence to sequence modeling for building the SMILES
embedding representation. Recent work in natural language processing

has convincingly demonstrated that Transfomer Networks are substantially

more proficient than LSTMs with comparable level of accuracy [73]. In our

particular instance, both the SMILES representation for compounds and
linear chain of amino acids for proteins can benefit from these approaches.
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