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Abstract

Background: Sensitivity and robustness are essential properties of circadian clock systems, enabling them to respond to the
environment but resist noisy variations. These properties should be recapitulated in computational models of the circadian
clock. Highly nonlinear kinetics and multiple loops are often incorporated into models to match experimental time-series
data, but these also impact on model properties for clock models.

Methodology/Principal Findings: Here, we study the consequences of complicated structure and nonlinearity using simple
Goodwin-type oscillators and the complex Arabidopsis circadian clock models. Sensitivity analysis of the simple oscillators
implies that an interlocked multi-loop structure reinforces sensitivity/robustness properties, enhancing the response to
external and internal variations. Furthermore, we found that reducing the degree of nonlinearity could sometimes enhance
the robustness of models, implying that ad hoc incorporation of nonlinearity could be detrimental to a model’s perceived
credibility.

Conclusion: The correct multi-loop structure and degree of nonlinearity are therefore critical in contributing to the desired
properties of a model as well as its capacity to match experimental data.
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Introduction

Circadian clocks are the endogenous 24h timing system of living

organisms and are believed to be formed from a group of genes

and their proteins connected in negative feedback loops [1]. The

circadian clock has been studied in a range of organisms across the

taxonomic classes [1,2] from Synechococcus elongatus (unicellular

cyanobacterium) [3,4], Neurospora crassa (fungus) [5–7], Drosophila

melanogaster (insect) [8–11], Arabidopsis thaliana (plant) [12–15] to

mammals [16–18]. Despite the apparently independent evolution

of circadian clocks within diverse organisms, certain characteristics

are shared across all circadian clocks, including the ability to: (1)

generate a circa 24h rhythm that is robust to the external/internal

variations, and (2) be entrained by rhythmic environmental signals

(light-dark cycle or temperature cycle) [1,2]. The availability of

time-series data in mutant organisms, combined with varying

input signals, has led to a series of detailed circadian clock models

for these organisms (e.g. [9,19]), including Arabidopsis.

The first Arabidopsis clock model, denoted ‘one-loop’ (Figure

S1a), was constructed according to the results and hypothesis of

Alabadi et al (2001) [12,20]. It is a single negative feedback loop

model consisting of two redundant genes encoding MYB

transcription factors, LATE ELONGATED HYPOCOTYL (LHY)

and CIRCADIAN CLOCK ASSOCIATED 1 (CCA1), and a gene

encoding a pseudo-response regulator protein, TIMING OF CAB

EXPRESSION 1 (TOC1). A second ‘two-loop’ model (Figure S1b)

was developed to explain the results from mutant plants, especially

the lhy;cca1 double mutant [20,21]. A hypothetical component ‘Y’

forms an additional loop that interlocks with the original one-loop

model. Several studies into the functions of PRR7 (PSEUDO-

RESPONSE REGULATOR 7) and PRR9 (PSEUDO-RESPONSE

REGULATOR 9) in the circadian clock [22–24] led to two

extended models, a ‘three-loop’ (Figure S1c) [25] and a ‘four-loop’

[26] model. The dissimilar manner in which new components are

added to the models differentiate their features, including

complexity, robustness and the adaptability to match plant

behaviours [25,26].

The identification of the ‘best’ model is generally evaluated only

from its capacity to generate simulated behaviour that fits the

experimental data. However, this basic criterion may not

sufficiently discriminate the most plausible model. Matching the

properties of the model to the nature of the real system could be a
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second rational criterion [27]. The model behaviours correspond to

observable rhythms produced by model simulation, such as

mRNA expression profiles. Model properties are intrinsic character-

istics of the model, such as robustness or sensitivity [28].

Complicated models are often built to recapitulate complex

dynamic data. It may also be desirable to include many of the

observed biochemical processes [9,19,25]. The main complexities

are intricate circuit structures, nonlinear kinetics, the number of

model components and the redundancy of component linkage

[28,29]. However, the complexity affects not only the model

behaviours but also a variety of model properties, for instance the

adaptability (the ability to replicate the observed behaviours in

diverse conditions) and the sensitivity of the model [30,31].

Increasing complexity may improve the adaptability of the model

to fit more of the existing data [30], but simultaneously boost the

sensitivity of the model [32].

Robustness is a remarkably important model property indicat-

ing the capability to maintain a model behaviour (such as an

equilibrium state) in varied conditions [33–35], while sensitivity

can be defined as the inverse of robustness and is required to sense

and respond to perturbations. Both are required for circadian

clocks [36–38]. Since a trade-off between sensitivity and

robustness is a key feature of homeostasis and may be vital for

the survival of organisms [33,34], these properties have been used

for validating models of biological processes [27]. The more

plausible model was defined as having greater robustness to

variations [33,38–40]. Robustness (or sensitivity) is commonly

evaluated as the change in model behaviour under a range of

parameter changes, though changes in circuit topology or

mutational effects may also be tested. Mathematical measures of

parameter sensitivity vary considerably, depending on the model

behaviour and on the selection of parameter sets. Local analysis

may simply test a particular fold-change in parameters (singly or

multiply) from a single starting parameter set [26,41,42], whereas

global analysis tests parameter sets that sample a defined region of

parameter space [43]. The approach was supported, for example,

in the Xenopus cell cycle model, whose plausibility as the relatively

more realistic model [44] was later strengthened by also possessing

higher robustness [27]. The success of this analysis strategy is

further demonstrated by other biological systems [45,46].

In this study, we investigated the effects of two common

complexities, the multiple loop structure and nonlinearity of the

kinetics, on model sensitivity and robustness. Firstly, we examined

the effect of the multiple loop topology found in many clock

models on model sensitivity, using simple modified Goodwin

oscillators. We show that multiple loop models have been

developed to explain complex behaviours in Arabidopsis thaliana,

and these models are employed here to test the effects of varying

nonlinearity.

Methods

Simple oscillator models
In this work, we consider three model topologies of modified

Goodwin-type with varying degrees of complexity in the model

components and the structure of the circuit. As shown in Figure 1,

the modified single-loop Goodwin model (Goodwin; Equations

1a–c) was extended to two multi-loop structures with two forms of

the transcriptional repressor, P1 and P2, a parallel-loop Goodwin

model (denoted EP; Equations 2a–d) with an additional negative

feedback loop parallel to the single loop model, and an

interlocking Goodwin model (denoted EI; Equations 2a–c and

3d) which includes an extra interlocking interaction between the

multiple loops. The studied oscillators were given comparable

mechanisms for sensing an environmental signal through

increased synthesis of the repressor(s). The sensitivity and response

of the clock to light or other external signals allows the

entrainment of the endogenous timer to the surrounding

environment.

All observed models were assembled from three molecular

components M, E and P1 with an additional component P2 only

for EP and EI extended models. The kinetic equations describing

the three models are as follows.

For the Goodwin model:

dM

dt
~

VM

KMzP1a
{Vdeg ,M

:M, ð1aÞ

dE

dt
~VE

:M{Vdeg ,E
:E, ð1bÞ

dP1

dt
~(VP1zq(t)):E{

Vdeg ,P1
:P1b

Kdeg ,P1zP1b
: ð1cÞ

For the EP model:

dM

dt
~

VM

KMzP1azP2a
{Vdeg ,M

:M, ð2aÞ

dE

dt
~VE

:M{Vdeg ,E
:E, ð2bÞ

dP1

dt
~(VP1zq(t)):E{

Vdeg ,P1
:P1b

Kdeg ,P1zP1b
, ð2cÞ

dP2

dt
~(VP2zq(t)):E{

Vdeg ,P2
:P2c

Kdeg ,P2zP2c
: ð2dÞ

The EI model is given by Equations 2a–c for M, E, and P1, while

the Equation for P2 is given by:

dP2

dt
~

(VP2zq(t)):E

KMzP1a
{

Vdeg ,P2
:P2c

Kdeg ,P2zP2c
: ð3dÞ

V and Vdeg denote the maximal synthesis and degradation rates of

model components, K and Kdeg depict kinetic constants of the

synthesis and degradation processes, a, b, and c are Hill coefficients

and q(t) is the light input signal which depends on the time of day.

Note that in the Goodwin-type models described above, Hill-type

degradation rates have been considered for the repressors so that

reasonable amplitude oscillations can be generated for all circuits

while remaining within a biologically sensible range for the Hill

factor for M transcription (a).

The parameters for the studied models were randomly searched

through cost optimisation of matching all output profiles (M, E,

and P) to a standard sine waveform of 24h-period and unit

amplitude to achieve a circadian rhythm with a reasonable size of

oscillation. To limit the complexity beyond the scope of study, the

EP and EI models were implemented with an identical number of

parameters. The parameters were initially searched to optimise the

single-loop Goodwin model, which were then fixed during the

Multiple Loops and Robustness
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parameter searching for the extended Goodwin models. Thus, for

example, the four additional parameters in the EP extended model

(Equation 2d) were varied with the ten parameters in Equations 2a

to 2c fixed. The resultant optimal parameter sets of the models are

listed in Data S1 in Table 1.

For the Arabidopsis circadian clock models, the parameter sets

were given by sequential optimisation strategy against a semi-

quantitative (or penalty) cost function [20] and a chi-square cost

function [47]. The parameter sets were firstly searched throughout

the parameter space, employing the optimisation algorithm

established with the one-loop model [20], which tests the phases

and periods of simulated clock gene expression profiles. The

resulting parameter sets were further refined through simulated

annealing optimisation to minimise a chi-square cost of fitting

simulations to multiple timeseries data sets that represented a

substantially overlapping set of gene expression profiles. The final

parameter sets were collected in Data S1 in Tables 5 and 6 for the

two-loop and three-loop models, respectively.

Sensitivity to environment
The three oscillators were tested for their sensitivity to

environmental signals. The resulting oscillations were investigated

following 10 days of an entraining period to ensure stable

oscillations are obtained. We used similar criteria to those of

Brandman et al. (2005) in which sensitivity is determined by the

change in peak time (phase) relative to the reference waveform

[44]. The sensitivity of the models to qualitative (patterns of light

profile) and quantitative alterations (levels or strengths of light) of

the signal was observed in this study through the changes in the

output oscillations as illustrated in Figure 1. Sine (Equation 4a) and

square (Equation 4b) profiles of light (q(t)) were applied to the

models during daytime (q = 0 after dusk) where F is the strength of

the light signal (F; the amplitude for the sine waveform or the high

level of the step function for the square waveform). To examine

the sensitivity to signal variation within daytime light, a

perturbation, vs, to the light signal was introduced in the form of

a collective sine function (Equation 4c). This form of variation (vs)

provides a smoothly changing amplitude wave, modified through

variation of a, b, and c factors, which characterise the perturbation

to the light variation signal (a number of factor sets were employed

to determine the generality of the results).

q(t)~
F : sin

2pt

24

� �
zvs if 0vtƒ12

0 if 12vtƒ24

8<
: : ð4aÞ

Figure 1. Scheme of models under study and strategic methods. (a) The models in this study consist of three simple Goodwin-type models
used for all analyses and two detailed Arabidopsis circadian clock models used in the sensitivity analysis for the degree of nonlinearity. (b) The
scheme describes the strategy for investigating the model sensitivity to external variations. The modified Goodwin models were subjected to both
light regimes and the subsequent output oscillations were observed and employed to estimate the sensitivity of the model to environmental signal.
doi:10.1371/journal.pone.0013867.g001
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q(t)~
Fzvs if 0vtƒ12

0 if 12vtƒ24

�
: ð4bÞ

vs~F :
1

a2
sin

2p:a1t

24

� �
z

1

b2

sin
2p:b1t

24

� �
z

1

c2

sin
2p:c1t

24

� �� �
:ð4cÞ

Sensitivity to internal variation (model parameters)
To investigate sensitivity of the model oscillators with respect to

parameter variations, each parameter was singly perturbed across

a 36-fold range centred on the reference values. The changes to

model behaviours were summarised in a single factor called ‘Degree

of Sensitivity’ (DOS; Equation 5), which measures the goodness of fit

of simulations to data (or to reference waveform). We denoted by

l = 1…Nm ( = 3) the model, j = 1 … Np the jth parameter in the

parameter set of size Np and i = 2Na …+Na the ith perturbation to

each parameter, where Na is the number of positive/negative

perturbations and i = 0 denotes the unperturbed parameter values

(identical to the optimised reference parameters).

We define Cl,i,j (xe,xm) to be the chi-square cost function [48]

calculated at the ith perturbation to the jth parameter in the lth

model, where xe represents an experimental or reference data set to

be compared with its counterpart xm calculated through simulation

of the model. The DOSl,i,j is calculated at each perturbation of each

parameter of each model as

DOSl,i,j~
Cl,i,j xe,xmð Þ

Max
l,i,j

Cl,i,j xe,xmð Þ
� � , ð5Þ

mean
j~1,Np

DOSl,i~

PNp

j~1

DOSl,i,j

Np

, ð6Þ

sd
j~1,Np

DOSl,i~

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
PNp

j~1

DOSl,i,j{ mean
j~1,Np

DOSl,i,j

� �2

Np{1

vuuuut
, ð7Þ

sum
j~1,Np

DOSl,i~
XNp

j~1

DOSl,i,j : ð8Þ

To compare the sensitivity between models we integrate values of

DOS across the parameters j within an individual model by using

simple statistics, including arithmetic average (mean; Equation 6),

standard deviation (sd; Equation 7), and summation (sum; Equation 8).

Sensitivity to degree of nonlinearity
The original models of the Arabidopsis clock used non-linear

degradation terms for all variables, and the modified Goodwin

models include non-linear degradation of the repressors. The

number of non-linear terms in the models was reduced through

linearisation of some or all degradation rates, introducing mass

action kinetics. To illustrate the procedure, consider the general

kinetic equation (Equation 9) and its linearised equivalent

(Equation 10). An initial value for V9 in Equation 10 was

determined through the ratio of Michaelis-Menten maximum

velocity (Vmax) and Michaelis-Menten constant (Km) in Equation 9.

This process yields the ‘‘estimated parameter set’’. Optimisation

was then performed as described above to obtain a new reference

parameter set, denoted the ‘‘optimised parameter set’’. The

sensitivities of the fully nonlinear degradation (FND; all degrada-

tions follow nonlinear form as shown in Equation 9), partially

linear degradation (PLD; some of the degradations follow the

linear form as shown in Equation 10) and fully linear degradation

(FLD; all degradations follow the linear form) models were

compared through the DOS9 factor (Equation 11) of sensitive

parameters.

Nonlinear degradation
dx

dt
~V :x0{

Vmax
:x

Kmzx
ð9Þ

Linear degradation
dx

dt
~V :x0{V

0 :x ð10Þ

DOS0l,i,j~
Cl,i,j xe,xmð Þ{Cl,i~0,j xe,xmð Þ

Cl,i~0,j xe,xmð Þ ð11Þ

Sensitive parameters for the models are conceptually defined as

parameters for which small perturbations lead to a highly deviated

profile in the reference waveform. The procedure to classify

sensitive parameters follows the consistent robustness analysis

method (CRA), described in greater detail in a separate paper

[47]. In brief, sensitivity is measured through comparison of the

deviated output profile against the reference waveform through

the iteration of a single parameter perturbation. The computed

results are used to calculated sensitivity coefficients which are the

indicators of parameter sensitivity. The group of parameters with

high sensitivity coefficient is selected to determine the DOS9 factor.

Results

The Goodwin model was originally developed by Goodwin

(1965) to understand the generation of spontaneous oscillatory

behaviour in an organism [49] and has been widely used as a simple

model that can reproduce the physiological behaviour of biochem-

ical oscillators [48]. This simplicity is exploited here to explore the

structure of various modified circadian clocks through sensitivity

analysis. The Goodwin models were slightly modified (see Methods)

and extended to include parallel (EP) and interlocking (EI) loops,

which are common structures in complicated circadian models.

Parameter values that gave robust oscillation from all models (see

Methods) were used to determine the contributions from specific

model topologies and the degree of nonlinearity. Based on these

results, we extend the investigation to the two-loop and three-loop

Arabidopsis circadian clock models [21,25].

1. The significance of multi-loop structure in model
sensitivity

A number of studies have revealed that a multi-loop structure

increases the capacity for a model to describe complex behaviour

in many biological processes [9,19–21,25,26,50], yet it remains to

be determined how a particular structure enables/facilitates the

desired behaviour.

Sensitivity of multi-loop models to internal variations

under constant environmental conditions. Internal

variation (e.g. natural mutations) is inevitable in biological

systems and, consequently, critical functions should be resistant

to such perturbations. As described in the Methods, the sensitivity

Multiple Loops and Robustness

PLoS ONE | www.plosone.org 4 November 2010 | Volume 5 | Issue 11 | e13867



of a model to internal variation can be investigated through

parameter perturbations, measured here by determining the

degree of sensitivity (DOSl,i,j) and their statistics (Equations 6–8).

Both the means and sums indicate the overall sensitivity of the

model. Both measurements are helpful for comparing models, yet

the mean is of greater use for models containing different number of

parameters. The standard deviation provides insight into the

variation among individual parameters (which can be

considerable). Figure 2 illustrates the sensitivity of the modified

Goodwin, EP, and EI models across the full perturbation range

represented in terms of mean DOSl,i and sd DOSl,i. As seen in

Figure 2, the EI model shows the greatest robustness against

parameter variations for any statistics of DOSl,i followed by the

Goodwin and the EP models. The robustness of EP and EI models

was explicitly compared against the Goodwin model for all

perturbations by plotting their mean DOSl,i and sd DOSl,i against

those of the Goodwin model (Figure 2; right panels). The results

clearly indicate that the interlocking model increases the

robustness to parameter variation over the simpler Goodwin

model, while the parallel model decreases the robustness. Similar

results were observed from the same analysis using independent

parameter sets, thus indicating the results are not parameter set-

specific (Figures S2 and S3). These results indicate that the

addition of a loosely-connected loop to the model decreases

robustness, yet the robustness can be rescued through inserting

appropriate linkage between the loops.

Sensitivity of multi-loop models to external variations.

Circadian systems have evolved to respond to certain environmental

changes, e.g. sensitivity to the length of the day, yet should be insensitive

to other variations, e.g. rapid variation in light input across the day. The

single-loop Goodwin, EP and EI models were tested to determine their

sensitivity to the magnitude of light input using a square waveform.

The results plotted in Figure 3 indicate that the EI model displays a

greater response to light quantity than the Goodwin and EP models, as

suggested from the phase shifts of their output profiles for M: an

increase in the light strength F from 0.1 to 0.2 results in a 1.7-h phase

advance in the peak in M for the EI model while EP and Goodwin

model show 0.9-h delayed and 0.7-h advanced peaks respectively. It is

noteworthy that the EP model displays an opposite direction phase-

shift, implying distinct dynamic transitions in the adjustment of the

system.

Furthermore, sine and square light waveforms with identical

strength (F = 0.2) were applied to Goodwin, EP and EI models to

examine their ability to distinguish the patterns of light. This

experiment was reinforced by an explicit test using an identical

quantity of light (i.e. equal area under light profiles) as shown in the

middle row of Figure 4. The multi-loop models can be

distinguished in their response to the different light patterns

through their phase-shift (Figure 4), while the single-loop Goodwin

model exhibits less change (0 to 0.2-h and 0.6 to 1.5-h shifted in

phase for single-loop and multi-loop, respectively). For the light

profiles of F = 0.2 (top and bottom rows of Figure 4), the EP and EI

Figure 2. Sensitivity to parameter variations. The sensitivity to parameter variation of modified Goodwin models using parameter set 1 (Data
S1: Table 1). The results present statistics of the DOS across the model parameters: (a) mean and (b) standard deviation. The calculated DOS of models
were plotted at each perturbation on the left panel, whereas DOS for any perturbations in the multi-loop models were plotted against that of single-
loop model on the right panel.
doi:10.1371/journal.pone.0013867.g002

Multiple Loops and Robustness
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models with the square waveform produce phase-advanced

oscillations relative to that with the sine waveform, which is

partially due to greater light input at dawn and dusk. However, the

subsequent test for equivalent integrated light profiles (middle and

bottom rows of Figure 4) confirmed the given results by showing

similar consequences. This double-controlled study (F and area

under curve) suggests that EP and EI models have the ability to

discriminate and respond to the different characteristics of light as

well as its quantity.

Resistance to external fluctuations is also an important feature for

circadian clocks, and we therefore tested the model robustness to a

square light waveform with continuous variation (Equation 4c)

superimposed. According to the phase-shift and characteristics of

the output profiles, all models display an ability to resist such

variations (Figure 5). Nevertheless, the EI model seems to show

greater robustness, maintaining its peak-time within a 0.2-h

deviation, over the EP and Goodwin models (phase shift of 0.5 h).

Similar results were obtained with other variations, formulated

through altering the characteristic factors a, b and c in Equation 4c.

In summary, the results suggest that a multiple negative feedback

loop structure confers desirable properties through enhancing

sensitivity to both qualitative and quantitative changes of the photo-

profiles and their robustness to noisy external fluctuations.

2. The effect of nonlinear kinetics on model sensitivity
The effect of nonlinear kinetics on the sensitivity of

modified Goodwin models. Difficulties in measurement

hinder experimental identification of the interactions occurring

in a system. Michaelis-Menten kinetics are often used ad hoc to

model biochemical reactions that are expected to saturate, yet

their employment introduces an additional nonlinearity which

may or may not be necessary. The original models of the

Arabidopsis clock used non-linear degradation terms for all

variables, for example, and the modified Goodwin models

include one non-linear degradation term. To determine the

impact of this nonlinearity, the sensitivity of the Goodwin models

(single-loop, EP, and EI) was compared, with the original

nonlinear degradation term (the model form denoted Partially

Linear Degradation, PLD) or after converting this term to a linear

degradation term (Fully Linear Degradation, FLD; the linearised

model equations are presented in supplementary material). Each

point (+) in Figure 6 represents the DOS of sensitive parameters

from more or less nonlinear models over all perturbations. The

sensitive parameters were classified as described in Methods. The

diagonal line is the iso-sensitivity line, indicating identical

sensitivity between two compared models. The results indicate

that for all models a greater degree of nonlinearity leads to higher

sensitivity. The modified Goodwin models contain a relatively low

degree of nonlinearity compared to real system models, and we

therefore extended this analysis to test if the same results are

obtained from more complicated models.

The effect of nonlinear kinetics on the sensitivity of

Arabidopsis circadian clock models. Both the two-loop [21]

and three-loop models [25] for the Arabidopsis circadian clock

employ Michaelis-Menten terms for all degradation kinetics (this

form of the model is denoted here as Fully Nonlinear Degradation,

FND). To investigate the impact of nonlinear kinetics on model

sensitivity, both models were partially linearised (denoted here as

Partially Linear Degradation models, PLD) by replacing the

Michaelis-Menten degradation terms with mass action kinetics as

Figure 3. Sensitivity to the strength of external signal. The sensitivity of models to the strength of external signal (F) using a square waveform
of light q(t).
doi:10.1371/journal.pone.0013867.g003
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described in Methods. The linearisation was performed stepwise

for each degradation term and repeated until good-fit simulations

did not persist following re-optimisation of the model to the same

sets of data, e.g. due to loss of oscillation. This is to ensure

equivalent performance between the various models. The

sensitivity to parameter variations was investigated for a variety

of two-loop and three-loop models and the results were analysed

through comparison of DOS9 of the sensitive parameters, selected

based on CRA.

Partial linearisation of model kinetics. Linearisation of

the degradation rates not only reduces the degree of nonlinearity

in the model but also the number of parameters needed to

simulate the model. Ten parameters were eliminated from the

two-loop model (FND2loop) [21] without significantly altering its

capacity to fit to data or desirable experimental behaviour

(Cl,i,j(xe,xm) changes from 1.12 to 0.49, representing a better fit to

the data). All RNA and protein degradation in the linearised model

(PLD2loop) follows mass action kinetics with the exception of

nuclear and cytoplasmic TOC1 proteins. Figure S4 depicts the

equivalent goodness of fit between model simulations and data of

the PLD2loop and FND2loop models. The only significant difference

between the two models is the eight-fold decrease in acute light

induction of Y/GI in the PLD2loop model. The two-loop partially

linear degradation model and its re-optimised parameters are

listed in Data S1 in Table 5.

Due to the extremely high sensitivity of parameters reported in

the original three-loop model [25], a global optimisation of the

model was initially performed to aid further model modifications.

The resulting parameters are shown in Data S1 in Table 6.

Linearisation of the three-loop model (FND3loop) enabled a

reduction of six parameters from 74 without significant loss in its

capacity to fit the data (1.16 and 1.12 for nonlinear and linear

models; Figure S5). LHY and PRR9/PRR7 mRNAs and proteins

degradation were all modelled with linear forms in the modified

three-loop model (PLD3loop) while the remaining (TOC1, X, and Y

mRNAs and proteins) required Michaelis-Menten degradation

kinetics. The reduced ability to linearise the three-loop in

comparison to the two-loop model indicates that the three-loop

model requires greater complexity to satisfy the additional data

sets involving PRR9, PRR7 and the prr9prr7 double mutant.

Although the PLD3loop model gave similar results of data fitting, it

again loses some ability to respond to light as indicated in the Y/GI

simulation. The consistency in this reduced capacity for both

partially linear degradation models implies that retaining the

nonlinearity in the Y/GI component is crucial for fully capturing

plant behaviours previously simulated by the nonlinear degrada-

tion models. Possibly, a saturating rate of degradation for a certain

molecular entity in the models is necessary in generating time-

delayed oscillations [51].

Sensitivity of Arabidopsis circadian clock models with

varying degrees of nonlinearity. The sensitivities of the

Figure 4. Sensitivity to the pattern of external signal. The sensitivity of the models to the pattern of external signal. The sensitivity to sine- and
square-waveform of light having identical strength of signal (F = 0.2) and area under curve were compared.
doi:10.1371/journal.pone.0013867.g004
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nonlinear and partially linearised models were qualitatively and

quantitatively compared for both two-loop and three-loop models.

The sensitive parameters from each model were determined from

the consistent robustness analysis as listed in Table 1 (for further

detail see [47]). Nine sensitive parameters were identified from the

58 parameters in the FND2loop model (mainly involving TOC1

transcription), while another nine sensitive parameters were

identified from 48 parameters of the PLD2loop model.

Noteworthy is the large intersection between the two versions of

the two-loop models, suggesting that linearisation did not

significantly alter the dynamics of the model. For the three-loop

model, the FND3loop model yielded 14 sensitive parameters from

74, relating to TOC1 and Y transcription and degradation, while

the corresponding PLD3loop model demonstrated a highly

overlapping set of ten sensitive parameters from 68. The

conservation between sensitive parameters in the nonlinear

degradation and partially linearised three-loop models suggests

again that selective linearisation did not substantially affect model

dynamics.

The sensitivities of the partially linearised models were compared

quantitatively with their fully nonlinear counterparts using the

sensitive parameters as depicted in Figure 7. Each point (+)

represents the DOS9 of sensitive parameters for each model across

all perturbations. The results show that for both the two-loop and

three-loop models the DOS points generally lie above the iso-

sensitivity line (especially for the most sensitive parameters).

Consistent with the results for the modified Goodwin models,

sensitivity to parameter variation was lower in the partially linearised

models than the corresponding nonlinear degradation models.

Discussion

Complexity is an inevitable consequence of iterative extension

of models to simulate new data, with multi-loop structures and

Figure 5. Robustness to the variations of external signal. The robustness of models to variations in the external signal were observed using
the square waveform of light with the same strength of signal (F = 0.2). Distinct variations were formulated from the collective sine function with
different values of variation coefficients to test the generality of the results, with the plotted data representative of all such applied variations. The
results plotted were obtained under the following variation coefficients: a1 = 8, a2 = 3, b1 = 9, b2 = 5, c1 = 10 and c2 = 7.
doi:10.1371/journal.pone.0013867.g005

Figure 6. Sensitivity to the nonlinearity of modified Goodwin models. The sensitivity of the Goodwin-type models with varied degree of
nonlinearity is presented by plotting the DOS of sensitive parameters from partially linearised model (PLD) against its corresponding fully nonlinear
model (FND): (a) single-loop Goodwin model (b) Goodwin parallel (EP) (c) Goodwin interlocking (EI).
doi:10.1371/journal.pone.0013867.g006
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nonlinearity common examples of such complexities. In the

specific example of the Arabidopsis circadian clock, a sequence of

models has been published with an increasing degree of

complexity from one-loop to four-loop [20,21,25,26]. While

certain complexities are an intentional and necessary inclusion

to extend the boundaries of the model and its capability to include

known network topology, unnecessary complexity may arise from

inclusion of features that are possible but not demonstrated, such

as the saturation of cellular degradation pathways or the

independent functions of parallel regulation. This complexity

potentially hinders the ability to apply mathematical analyses and

it is appropriate to question whether all complexities are required.

Increased complexity affects both the behaviours and properties

of the model. Besides the remarkable behaviour in producing

rhythms with accurate phase and period, the circadian clocks in

diverse organisms balance properties of sensitivity and robustness:

the circadian clock is not only robust to fluctuating signals (external

noise) and intrinsic variations [33,40], but it is also sensitive to

certain environmental clues such as the daily light-dark cycle

[31,52,53]. Models of the circadian clock are therefore expected to

be sensitive to different kinds of effectors. As sensitivity is a key

property for inferring the plausibility of the model, sensitivity

analysis has been used to explore the significance of the model’s

complexities regarding multi-loop structure and nonlinearity.

Multiple negative feedback loop structures are common in

circadian clock models ranging from Synechococcus cyanobacteria

[54] to plants [21,25] and mammals [19]. Single loop structures

are incapable of describing the properties of circadian clocks in

living organisms [9,20,50] and ignore molecular evidence for

multiple loop connectivity. The results in Figures 2, 3, 4, 5 show

that the multi-loop structure can affect the sensitivity of the

systems, balancing sensitivity to external clues with robustness

against internal variation. Compared with the simple single loop

structure, the multiple loop circuits enhance the ability to sense

and respond to the amplitude (Figure 3) and waveform (Figure 4)

of input signals while maintaining high robustness against noisy

input (Figure 5). Surprisingly, relative to the single loop model, the

two related circuits of multi-loop structure (EP and EI)

demonstrate opposite sensitivity to internal parameter variation

(Figure 2). According to the detailed sensitivity analysis (CRA), the

high sensitivity in the EP model reflects the non-uniform sensitivity

of the model with respect to parameters, arising from the parallel

connections introduced to the EP network. The former is reflected

by the higher sd DOSl,i of the EP to those of EI models, as the

sensitivity of the EP model derived from a single highly sensitive

parameter. The latter is interpreted from the sensitive parameters

identified for each model. Parameters involving regulation from P1

and P2 to M were less significant in the EI than EP models, due to

the additional inhibition of P1 to P2 in the EI model. In

conclusion, the high sensitivity of the EP model relative to the

modified Goodwin model may arise from an inappropriate

incorporation of a new loop structure, since this sensitivity was

vastly improved by the extra incorporation of a single interlocking

Table 1. Summary of the sensitivity analysis for two-loop and
three-loop models.

Descriptions Two-loop model Three-loop model

FND2loop PLD2loop FND3loop PLD3loop

Number of sensitivity
parameters

9 9 14 10

Sensitive parameters n2 n2

g3 g3 n3

m4 m4 n4 n4

m9 n5

k4 k4 g2 g2

k7 m4 m4

p2 m9

p3 p3 m12 m12

r5 m13 m13

a

b b k10 k10

d d p4 p4

r8

b b

e

f

g

Percent of intersection (6/9)6100 = 66.7% (8/10)6100 = 80%

doi:10.1371/journal.pone.0013867.t001

Figure 7. Sensitivity to the nonlinearity of Arabidopsis circadian clock models. The sensitivity of varied degree in nonlinearity of
Arabidopsis circadian clock models is presented by plotting DOS of sensitive parameters from the partially linearised model (PLD) against its
corresponding fully nonlinear model (FND): (a) two-loop model (b) three-loop model.
doi:10.1371/journal.pone.0013867.g007
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connection into the model, EI. This may suggest that a compact,

multiply-connected architecture is also necessary for increasing the

robustness of the model against internal variations [28,55–57].

Considering all of the above parts, the interlocked negative

feedback loop model (EI) shows many advantages as a common

structure for circadian clock circuits.

Nonlinearity in the kinetics is another complexity often introduced

through modelling. Nonlinear kinetics are required to produce

oscillations, particularly in small models, and the necessity for

nonlinearity decreases with increased size (or other complexities) of

the model. Here we show that nonlinearities can increase the

sensitivity of model behaviours to parameter perturbation, even in

simple models (Figure 6). Similarly, many of the nonlinear

degradation terms of previous models were not necessary for

improving the fit to Arabidopsis circadian clock data. Comparable

fits were obtained from models with varying degrees of nonlinearity

(Figures S4 and S5). Furthermore, the excessive nonlinearity

introduced additional sensitivity to the models: the qualitative

(Table 1) and quantitative (Figure 7) comparisons suggest that

nonlinearity also increases the sensitivity of these complex models,

without major perturbation to the dynamics of the model. The

sensitive parameters were conserved between the nonlinear (FND)

and partially linearised (PLD) models despite having different

degradation kinetics (Table 1). Understanding the role of the

nonlinearity in the model enables us to minimise unnecessary model

complexity, which decreases both the sensitivity of the model and the

number of parameters. An exploration test on the computational

time for models differing in the dimension of parameter space

resulting from partial linearisation (Figure 6S) exemplifies the

advantage of the less complex models for further mathematical

analyses.

The most valuable model is the simplest model that retains

enough adaptability to explain the real system behaviour and also

matches the system’s properties. Besides these properties, models

with strong predictive capacity and heuristic value are the ultimate

goal of modelling. The study of model structure and its kinetics

allows us to understand the contributions of complexities in

molecular networks to the behaviours and intrinsic properties of

the model. Applying this understanding, we can effectively reduce

the complexity of a model while its adaptability is retained, so it

may become an even more useful and predictive tool.

Conclusions
Circadian clocks are one of the biological systems that have been

modelled extensively to gain more comprehension about regulatory

mechanisms. In this work, we showed that the complexity from

multi-loop structures may be required to improve the behaviours

and properties of the models, whereas excessive nonlinearity

weakens the robustness of the models. In particular we identified

the interlocking loop structure as providing a suitable model

architecture for the circadian clock and other robust biochemical

oscillators, because this circuit provides a good tradeoff in sensitivity

and robustness to input signals and noisy input. We also found that

the degree of nonlinearity in two models of the Arabidopsis

circadian clock, the two-loop and three-loop models, can be

diminished and still produce more robust models with equivalent

model behaviours. The multi-loop structure and nonlinearity are

indeed only two of the abundant complexities found in the models,

but they are commonly used. In brief, this work will enable the

effective extension of mathematical models to include more

biochemical components with clear understanding of their impact.

Balancing realism against the complexity of the model may promote

simpler models, which are beneficial for many subsequent analyses.

Supporting Information

Figure S1 Model topology of Arabidopsis circadian clock: (a)

one-loop (Locke et al., 2005a), (b) two-loop (Locke et al., 2005b),

(c) three-loop (Locke et al., 2006), and (d) four-loop models

(Zeilinger et al., 2006).

Found at: doi:10.1371/journal.pone.0013867.s001 (0.68 MB

TIF)

Figure S2 The sensitivity to parameter variation of modified

Goodwin models using parameter set 3 (Data S1, Table 1). The

results present in term of statistics of DOS across the model

parameters: (a) mean and (b) standard deviation. The calculated

DOS of models were plotted for each perturbation on the left

panel with DOS entities at any perturbations of multi-loop models

plotted against that of the single-loop model on the right panel.

Found at: doi:10.1371/journal.pone.0013867.s002 (2.19 MB

TIF)

Figure S3 The sensitivity to parameter variation of modified

Goodwin models using parameter set 4 (Data S1, Table 1). The

results present in term of statistics of DOS across the model

parameters: (a) mean and (b) standard deviation. The calculated

DOS of models were plotted at each perturbation on the left panel

with DOS entities at any perturbations of multi-loop models were

plotted against that of the single-loop model on the right panel.

Found at: doi:10.1371/journal.pone.0013867.s003 (2.04 MB

TIF)

Figure S4 Plots showing the best fit of the two-loop Arabidopsis

circadian clock model for (a) fully-nonlinear degradation, (b)

partially-linearised degradation with estimated parameter set (the

initialising parameter set for parameter searching is determined by

the ratio of Vmax and Km in the counterpart nonlinear terms of the

fully-nonlinear degradation models), and (c) partially-linearised

degradation with optimised parameter set.

Found at: doi:10.1371/journal.pone.0013867.s004 (1.06 MB

TIF)

Figure S5 Plots showing the best fit of the three-loop

Arabidopsis circadian clock model for (a) fully-nonlinear degrada-

tion, (b) partially-linearised degradation with estimated parameter

set (the initialising parameter set for parameter searching is

determined by the ratio of Vmax and Km in the counterpart

nonlinear terms of the fully-nonlinear degradation models), and (c)

partially-linearised degradation with optimised parameter set.

Found at: doi:10.1371/journal.pone.0013867.s005 (1.18 MB

TIF)

Figure S6 The computational cost of using complex models.

The running time for 100 annealing steps (numbers of search

cycles through a simulated annealing algorithm) for the nonlinear

and partially linearised two-loop Arabidopsis circadian clock

models: (1) fully nonlinear model - 58 parameters (2) partially

linearised RNA degradation - 54 parameters (3) partially linearised

RNA and LHY protein degradation - 52 parameters (4) partially

linearised RNA, LHY and X protein degradation - 50 parameters

and (5) partially linearised RNA, LHY, X and Y protein

degradation - 48 parameters. The number of parameters in

models is reduced with increasing degree of linearity, resulting in a

reduction of the computational time for the optimisation.

Computational experiments were performed on a standard

desktop computer with Intel(R) Pentium(R) D CPU 3.00GHz

2.99GHz, 1.99 GB of RAM and Microsoft Windows XP

Professional Version 2002 operating system.

Found at: doi:10.1371/journal.pone.0013867.s006 (1.72 MB

TIF)
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Data S1 The supplementary data consists of model equations

and the corresponding sets of parameter used in our analyses.

Found at: doi:10.1371/journal.pone.0013867.s007 (0.54 MB

DOC)
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