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Abstract
The classic -negative myeloproliferative neoplasms (MPNs), a formBCR-ABL
of chronic malignant hemopathies, have been classified into polycythemia vera
(PV), essential thrombocythemia (ET), and primary myelofibrosis (PMF). ET
and PMF are two similar disorders in their pathogenesis, which is marked by a
key role of the megakaryocyte (MK) lineage. Whereas ET is characterized by
MK proliferation, PMF is also associated with aberrant MK differentiation
(myelodysplasia), leading to the release of cytokines in the marrow
environment, which causes the development of myelofibrosis. Thus, PMF is
associated with both myeloproliferation and different levels of myelodysplastic
features. MPNs are mostly driven by mutated genes called MPN drivers, which
abnormally activate the cytokine receptor/JAK2 pathway and their downstream
effectors. The recent discovery of  mutations has closed a gap in ourCALR
knowledge and has shown that this mutated endoplasmic reticulum chaperone
activates the thrombopoietin receptor MPL and JAK2. These genetic studies
have shown that there are two main types of MPNs: JAK2V617F-MPNs,
including ET, PV, and PMF, and the MPL-/CALR-MPNs, which include only ET
and PMF. These MPN driver mutations are associated with additional
mutations in genes involved in epigenetics, splicing, and signaling, which can
precede or follow the acquisition of MPN driver mutations. They are involved in
clonal expansion or phenotypic changes or both, leading to myelofibrosis or
leukemic transformation or both. Only a few patients with ET exhibit mutations
in non-MPN drivers, whereas the great majority of patients with PMF harbor
one or several mutations in these genes. However, the entire pathogenesis of
ET and PMF may also depend on other factors, such as the patient’s
constitutional genetics, the bone marrow microenvironment, the inflammatory
response, and age. Recent advances allowed a better stratification of these
diseases and new therapeutic approaches with the development of JAK2
inhibitors.
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Introduction
Myeloproliferative disorders are characterized by excess prolifera-
tion of progenitors belonging to the myeloid lineages (myelopro-
liferation), leading to an excess of mature functional blood cells1. 
They are all clonal disorders of the hematopoietic system deriving 
from the transformation of a hematopoietic stem cell (HSC). Among 
the spectrum of myeloid malignancies they lie at one extreme, char-
acterized only in principle by myeloproliferation (without differ-
entiation defects), in contrast to myelodysplastic syndrome (MDS) 
(predominant differentiation defects) and acute myeloid leukemia 
(AML) (blockage in differentiation). The classic BCR-ABL-negative 
myeloproliferative neoplasms (MPNs) have been classified into 
three entities: polycythemia vera (PV), essential thrombocythemia 
(ET), and primary myelofibrosis (PMF). These diseases have com-
mon complications: thrombosis or, more rarely, hemorrhages and 
leukemic transformation. ET is essentially a disorder of the meg-
akaryocyte (MK) lineage with an excess platelet production2. 
PMF is defined by the presence of bone marrow fibrosis (excess of 
collagen fibers)3. This is also mainly a disorder of the MK/platelet 
lineage but is also associated with granulocytic proliferation. The 
typical forms of PV, ET, and PMF are quite different clinically and 
have different prognosis. ET and PV can progress to secondary 
myelofibrosis. Certain ET cases are associated with an erythroid 
hyperplasia and can progress to a true PV or may remain a form 
“fruste” of PV. Furthermore, boundaries between ET and PMF are 
not well standardized. A fourth entity has been described, pre-PMF 
(or early PMF or prefibrotic myelofibrosis), which corresponds to 
an ET with a high probability of progression to myelofibrosis and a 
worse prognosis than classic ET4.

The molecular pathogenesis of BCR-ABL-negative MPNs is now 
in large part understood because of recent advances in sequencing 
techniques, particularly with results derived from next-generation 
sequencing (NGS) techniques. Recently, the discovery of mutations 
in the calreticulin (CALR) genes has closed a gap in the knowledge 
of the physiopathogenesis of these disorders, particularly for ET 
and myelofibrosis.

In this review, we will focus on the molecular pathogenesis of 
MPNs, particularly of ET and PMF. However, somatic acquired 
mutations cannot summarize the entire pathogenesis of these disor-
ders and other factors such as the constitutional genetics, the bone 
marrow niche environment, the cytokine release, and the inflam-
matory response, as well as aging, play important roles in the  
heterogeneity of these disorders.

Discovery of the mutations in exon 9 of the CALR 
gene in ET and PMF reinforces the hypothesis that 
BCR-ABL-negative MPNs are driven by an abnormal 
activation of JAK2
In 2005, a major advance in the understanding of the pathogen-
esis was the discovery of the somatic acquired recurrent mutation 
JAK2V617F, which is associated with more than 70% of MPNs; 
namely 95% of PV, 50% of ET, and 60% of PMF5–8. The V617F 
mutation is located in the pseudokinase domain of JAK2. The 
V617F mutation appears to prevent the physiologic inhibition and 
also to directly activate the kinase domain of JAK29. JAK2V617F 
gain-of-function and the constitutive signaling at sufficient  

expression levels require cytokine receptors, particularly 
homodimeric type I receptors. The identification of the JAK2V617F 
mutation has been a cutting-edge discovery in the pathogenesis of 
MPNs. This has led to the implication of the cytokine receptor/
JAK2/STAT5 signaling pathway in their pathologies and the subse-
quent discovery of other recurrent mutations in this pathway, such 
as JAK2 exon 12 in 2% of PV10, and activating mutations in the 
thrombopoietin receptor MPL. These mutations located in exon 
10 of MPL target the W515 residue, which plays a central role in 
preventing spontaneous activation of the receptor11. When W515 
is substituted by 17 other amino acids—most frequently, Leu and 
Lys—TpoR/MPL becomes constitutively active and oncogenic12. 
These mutations are found only in ET and PMF, with frequencies 
of approximately 3% and 5–8% in ET and PMF, respectively13. The 
somatic MPLS505N is a rare recurrent sporadic mutation in ET and 
PMF that in certain familial thrombocytosis cases is found in the 
germline14. Finally, very rare somatic mutations in LNK, a negative 
regulator of JAK2 kinase activity, have been described in ET and 
PMF15. JAK2V617F and MPL mutations are only very rarely found 
in the same patient sample and when both are present they are most 
of the time in different cells, suggesting that they belong to different 
clones or subclones.

In 2013, it was evident that 55% of ET and 65–70% of PMF cases 
were linked to JAK2V617F and MPL exon 10 mutations. Activation 
of the cytokine receptor/JAK2 pathway was a common feature. In 
approximately 40% of ET and PMF, there were no recurrent muta-
tions in genes involved in signaling. At the end of 2013, the teams of 
Kralovics16 and Green17 discovered mutations (indel) in the CALR 
gene in 25–30% of ET and PMF that were negative for JAK2 and 
MPL mutations. More than 50 mutations have been described, but 
all are in exon 9 and induce a +1 (−1+2) frameshift, leading to a 
new C-terminal peptide and the absence of the KDEL sequence, a 
retention sequence for the endoplasmic reticulum (ER) (Figure 1). 
The C-terminus is almost identical among mutations with about 30 
common amino acids. These new sequences completely change the 
charge of the molecule. The most frequent mutation, del52 (55% of 
the mutations), also called type 1, eliminates almost all the nega-
tive charges, whereas the ins5 (30%)—also called type 2—elimi-
nates about half of these charges. According to these changes, the 
other mutations have been classified as type 1- or type 2-like. Physi-
ologically, CALR is not a signaling molecule but an ER chaperone 
involved in the quality control of N-glycosylated protein and in cal-
cium storage in the ER18. However, the fact that the CALR mutations 
were also mutually exclusive with JAK2V617F and MPL mutations 
in ET and PMF, together with preliminary results showing that 
del52 mutations could activate STAT5, suggested that the CALR 
mutants were involved in signaling16. Recent studies have largely 
reinforced this hypothesis by showing that CALR mutants activate 
the MPL receptor after binding to its N-glycosylated residues in 
the ER19,20. This activation required the positive charge of the C-
terminus peptide, the lectin binding domain, and the extracellular 
N-linked sugars of MPL. There is evidence that the CALR mutant 
associated with MPL traffics to the cell surface in an immature N-
glycosylated form19. In this case, MPL activation can occur any-
where from the ER to the cell surface. Moreover, CALR mutants 
are secreted proteins, which may be able to activate other cells, 
especially monocytes, to secrete inflammatory cytokines21. CALR 
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mutants are not able to activate other cytokine receptors different 
from MPL—except granulocyte colony-stimulating factor receptor 
(G-CSF-R). However, this activation is weak and does not allow the 
autonomous growth of factor-dependent cell lines.

Thus, it appears that there are two main types of BCR-ABL-negative 
MPNs. The first one is the JAK2V617F MPNs (∼70% of MPNs), 
which includes three disorders: ET, PV, and PMF; the second one 
consists of the CALR and MPL mutated MPNs (20% of MPNs), 
which usually includes only ET and PMF although CALR muta-
tions have been described in very rare cases of PV associated with 
a thrombocytosis. The remaining MPNs are called triple-negative 
(10%). These appear to be heterogeneous disorders, but a large frac-
tion are associated with increased JAK/STAT signaling22. Cer-
tain triple-negative MPNs are related to atypical MPL or JAK2  
mutations23,24. A fraction of the so-called triple-negative ET might 

not be MPNs, but polyclonal disorders, such as hereditary throm-
bocytosis with germline mutations. Furthermore, the triple-negative 
PMF, which is of poor prognosis, may not be bona fide MPNs, but 
more a myelodysplastic syndrome associated with myelofibrosis25. 
This underscores the difficulties for classifying myeloid hemato-
logical malignancies, which might represent a spectrum of diseases 
with proliferation and differentiation defects at different levels.

Signaling mutations drive the MPN phenotype
One way to demonstrate that these mutations are really the MPN 
drivers is to create mouse models. Mutations in JAK2V617F, MPL, 
and CALR are capable of reproducing the MPN phenotype(s) in 
mice. JAK2V617F induces a myeloproliferative disorder—usually 
PV but also ET in some models26–29—which may progress to mye-
lofibrosis. The unique models that have been presently described 
so far for MPLW515 and CALR mutations are bone marrow  

Figure 1. Calreticulin (CALR) and CALR mutation in essential thrombocythemia (ET) and myelofibrosis (MF). (a) CALR protein structure. 
CALR includes different domains responsible for the two major activities (chaperone and calcium buffering). The mutations lead to altered 
C-terminal part with loss of KDEL (retrieval and retention domain in endoplasmic reticulum) and generation of a new tail with low calcium-
buffering activity. (b) Progression from ET to MF with CALR mutants. CALRdel52 induces ET always progressing to MF in mice in contrast to 
CALRins5. Thus, in vivo modeling of CALRdel52-induced pathologic effects induces a disorder characterized by a continuum between ET 
and MF. (c) Pie chart of the different CALR mutations in patients with ET and MF.
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transplantations after retroviral transfer. In both cases the mice 
develop thrombocytosis, which progresses to myelofibrosis—quickly 
in the case of MPLW515L/A and more slowly for CALRdel5211,20.

Importantly, in all these models, mice do not develop true PMF, 
but a secondary myelofibrosis (post-PV or post-ET). Thus, myelofi-
brosis can be the natural evolution of ET, without requiring other 
additional genetic abnormalities. Similarly high TPO levels in mice 
can induce a very severe myelofibrosis30,31. Overall, an exaggerated 
stimulation of the MK lineage can lead to myelofibrosis. These 
results could suggest that PMF may require other events (genetic/
environmental).

One major limitation of the present mouse models is that the dis-
ease originates from several hematopoietic stem cells, while human 
MPNs exhibit a clonal hematopoiesis originating from a single 
hematopoietic stem cell32. Therefore, the first part of the human 
disease (how a single mutated HSC becomes predominant) is 
not studied in these models32. Other factors, including oncogenic  
cooperation, may be necessary for clonal dominance (see below).

Subtle changes in the activation mechanisms of JAK2 among 
mutants may partially explain the different phenotypes of 
the MPNs
Although the different mutations induce the activation of JAK2, 
they do not lead to the same phenotype. For example, JAK2V617F 
can be associated with ET and PV, inducing hyperplasia of either 
MK or erythroid cells, depending on the conditions. One determin-
ing factor is clearly the number of JAK2V617F gene copies (hetero-
zygous versus homozygous mutation)28,33. However, this is just one 
factor in determining MPN heterogeneity.

Another example is the CALR-mutated and JAK2V617F ET, 
which display different clinical and biological features, although 
in both cases the disease is related to the activation of the  
MPL/JAK2 pathway20,34. One obvious difference is related to the 
fact that JAK2V617F—in contrast to CALR—activates not only 
the MK cell line but also the erythroid and granulocytic lineages, 
explaining differences in the hematocrit and polymorphonuclear 
count. However, among the most marked differences are the higher 
level of thrombocytosis and the decreased frequency of throm-
botic events in the CALR mutated ET35,36. The most striking dif-
ference concerns the allele frequency of the mutation: in ET, the 
JAK2V617F variant allele frequency is approximately 15% in gran-
ulocytes (30% of mutated cells) but is approximately 40% or more 
for mutated CALR (80% of the cells)37. Therefore, a greater clonal 
advantage at the level of HSCs is conferred by mutated CALR ver-
sus JAK2V617F, even if both diseases are dependent on MPL. Sub-
tle differences in signaling pathways downstream of MPL/JAK2 
might also be involved. For example, CALR mutants moderately 
activate the PI3K/AKT pathway, and PI3K inhibitors are not able 
to synergize with JAK2 inhibitors, contrasting what was observed 
for JAK2V617F19,38,39. The type of activated STAT could also play a 
role since MPL/JAK2 can activate STAT1, 2, 3, and 5, which may 
have markedly different effects on HSC and MK biology40–43.

Furthermore, among CALR mutated ET, CALRdel52 and CALRins5 
may define two different subtypes of diseases characterized by  

different levels of thrombocytosis and evolution. CALRdel52 ET can 
progress to secondary myelofibrosis much more frequently than 
CALRins5 ET44, with an important predominance of CALRdel52 
in PMF (Figure 1). In the mouse models, CALRdel52-induced 
thrombocytosis progresses to myelofibrosis, but this progression 
is rarely observed for CALRins5.

Again, such differences might reflect subtle differences in the acti-
vation of the MPL/JAK2 pathway or activation of new signaling 
pathways. Indeed, the CALRdel52 has nearly lost all its capacity to 
bind calcium in its C-terminal domain (low affinity, high capacity) 
in contrast to CALRins5. This may lead to a leak of calcium from 
the ER to the cytoplasm and a different signaling in MKs and in 
HSCs44.

The somatic landscape of acquired mutations 
demonstrates that additional somatic mutations are 
present in MPNs but predominantly in PMF
Early studies on JAK2V617F MPNs have suggested that, in cer-
tain cases, JAK2V617F is not the initiating event but that it could 
be preceded by other mutations. With genome-wide approaches, it 
could be shown that some patients have TET2 mutations (∼15%)45. 
Subsequently, mutations in ASXL1 mutations (10–15%) were found 
in PMF46.

With the development of whole exome sequencing, it could be 
demonstrated that mutations in epigenetic regulators (such as 
TET2, DNMT3A, ASXL1, EZH2, and IDH1/IDH2) and in spli-
ceosome components (such as SRSF2, U2AF1, and SF3B1) were 
present in BCR-ABL-negative MPNs harboring JAK2/MPL/CALR 
mutations17,47,48. Other mutations were also directly associated with 
leukemic progression, such as p53, RUNX1, CBL, and deletion 
in IKAROS49–51. These mutations can be associated, and the most 
frequent co-mutations concern SRSF2 associated with TET2 or 
ASXL1 or IDH52.

The additional mutations are mainly phenotypic modifiers 
discriminating between ET and PMF
In contrast to mutations in signaling genes (MPN driver genes), 
which are rare in other myeloid malignancies, the additional muta-
tions are not specific to MPNs and are found with a higher fre-
quency in MDS and in mixed MDS/MPN disorders, such as chronic 
myelomonocytic leukemia53,54.

Biological studies and mouse models showed that they may 
cooperate with MPN drivers to favor clonal dominance (TET2 
or DNMT3A), to modify disease phenotype, or to promote either 
progression to myelofibrosis or leukemic transformation (ASXL1, 
IDH1/2, EZH2, and TP53).

Clonal dominance genes, such as TET2 or DNMT3A, are associated 
with all types of MPNs with low difference in frequency (∼12% 
in ET and 18% in PMF). However, all the other mutations are 
almost exclusively found in PMF17,55. In more than 80% of PMF, 
mutations of epigenetic regulators or spliceosome components are 
found, but they are identified in less than 25% of ET. Furthermore, 
in approximately 50% of PMF, two or more of these non-‘MPN 
driver’ genes are co-mutated. Moreover, CALR is the first mutation 
in nearly all cases and additional mutations are secondary in disease  
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evolution16,17,47. In contrast, JAK2V617F can be preceded by  
mutations such as in TET2, DNMT3A, and ASXL1, whereas the 
inverse can be also observed.

Two non-mutually exclusive explanations can be invoked: (1) CALR 
mutations have a much higher capacity to provide clonal domi-
nance than JAK2V617F and may not require other associated 
genetic events for disease initiation. (2) JAK2V617F gives rise 
to MPNs, which occur approximately 10 years later than CALR 
mutated MPNs. The genes, which precede JAK2V617F occur-
rence, are associated with age-related clonal hematopoiesis56,57, 
JAK2V617F MPNs being secondary to aging. Indeed, the order 
of acquisition of mutations is important in the phenotype of the 
disease, particularly for TET2 and DNMT3A58,59. Moreover, when 
the JAK2V617F mutation is acquired on an age-related hematopoi-
esis, leukemia or myelodysplastic syndrome transformation may 
occur on the initial JAK2V617F-negative clone60,61. The fact that 
the number of acquired mutations allows a good discrimination 
between ET (one mutation in the MPN driver gene plus eventu-
ally another driver mutation) and PMF (one mutation in the MPN 
driver gene and mutations in one or several other driver genes) is in  

agreement with the physiopathology of myelofibrosis itself  
(Figure 2). Indeed, there is evidence that myelofibrosis mainly 
results from a stromal reaction to the clonal hematopoiesis62 as a 
consequence of the release of profibrotic cytokines63,64. MKs are the 
key cells involved in the myelofibrosis because they can release, in 
the bone marrow, large amounts of profibrotic (transforming growth 
factor β1 [TGF-β1], basic fibroblast growth factor, and platelet-
derived growth factor), angiogenic (vascular endothelial growth 
factor) and pro-inflammatory (interleukin-1 [IL-1]) cytokines62,65. 
The role of MKs in myelofibrosis development explains the link 
between MK hyperplasia and myelofibrosis. Cytokines such as 
TGF-β1 are stored in specific MK granules called α-granules.  
However, in PMF, the most important phenomenon is the MK dif-
ferentiation defect, which may result in defective α-granule storage 
and in the release of fibrotic cytokines. It explains why morphologi-
cal features of MK dysplasia are criteria to distinguish ET from early 
PMF66. Interestingly, most of the mutations in epigenetic regulators 
and spliceosome components lead to myeloid differentiation defects, 
especially in MKs67,68. Thus, PMF is not a pure MPN, exhibiting 
myeloproliferative and myelodysplastic features. The heterogeneity 
of the disease and its prognosis are dependent on the respective 

Figure 2. Role of microenvironment in the development of myelofibrosis. Mutated dysplastic megakaryocytes (MKs) are responsible for 
the myelofibrosis and osteoclerosis by inducing the release of (i) non-activated transforming growth factor β1 (TGFβ1), which is activated in the 
bone marrow environment by a so far uncharacterized mechanism, possibly via integrins and matrix such as fibronectin and thrombospondin 
(TSP). Fibrosis begins around MKs associated with the proliferation of fibroblasts and eventually osteoblasts, (ii) interleukin-1α (IL-1α) is 
released and induces osteoprotegerin (OPG) by t stromal cells, a decoy receptor that blocks osteoclast production. Mutated hematopoietic 
stem cells (HSCs) induce the increase in IL-1α and the subsequent degradation of Schwann cells and mesenchymal stem cells, leading to 
fibrosis and osteosclerosis through cytokine storm and providing a favorable environment for the hematopoietic clone.
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levels of each component, and the prognosis is poor when myelo-
dysplastic features are predominant (Figure 3). This explains why 
ultimately the prognosis of PMF is mainly dependent on the type 
and number of mutations in epigenetic regulators and spliceosome 
genes55. Thus, it is expected that the new entity called pre-PMF or 
prefibrotic myelofibrosis will have a different pattern of acquired 
mutations from the classic ET, particularly with the presence of 
mutations in non-MPN driver genes. Otherwise, factors that regu-
late MPN phenotype and progression (other than acquired somatic 
mutations) should be identified.

Factors other than acquired somatic mutations are 
involved in the pathogenesis of MPNs
It is clear that factors other than somatic mutations are involved in 
the pathogenesis of MPNs, particularly in clinical features. They 
include different factors.

Germline determinants
Sex-related differences are observed in the distribution of MPNs. 
ET is predominant in females and PMF in males. There are also 
differences in the sex ratio between CALR mutated and JAK2V617F 
ET. The former are slightly more prevalent in men and the latter 
in women35. There is no clear explanation for these differences. 
Hormones could be one explanation. Estrogens can inhibit the 
JAK2V617F cancer stem cells69. Iron metabolism could be another 
determinant, as it plays an important role in red blood cell and 
platelet production, with inverse effects.

Other genetic determinants predispose to MPNs. The first charac-
terized was the 46/1 haplotype, which involves the JAK2 locus70–72. 
This JAK2 haplotype induces a 3- to 5-fold increase in JAK2 V617F 
MPNs but not in CALR mutated MPNs73. Other genetic deter-
minants have recently been found, such as TERT, MECOM, and  

Figure 3. The type and the number of mutations determine the phenotype of the disease. Boundaries between diseases are not easy 
to determine and could be dependent on the types or the number of mutations. Proliferation is driven mainly by signaling mutations (JAK2, 
CALR, and MPL) while most of the mutations in epigenetic regulators and spliceosome components lead to differentiation defects. Thus, it can 
be considered that primary myelofibrosis (PMF) is not a pure myeloproliferative neoplasm (MPN) but a disorder with both myeloproliferative 
and myelodysplastic components. The heterogeneity of the disease and its prognosis are dependent on the respective levels of each 
component, and prognosis is poor if myelodysplastic features are predominant.
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HBS1L/MYB. The SNPs in TERT, MECOM, and JAK2 (other than 
46/1) appear to predispose to JAK2V617F-negative MPNs, whereas 
the HBS1L/MYB SNPs predispose only to JAK2V617F ET74. An 
SNP located in the CALR gene could favor CALR mutations75, but 
this result remains controversial76. It is unknown whether other 
genetic determinants that regulate blood cell levels regulate the 
phenotype of MPNs.

The importance of these genetic determinants in the initiation and 
the progression of MPNs has recently been underscored in four fam-
ilies of the same geographical origin that develop hereditary forms 
of myeloid malignancies. The transmission is autosomal dominant 
and leads mainly to ET characterized by the same acquired driver 
mutations as sporadic cases, but with a very poor prognosis due 
to a rapid evolution to myelofibrosis and leukemia in more than 
one third of patients77. A duplication of six genes, two of which 
are GSKIP and ATG2B, appears to play a key role in this predis-
position, implying that the Wnt pathway and autophagy may play 
important roles in the pathogenesis of MPNs.

Inflammation
The JAK-STAT pathway is central for signaling by the majority of 
the inflammatory cytokines, which were linked to MPN progres-
sion. In a study of 30 cytokine levels in 127 patients with PMF, it 
was found that circulating IL-8, IL-2R, IL-12, and IL-15 levels inde-
pendently hold prognostic value in PMF78. Overall, many cytokines, 
including the above markers, G-CSF, and type I interferon (IFN), 
were increased, whereas IFN-γ was decreased78. Examination of 
patient-reported outcome and cytokine profiling demonstrated clear 
associations between MPN symptoms, such as fatigue, abdominal 
complaints, and microvascular and constitutional symptoms, and 
high levels of cytokines, particularly IL-1, IL-6, IL-8, and tumor 
necrosis factor-α (TNF-α)79.

From the pathophysiology standpoint, some pro-inflammatory 
cytokines or chemokines may be important by directly promoting 
an extramedullary hematopoiesis. In addition, by increasing reac-
tive oxygen species (ROS) production, they may contribute to the 
dominance of the JAK2V617F clone and disease progression by 
inducing secondary mutations. A special case is represented by 
TNF-α. Clonal dominance in JAK2V617F-positive MPNs has been 
associated with TNF-α secretion and signaling80. TNF-α was also 
suggested to impair the inhibitory effects of type I IFN on mutated 
MPN HSCs81. On the other hand, TNF-α inhibition signaling in one 
patient with myelofibrosis was associated with leukemia progression82. 
TNF-α also deregulates erythropoietin signaling, leading to anemia 
in AML and MDS83,84.

Anemia is also associated with PMF and influences treatment and 
iron metabolism. Increased levels of both hepcidin and ferritin pre-
dicted inferior survival in an independent manner from inflamma-
tory cytokines85.

Co-morbidities can also be coincident with or induced by MPNs. 
One could ask whether JAK2 inhibitors would impact co-morbidities,  
which could act on the MPN clone or on the other cells that par-
ticipate in production and effects of inflammation86. An exam-
ple is STAT3 activation, which plays an important role in the  
inflammatory state associated with MPNs. However, when STAT3 
is activated in hematopoietic cells from the clone, but not in the 

other hematopoietic and non-hematopoietic cells, it dampens 
the MPN phenotype, especially the thrombocytosis42. Chronic 
inflammation is a driving force for premature atherosclerosis and  
development of secondary cancer in MPNs81.

Bone marrow microenvironment: the hematopoietic niche
The anatomical location in which the HSCs reside, the hematopoietic 
niche, is key for HSC regulation and has been divided into two main 
compartments: (i) the endosteal niche near the endosteum; and (ii) 
the perivascular niche near the sinusoids. Many different types of 
cells compose the niche, mainly derived from mesenchymal stem 
cells (adipocytes, osteoblasts, and smooth muscle cells) of other 
origins such as Schwann cells, reticular cells, endothelial cells, and 
hematopoietic cells such as macrophages, osteoclasts, and MKs. 
MPN development can be potentially controlled by this bone mar-
row environment either directly through integrin interactions or 
indirectly via the production of various chemokines, cytokines, 
and signaling molecules. Alternatively, mutated HSCs can modify 
the niche to favor their development and to inhibit normal HSCs to 
induce clonal expansion. It has been shown that JAK2V617F HSCs 
secrete IL-1β, which induces the apoptotic death of mesenchymal 
and Schwann cells, suggesting that the normal but not JAK2V617F 
HSC is dependent of the niche resulting in a clonal expansion or 
that JAK2V617F HSCs need to damage the microenvironment to 
overcome its control. Thus, MPN has been considered a neuropathy 
that could be controlled by neuroprotective agents87.

In myelofibrosis, the excessive release of fibrotic factors by the 
mutated MKs could activate mesenchymal cells, leading to mye-
lofibrosis, but also could modify the properties of mesenchymal 
stromal cells88 and their gene expression89. Some other components 
of the niche may also belong to the malignant clone. Recently, it has 
been described that some endothelial cells may also belong to the 
clone, particularly in the Budd-Chiari syndrome in the liver and the 
spleen90. Such mutated endothelial cells could potentially be dereg-
ulated to exacerbate cytokine or ROS production and to promote 
platelet adhesion and thrombosis.

Certain cytokines were shown to contribute to MPN development. 
FLT3L was found to be increased in samples from patients with 
PMF. It is produced both by HSCs and stromal cells and was shown 
to participate through the p38 pathway to the dysmegakaryopoiesis 
and the migration of CD34+ progenitors91. IL-33 is overproduced 
in patients with MPN. It contributes to MPN development through 
stromal cells by promoting cytokine (granulocyte-macrophage col-
ony-stimulating factor and IL-6) secretion via its receptor ST-2 and 
by amplifying hematopoietic progenitors92.

Nevertheless, the role of the niche in the development of the dis-
ease remains incompletely understood. The question of whether 
an initial abnormality in the bone marrow niche can be the initial 
event in MPNs remains entirely open. Experimentally, engineered 
mesenchymal cells could induce hematological malignancies. 
Deletion of Dicer1 in mouse osteoprogenitors led to MDS and 
leukemia through the acquisition of genetic abnormalities93. One 
of the best ways to study this “niche-induced disease” hypothesis 
will be to evaluate the role of identified genetic predisposing factors 
responsible for familial forms of MPNs on the microenvironment 
and HSCs, respectively, by using engineered mouse models.
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Aging
MPNs are age-related diseases. Both stromal cells and HSCs are 
modified during aging. With age, HSCs become myeloid-biased 
with increased cycling/ROS levels and loss of functional capacities 
that could be important for disease development94. Furthermore, 
these alterations can eventually favor clonal hematopoiesis with 
selection of mutated HSCs that acquired independence from stro-
mal regulation. It is noteworthy that the most frequently involved 
somatic mutations (DNMT3A, TET2, ASXL1, and JAK2) linked 
to aging are also implicated in myeloid malignant hematological 
malignancies, including MPNs.

Conclusion
The understanding of the MPN pathogenesis, including ET and 
PMF, has greatly progressed these 10 last years because of the 
discovery of the main MPN driver mutations. More than 90% of 
non-BCR-ABL MPNs are clearly driven by an abnormal JAK2 acti-
vation, especially the cytokine receptor/JAK2 pathways and their 
downstream effectors. Genomic studies demonstrated that PMF is 
a more advanced form of MPN, but with a molecular redundancy 
with ET. However, in contrast to classic ET and PV, PMF constantly 
includes one or several mutations in non-MPN driver genes, which 
are present also in MDS. This and the cytological features of the 
disease strongly suggest that PMF is a heterogeneous disorder asso-
ciating phenotype/genotype features of MPN and MDS, with the 
latter being crucial for prognosis.

Several important questions remain to be solved:

-   �What are the mechanisms of disease initiation? Indeed, 
JAK2V617F can be frequently acquired but rarely gives 
rise to a disease.

-   �Why in ET and PMF do JAK2V617F and mutant CALR 
pathways give rise to close but different diseases, while 
they both activate MPL/JAK2? A similar question may 
arise for type 1 and type 2 CALR mutations.

-   �Why can a mutation like JAK2V617F give rise to several 
diseases?

-   �What are the molecular mechanisms of oncogenic coop-
eration between MPN driver mutations and other acquired 
somatic mutations? How does this oncogenic cooperation 
lead to leukemia?

In all cases, one major question remains to be solved: what are the 
respective roles of the genetic abnormalities, either germline or 
acquired (intrinsic factors), and of the environment (extrinsic fac-
tors) in disease initiation, phenotype, and progression?

Finally, from the therapeutic point of view, new approaches which 
will preferentially target an oncogenic JAK2 activation versus the 
physiological JAK2 role in cytokine signaling remain to be identi-
fied. In PMF with a high level of myelodysplastic features, this type 
of approach might not be sufficient and will require novel combined 
approaches.
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