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Endovascular treatment of
aneurysms of the
paraophthalmic segment of the
internal carotid artery: Current
status

Yiheng Wang and Jinlu Yu *

Department of Neurosurgery, First Hospital of Jilin University, Changchun, China

The paraophthalmic segment of the internal carotid artery (ICA) originates

from the distal border of the cavernous ICA and terminates at the posterior

communicating artery. Aneurysms arising from the paraophthalmic segment

represent∼5–10% of intradural aneurysms. Due to the advent of endovascular

treatment (EVT) techniques, specifically flow-diverting stents (FDSs), EVT has

become a good option for these aneurysms. A literature review on EVT for

paraophthalmic segment aneurysms is necessary. In this review, we discuss the

anatomy of the paraophthalmic segment, classification of the paraophthalmic

segment aneurysms, EVT principle and techniques, and prognosis and

complications. EVT techniques for paraophthalmic segment aneurysms

include coil embolization, FDSs, covered stents, and Woven EndoBridge

devices. Currently, coiling embolization remains the best choice for ruptured

paraophthalmic segment aneurysms, especially to avoid long-term antiplatelet

therapy for young patients. Due to the excessive use of antiplatelet therapy,

unruptured paraophthalmic segment aneurysms that are easy to coil should

not be treated with FDS. FDS is appropriate for uncoilable or failed aneurysms.

Other devices cannot act as the primary choice but can be useful auxiliary

tools. Both coiling embolization and FDS deployment can result in a good

prognosis for paraophthalmic segment aneurysms. The overall complication

rate is low. Therefore, EVT o�ers promising treatments for paraophthalmic

segment aneurysms. In addition, surgical clipping continues to be a good

choice for paraophthalmic segment aneurysms in the endovascular era.
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Introduction

Traditionally, the ophthalmic segment of the internal

carotid artery (ICA) has been defined as extending from the

origin of the ophthalmic artery (OphA) to the origin of the

posterior communicating artery (PcomA) (1). Recently, from an

endovascular treatment (EVT) perspective, the paraophthalmic

segment was proposed to optimize the description of the

ICA originating from the distal border of the cavernous ICA

and terminating at the PcomA origin (2). This nomenclature

recognizes intrinsic uncertainty in the precise angiographic

localization of aneurysms adjacent to the dural rings, regarding

all lesions distal to the cavernous ICA as potentially intradural,

which emphasizes their common features, and such lesions are

increasingly addressed by endovascular means (2).

Aneurysms arising from paraophthalmic segments represent

∼5–10% of intradural aneurysms (3, 4). Surgical clipping

of these aneurysms poses challenges given complex nearby

structures and a higher rate of visual complications (5, 6). Due

to the advent of EVT techniques and devices, specifically flow-

diverting stents (FDSs), EVT has become a good option for these

aneurysms (7, 8). However, EVT may obviate some challenges.

Currently, a complete review of the current status of EVT

for aneurysms of the paraophthalmic segment is unavailable.

Therefore, a review of the literature from a PubMed search

is necessary. Additionally, we provide important images and

educational cases in this review to increase reading interest.

Anatomy of the paraophthalmic
segment

The definition of the ophthalmic segment of the ICA

is inaccurate because the OphA can arise from the low

clinoid segment or high supraclinoid segment of the ICA (9).

Shapiro et al. (2) proposed the influential NYU (New York

University) segmentation system, which divides the ICA into

seven segments: cervical, petrous, cavernous, paraophthalmic,

PcomA, choroidal, and terminal segments. The paraophthalmic

segment that originated from the distal border of the cavernous

ICA incorporates the clinoid segments of the classifications of

the ICA by Bouthillier and Ziyal (Figure 1) (10, 11). The clinoid

segment is a short and variable-length portion of the ICA limited

to the area between the distal dural ring and the proximal ring

(carotid-oculomotor membrane) (9, 12).

Anatomically, the paraophthalmic segment of the ICA has

two bends, of which the first is located at the ICA siphon

where the vessel penetrates the dura, while the second is located

near its termination; the length of this segment averages 1 cm

(1). Regarding branches, the OphA is the largest branch of the

paraophthalmic segment of the ICA; several large perforating

vessels arise from the medial or inferomedial surface of the

ICA and from the carotid cave of the ICA, and the number of

FIGURE 1

NYU paraophthalmic segment. (A,B) CTA (A) and DSA of the ICA

(B) show the clinoidal and ophthalmic segments of the ICA. The

(Continued)

Frontiers inNeurology 02 frontiersin.org

https://doi.org/10.3389/fneur.2022.913704
https://www.frontiersin.org/journals/neurology
https://www.frontiersin.org


Wang and Yu 10.3389/fneur.2022.913704

FIGURE 1 (Continued)

segmentation is according to the classifications by Bouthillier

and Ziyal. The asterisk in image (A) indicates the anterior clinoid

process. (C) DSA shows the NYU segmentation. The clinoidal

and ophthalmic segments of the ICA are combined into the

paraophthalmic segment. CTA, computed tomography

angiography; DSA, digital subtraction angiography; ICA, internal

carotid artery; NYU, New York University; PcomA, posterior

communicating artery.

perforators averages 3.6, of which the largest perforator is the

superior hypophyseal artery (SHA) (1, 12).

Classification of the aneurysms

Previously, according to their relationship to adjacent

anatomical landmarks, aneurysms of the paraophthalmic

segment of the ICA have had various names and types, such

as clinoid, paraclinoid, supraclinoid, and ICA dorsal/ventral

aneurysms (13). Therefore, a clear, unified classification has been

necessary. In this review, peripheral-type aneurysms originating

from the OphA were excluded because they are not located on

the ICA (14). Traumatic aneurysms were also excluded because

they do not share the same pathogenesis (15).

Classification according to location

Aneurysms of the paraophthalmic segment are regarded

as clearly or potentially intradural and include the categories

of clinoid, carotid cave, OphA, and SHA aneurysms (2). Four

classes can be proposed. The first type includes the clinoid

and carotid cave families, which are totally or mainly located

at the clinoid segment of the ICA (Figures 2A,B) (9, 16, 17).

Carotid cave aneurysms belong to the clinoid segment and they

share similar anatomic characteristics as clinoid aneurysms (9).

However, carotid cave aneurysms are a unique subtype located

in the carotid cave, which is a natural space medial to the clinoid

segment of the ICA (12). The second type is OphA aneurysms

(Figures 2C,D). The third type is SHA aneurysms (Figures 2E,F).

The fourth type is the blood blister-like aneurysm (BBA), which

originates at the perforator-free part of the anteromedial wall of

the supraclinoid ICA (Figure 3) (4).

OphA aneurysms often arise from the ICA just distal to the

OphA, pointing superiorly or superomedially. The locations of

OphA aneurysms vary because although most OphAs originate

from the intradural ICA, 2–8% of OphAs originate from the

extradural ICA (18, 19). OphA aneurysms can be divided into

separate and shared types (20). A separate-type aneurysm is

defined as an OphA originating completely from the ICA

wall, away from the aneurysmal neck (Figure 2C); in a shared-

type aneurysm, the OphA originates from both the aneurysm

and the ICA (Figure 2D). Separate-type OphA aneurysms are

common (21).

SHA aneurysms arise from the ICA medial wall at the site of

perforator origin, including suprasellar and paraclinoid variants

(22). The suprasellar variant arises from the medial ICA wall

and expands directly into the suprasellar space (Figure 2E).

The paraclinoid variant arises from the inferomedial ICA and

burrows down toward the carotid cave (Figure 2F). Because the

origin of SHA may be in the carotid cave, when SHA aneurysms

are large, they may involve the carotid cave (12, 23).

Saccular, fusiform (dissecting), and blood
blister-like types

Based on their morphology and nature, aneurysms of the

paraophthalmic segment can be divided into saccular, fusiform,

and BBA types. Saccular aneurysms originate as branch-related

aneurysms at the OphA and SHA. When the paraophthalmic

segment is dilated, if the diameter of the dilatation is 1.5 times

that of the normal ICA, fusiform aneurysms have formed,

and they may be from dissection (Figure 4A) (24). Fusiform

aneurysms often involve the long paraophthalmic segment and

are called transitional aneurysms (25, 26).

In nature, BBAs are often located at the anteromedial wall

of the supraclinoid ICA; they are false, consisting of a platelet

plug covering a thin layer of adventitia overlying a defect

in intima and media (27). BBAs have unique characteristics,

such as hemispheric and broad-based appearances, and lack a

neck. However, the identification of BBAs should be confirmed

via microsurgery because some aneurysms that are initially

indistinguishable from BBAs are not actually blood blister-like

(Figure 3) (28, 29).

Other classifications

Aneurysms of the paraophthalmic segment also have other

classification systems, such as ruptured or unruptured; small

(<7mm), medium (7–12mm), large (13–24mm) (Figure 4B),

or giant (>25mm), and single or multiple (Figures 4C,D) (30–

32).

Principle and techniques of EVT

EVT for aneurysms of the paraophthalmic segment includes

the use of coil embolization, FDS, covered stents, and a Woven

EndoBridge (WEB) device (MicroVention-Terumo, Aliso Viejo,

California) (Figure 5). These aneurysms can also be treated with

ICA occlusion, but FDS has eliminated the technique (33).
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FIGURE 2

Classification of aneurysms of the paraophthalmic segment according to their locations. (A) Three-dimensional DSA shows a carotid cave

aneurysm (arrow). (B) Three-dimensional DSA shows a clinoidal aneurysm (arrow) opposite the carotid cave. (C) Three-dimensional DSA shows

an OphA aneurysm (arrow); the OphA was located away from the aneurysm neck. (D) Three-dimensional DSA shows an OphA aneurysm

(Continued)
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FIGURE 2 (Continued)

(arrow); the OphA arose from both the aneurysmal and ICA walls. (E) Three-dimensional DSA shows a suprasellar SHA aneurysm (arrow). (F)

Three-dimensional DSA shows a paraclinoid SHA aneurysm (arrow). DSA, digital subtraction angiography; MCA, middle cerebral artery; OphA,

ophthalmic artery; SHA, superior hypophyseal artery; PcomA, posterior communicating artery.

FIGURE 3

BBA and its di�erential diagnosis. (A) Left: Three-dimensional DSA of the ICA shows a mushroom-shaped BBA (arrow) on the paraophthalmic

segment; Right: intraoperative image shows the fragile BBA without a definite neck (asterisk). (B) Left: DSA of the ICA shows an aneurysm (arrow)

exactly like the BBA on the paraophthalmic segment; Right: intraoperative image shows that the aneurysm is saccular with a definite and stable

neck (asterisk). BBA, blood blister-like aneurysm; DSA, digital subtraction angiography; ICA, internal carotid artery.
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FIGURE 4

Other classifications of aneurysms of the paraophthalmic segment. (A) Three-dimensional DSA shows a fusiform aneurysm (arrow) of the

paraophthalmic segment, which also belongs to dissection. (B) Three-dimensional DSA shows a large SHA aneurysm (arrow). (C)

Three-dimensional DSA shows bilateral aneurysms: one is a coiled SHA aneurysm (arrow) and the other is a carotid cave aneurysm (arrowhead).

(D) Three-dimensional DSA shows two tandem aneurysms: the large aneurysm is an SHA aneurysm (arrow), and the small aneurysm is a carotid

cave aneurysm (arrowhead). DSA, Digital subtraction angiography; MCA, middle cerebral artery; OphA, ophthalmic artery; SHA, superior

hypophyseal artery.

EVT consideration based on natural
history

Paraophthalmic segment aneurysms often grow slowly and

are less likely to rupture than aneurysms in other categories.

In a study by Jeon et al. (34) 524 patients harbored a total of

568 small unruptured paraclinoid aneurysms (≤5mm). During

the follow-up of 1675.5 aneurysm-years, the annual rupture rate

and growth rates were 0.12 and 1.01%, respectively, and risk

factors included lesions >4mm in size, branch-related lesions,

and multiple lesions. Close monitoring was only necessary for

aneurysms with the above risk factors. Regarding the natural

history of carotid cave aneurysms, Kalluri et al. reported 290

small (<4mm) carotid cave aneurysms over 17 years, and no

instances of aneurysm rupture or growth were found (35).

Therefore, for these small carotid cave aneurysms, a watchful

waiting strategy is feasible.

Therefore, EVT should only be indicated in large

symptomatic aneurysms withmass effects on cranial nerves (36).

In addition, due to aneurysms with regrowth or irregular shapes

that confer a higher risk of rupture, EVT is necessary (37).

Certainly, for ruptured aneurysms, EVT is mandatory (38–40).
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FIGURE 5

Various EVT techniques for aneurysms of the paraophthalmic segment. (A) Left, three-dimensional DSA shows a carotid artery aneurysm

(arrow); right: Vaso CT shows the FDS covering the aneurysm. (B) Left, three-dimensional DSA shows two aneurysms (arrows) of the

paraophthalmic segment; right: Vaso CT shows the FDS covering two aneurysms. (C) Left, three-dimensional DSA shows a clinoidal aneurysm

(Continued)
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FIGURE 5 (Continued)

(arrow); right: follow-up DSA shows that the aneurysms were coiled completely. (D) Left, three-dimensional DSA shows an OphA aneurysm

(arrow); right: follow-up DSA shows that the aneurysm was coiled under stenting assistance. (E) Left, road map DSA shows a microcatheter into

a paraclinoid-type SHA aneurysm (arrow); right: DSA shows the aneurysm was coiled. (F) Left, postoperative three-dimensional DSA shows a

coiled suprasellar-type SHA aneurysm (arrow); right: Vaso CT shows the coils and stent. (G) Left, three-dimensional DSA shows a large OphA

aneurysm (arrow); right: unsubtracted follow-up DSA shows that the aneurysm was coiled under stenting assistance. (H) Left, three-dimensional

DSA shows OphA and SHA aneurysms (arrows); right: follow-up three-dimensional DSA shows that two aneurysms were coiled under stenting

assistance. CT, computed tomography; DSA, digital subtraction angiography; EVT, endovascular treatment; FDS, flow-diverting stent; OphA,

ophthalmic artery; SHA, superior hypophyseal artery; Vaso, vascular space occupancy.

EVT consideration based on the collateral
circulation of the OphA

Collateral circulation between external carotid artery (ECA)

branches and OphA may be apparent or potential, varying

from 36 to 89% of cases with ICA occlusion (41, 42).

The balloon occlusion test (BOT) can identify collateral

circulation (43). In the report by Kim et al. (42) on EVT

for unruptured paraophthalmic segment aneurysms, after the

BOT, intact collateral circulation was demonstrated in 92.9%

of patients.

During the BOT, the ICA should be occluded, or the OphA

orifice should be covered. HyperForm, HyperGlide (Medtronic

Inc., Irvine, CA, USA), or Scepter balloons (MicroVention-

Terumo, Aliso Viejo, California) can be chosen. After the

balloon is inflated, contrast medium is injected into the common

carotid artery. Positive BOT is defined as retrograde filling

of the OphA with choroidoretinal blush. BOT may provide

useful information to predict visual outcomes once OphA is

threatened by EVT (42, 44). However, in OphA aneurysms

with a positive BOT, intentional OphA occlusion should

be avoided.

Coiling with/without stent or balloon
assistance

For paraophthalmic segment aneurysms, the main

difficulties in EVT are accurate positioning and stable support

of the microcatheter (Figure 6). Due to the curvature of the

ICA siphon and the aneurysms from the ICA sidewall, the

sharp upturning of the microcatheter from the ICA to the

aneurysm is difficult, stressful, risky, and sometimes impossible.

The difficulty of catheterization is similar to that of EVT in

the first segment of anterior cerebral artery aneurysms (45).

For aneurysms of the carotid cave and clinoid on the sidewall

of the ICA, the microcatheter is often most difficult to access

for the aneurysm sac. The OphA and SHA aneurysms leave

the ICA siphon and often have an upward or downward

direction, and it is relatively easy for the microcatheter to access

the aneurysms.

For access to aneurysms, microcatheter shaping is very

important. Themicrocatheter shapes can be classified as straight,

curved (45 and 90 degrees, J and C), pigtail (simple, right

and left), and S-shaped (simple, right and left) (46). An

S-shaped or straight microcatheter is helpful in superiorly

directed aneurysms; a pigtail shape is useful in medially

directed aneurysms (43). During microcatheter navigation,

antegrade/retrograde shift, wire steering, looping, and coil or

guidewire guidance can be used (46, 47). Despite these choices of

microcatheter shaping, during coiling, the microcatheter tends

to be knocked off the aneurysm, resulting in partial or low-

density coil packing. In addition, due to OphA incorporation

by aneurysms, efforts to save the OphA may result in

incomplete coiling.

Single coiling can be used in narrow-necked aneurysms (31).

However, for wide-necked aneurysms with a neck diameter >

4mm or a dome-to-neck ratio < 2, stent or balloon assistance

is required (48). Old stents are challenging to deploy due to the

acute curve of the ICA siphon; stents may kink or twist and have

a defective wall attachment, which results in in-stent thrombosis

(49). Currently, the low-profile Neuroform Atlas stent (Stryker

Neurovascular, Fremont, California, USA) may be appropriate

for deployment in the ICA siphon (50).

Coiling embolization with balloon assistance is a good

choice due to the lack of antiplatelet therapy, which benefits

ruptured aneurysms. HyperForm, HyperGlide, and Scepter

balloons are useful. The balloon should be inflated while coiling.

When finished, the microcatheter should be removed under

balloon protection (51). Balloon inflation is limited to no

more than 5min at a time, alternating with at least 1min of

balloon deflation. In addition, a Scepter balloon can be used

to release the Neuroform Atlas stent, which has additional

advantages (52).

Regarding the need for antiplatelet use with stent-assisted

coiling, a loading dose of oral aspirin (300mg) and clopidogrel

(300mg) can be given at least 3 h before EVT for ruptured

aneurysms, while a 3- to 5-day regimen of oral aspirin

(100 mg/day) and clopidogrel (75 mg/day) is sufficient for

unruptured aneurysms (50, 53). After EVT, dual antiplatelet

therapy with oral aspirin (100 mg/day) and clopidogrel (75
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FIGURE 6

EVT di�culty in aneurysms of the paraophthalmic segment. (A) Left, Road map navigation shows the microcatheter tip (arrow) positioned in the

aneurysm sac with the assistance of stent semi-deployment. The stent sealed a part of the aneurysm neck and provided the opportunity for the

microcrater to enter the aneurysm; right: unsubtracted DSA shows the coils in the aneurysm (arrow). (B) Left, three-dimensional DSA shows a

wide-necked lobulated carotid cave aneurysm (arrow); right: DSA shows the loose packing of the coiling in the aneurysm because the

(Continued)
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FIGURE 6 (Continued)

microcatheter was knocked o� the aneurysm, but contrast agent retention can be seen in the aneurysm (arrow). (C) Left, DSA shows a

recanalized aneurysm due to low-density packing (arrow); right: follow-up DSA shows the aneurysm had a complete embolization (arrow) after

repeated coiling. (D) Left, DSA shows a recanalized lobulated upper aneurysm (arrow) and a completely embolized lower aneurysm (arrowhead);

right: X-ray film shows that the upper aneurysm had low-density packing due to di�cult catheterization (arrow), and the lower aneurysm had

satisfactory embolization (arrowhead). DSA, Digital subtraction angiography; EVT, endovascular treatment.

mg/day) should be continued for 1–6 months depending on

the stent (50). Dual antiplatelet therapy for 1 to 2 months

is sufficient for the Neuroform Atlas stent due to low metal

coverage, 3 to 6 months of dual antiplatelet therapy is necessary

for the Solitaire stent (Medtronic, Irvine, California, USA)

and Enterprise stent (Codman Neurovascular, Raynham, MA,

USA), and 6 months of dual antiplatelet therapy is necessary

for LVIS (MicroVention, Tustin, California, USA) and LEO

stent (Balt Extrusion, Montmorency, France). Then, aspirin

can continue to be administered daily at a dose of 100mg for

3–6 months.

FDS deployment

FDS can disrupt blood flow into aneurysms and act as a

scaffold for endothelial cell proliferation (54). For aneurysms of

the paraophthalmic segment, FDS is effective, as demonstrated

by the Pipeline for Uncoilable or Failed Aneurysms trial (55).

In addition, an FDS cannot be deployed to access the aneurysm

sac, which reduces iatrogenic rupture from catheterization and

coiling (21). However, FDS deployment in tortuous ICA siphons

is not easy, and a good support system is important. After FDS

deployment, the morphology and hemodynamics of the ICA

siphon change, which may improve aneurysm healing (56). As

technologies continue to evolve, FDSs will eventually become

soft and pliable enough to deploy (57). FDSs will become easy

to use in the ICA siphon.

For large fusiform aneurysms, adjunctive coiling can reduce

FDS prolapse and act as a scaffold to organize thrombi, and the

FDS should be supported by coiling until it is completely opened

(Figure 7) (58). However, for giant aneurysms with mass effects,

adjunctive coiling is not necessary because the optic nerve can

be compromised by coiling via progressive mass effects or local

inflammation (Figure 8) (59).

After FDS deployment, aneurysm healing is gradual. In

a study of 44 patients with 46 unruptured aneurysms of

the paraophthalmic segment by Burrows et al., the complete

occlusion rates were 65, 78, and 96% at 6 months, 1 year,

and 3 years, respectively (60). Therefore, FDSs do not result in

immediate aneurysm closure for ruptured aneurysms. Ruptured

aneurysms may not have sufficient time to wait for healing

because the treatment effect is gradual. In fact, patients are still at

risk of hemorrhaging after FDS deployment, and this is the main

issue why separate, non–coiled-assisted FDSs are not suitable for

acute cases (61). Due to the excessive use of antiplatelet therapy,

unruptured paraophthalmic segment aneurysms that are easy to

coil should not be treated with FDS (62).

Regarding the need for antiplatelet treatment with FDS

deployment for unruptured aneurysms, patients should receive

100mg of aspirin and 75mg of clopidogrel daily for 5–7 days

prior to the intervention (60). Platelet function assays should

be performed to identify clopidogrel response. If the patient has

been identified as a clopidogrel non-responder, ticagrelormay be

selected instead. After EVT, dual antiplatelet therapy should be

continued for 6 months; later, a daily dose of aspirin of 100mg

is used for life or at least for another half year.

Covered stent placement

A covered stent can immediately lead to complete occlusion

of aneurysms of the paraophthalmic segment (63). In the

report by Yan et al. (64) of 49 intracranial aneurysms, 77.6%

of aneurysms were large and located at the paraophthalmic

segment; after covered stent (MicroPort, Shanghai, China)

deployment, complete occlusion was achieved in 89.5%

of aneurysms. However, stiff-covered stents have difficulty

navigating through the ICA siphon, and procedure-related

complications are non-negligible, including stent navigation

failure, vasospasm, acute in-stent thrombosis, endoleak, and

OphA, PcomA, or anterior choroidal artery occlusion (65, 66).

Regarding antiplatelet therapy, patients should be

administered a preoperative double-antiplatelet regimen

(100mg aspirin and 75mg clopidogrel) for at least 3 days

(64). The postoperative double-antiplatelet regimen should

continue for 6 months, and then a single-antiplatelet regimen

(100mg aspirin) should be continued for life (64). Currently,

an FDS can replace a covered stent in most aneurysms of the

paraophthalmic segment with fewer complications, especially

when the side branches can be preserved (66).

Woven EndoBridge (WEB) device

The WEB device is a self-expanding, retrievable,

electrothermally detachable braided nitinol device that is

placed within the aneurysm sac (67). It disrupts blood flow at

the aneurysm neck and induces intra-aneurysmal thrombosis

and offers a flat proximal surface that potentially supports
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FIGURE 7

FDS deployment in a fusiform aneurysm under coiling assistance. (A,B) CTA (A) and DSA (B) show a large fusiform aneurysm (arrows) of the

paraophthalmic segment. (C) X-ray shows the FDS deployment (PED) under the assistance of coiling (coils). (D) Postoperative DSA shows that

the distal part of the aneurysm was coiled, and the proximal part (frame) was left. (E,F) Follow-up DSA at 6 months (E) and three-dimensional

(Continued)
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FIGURE 7 (Continued)

reconstructive DSA (F) show nearly complete occlusion; the arrows indicate the remnant neck. CTA, computed tomography angiography; DSA,

digital subtraction angiography; FDS, flow-diverting stent; PED, pipeline embolization device.

the neoendothelium (68). In general, the WEB device in

the aneurysm sac obviates the need for potent antiplatelet

therapy if it does not protrude into the parent artery, which

makes the WEB device appealing for ruptured and unruptured

aneurysms (69).

The WEB device was initially designed to treat wide-necked

bifurcation aneurysms. The use of the WEB device requires <45

degrees between the aneurysm and parent artery (70). Most

aneurysms of the paraophthalmic segment are not appropriate

for deploying the WEB device due to their directions. However,

in selected aneurysms of the paraophthalmic segment, if the

angle between the ICA and the aneurysm axil is<45 degrees and

the proximal ICA near the aneurysm is not excessively tortuous,

a WEB can be applied effectively (71).

EVT for BBA of the paraophthalmic
segment

For BBAs of the supraclinoid ICA, the optimal EVT has

yet to be defined. Current EVT techniques include multiple

overlapping stents with coiling, FDSs, and covered stents (72).

Stent-assisted coiling BBAs facilitate the placement of coils,

but the complete occlusion rate is low. In a meta-analysis by

Rouchaud et al. (73) of stent-assisted coiling BBA, complete

occlusions were 33% initially and ∼70% at mid- to long-term

follow-up. FDS can be used to treat BBAs (Figure 9). FDS

deployment for BBA of the supraclinoid ICA is also hindered

by a low initial occlusion rate (36%) and its complication

rate (17%), early rebleeding rate (7%), morbidity rate (13%),

and mortality rate (9%) (73). Multilayer FDSs appear to be a

promising strategy for BBAs, but sufficient evidence from trials

is unavailable. A major disadvantage of FDS is dual antiplatelet

therapy in the acute phase of ruptured BBAs (74).

In a recent meta-analysis by Lee et al. comparing stent-

assisted coiling and FDS in the management of BBAs, the long-

term complete occlusion rate was higher in the FDS group

(89.3%) than in the stent-assisted coiling group (70.2%), and

the rate of aneurysm recanalization was lower in the FDS

group (4.5%) than in the stent-assisted coiling group (25.4%);

however, the rates of mortality, favorable functional outcome,

procedural complications, and rebleeding showed no differences

between the two groups (75). Therefore, although FDS was

associated with more favorable angiographic outcomes, FDS had

similar complications and clinical outcomes as stent-assisted

coiling, indicating little advantage in using FDS to improve

BBA treatment.

In theory, covered stents can be used to treat BBAs of

the supraclinoid ICA (76). However, due to the drawbacks

mentioned above, especially intraoperative BBA rupture and

endoleak, covered stents are not an ideal treatment for BBAs

(77, 78). However, we look forward to advanced covered stents

with good compliance, which will involve EVT for BBAs of the

supraclinoid ICA.

In addition, the identification of true BBAs should be

confirmed via microsurgery. Some putative BBAs of the

supraclinoid ICA that were treated successfully by various EVT

techniques in previous reports may not have been true BBAs but

merely routine aneurysms (Figure 3) (79, 80).

Prognosis and complications

For paraophthalmic segment aneurysms, the functional

outcome is recorded using the modified Rankin Scale (mRS)

score; aneurysm occlusion by coiling is categorized using the

Raymond Roy Occlusion Classification; aneurysm occlusion of

FDS deployment is categorized by angiography as complete,

near complete (>90%), or incomplete (<90%) (81). Regarding

the prognosis and complications, only coiling embolization and

FDS deployment have been discussed, and other techniques are

discussed in the corresponding sections.

Prognosis

Both coiling embolization and FDS deployment can result

in a good prognosis for paraophthalmic segment aneurysms.

In a report by Adeeb et al. (81) good functional outcomes

were 96.6 and 94.7% in-stent coiling and FDS, respectively. For

paraophthalmic segment aneurysms with visual symptoms, coil

embolization and FDS deployment can improve vision due to a

reduction in mass effects and aneurysm pulsation (82, 83).

Regarding angiographic occlusion of the aneurysms, FDS

deployment had a better outcome. In a meta-analysis by Touze

et al. the complete occlusion rate for ophthalmic aneurysms

after FDS deployment was 85% (54). For separate-type OphA

aneurysms, the complete occlusion rate reached 89.5% (21).

After the discontinuation of the second antiplatelet agent, the

complete occlusion rate will increase (4).

Regarding coiling embolization, Wisniewski et al. reported

that the overall recanalization rate ranged from 37.5 to 53% (4).

Stent-assisted coiling lowers the recanalization rate; in long-term

follow-up, the complete occlusion rate in-stent-assisted coiling

may reach the rate of FDS deployment (84). In a report by
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FIGURE 8

FDS deployment in a giant aneurysm without coiling. (A) Sagittal MRI shows a giant aneurysm with jet flow in the middle (asterisk). (B) DSA

shows the aneurysm sac. (C) X-ray shows that contrast agent retention (asterisk) can be seen after FDS (PED) deployment. (D) Postoperative DSA

shows reduced blood flow into the aneurysm. (E) Postoperative 1-week CTA shows the location of the PED. (F) Follow-up DSA at 6 months

(Continued)
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FIGURE 8 (Continued)

shows that most of the aneurysm was occluded and that complete occlusion occurred, and the arrow indicates the remnant part. CTA,

computed tomography angiography; DSA, digital subtraction angiography; FDS, flow-diverting stent; MRI, magnetic resonance imaging; PED,

pipeline embolization device.

Adeeb et al. on EVT for paraophthalmic segment aneurysms,

the complete occlusion rate was 75.9% in-stent coiling compared

with 81.1% in FDS deployment, and no significant difference was

found (81).

Complications

For EVT of paraophthalmic segment aneurysms,

hemorrhagic and thromboembolic events, as well as visual

deficits, must be considered (3, 85, 86). Aneurysm size

influences complications; thromboembolic events are found

more often in large aneurysms (7.4%) than in small ones (1%),

whereas hemorrhagic complications are found in 0.7% of small

aneurysms and no large aneurysms (53).

Thromboembolic events included in-stent thrombosis and

distal cerebral ischemia (87). In the report by Di Maria et al., the

overall rates in the coiling group and FDS group were 6.6 and

7.8%, respectively, and the rates of permanent morbidity in the

coiling group and FDS group were 1.6 and 3.9%, respectively,

and no significant difference was found between groups (88).

Regarding visual deficits, in coil embolization, the rate

ranged from 4 to 10% (20). In FDS covering the OphA origin,

the rate was 3% (54). One possibility is OphA occlusion with

insufficient collateral circulation. The other is from thrombotic

material, which is produced in aneurysms and migrates to

the OphA (44). During EVT, acknowledging that tiny thrombi

occlude the central retinal artery regardless of the collateral flow,

intra-arterial injection of the glycoprotein IIb–IIIa inhibitor

tirofiban can be helpful (89).

For large or giant paraophthalmic segment aneurysms, after

FDS deployment, aneurysm volume can increase, resulting in

a worse mass effect or delayed rupture due to thrombosis

(24, 34, 88, 90). In addition, coiling embolization for large or

giant aneurysms can be associated with the progression of mass

effect and/or perianeurysmal inflammation, resulting in acute or

delayed visual impairment (50, 91–93).

OphA fate after FDS deployment

After FDS deployment, the blood flow of the OphA may be

impeded or even occluded (94). In a report by Chalouhi et al.

(95) with 95 patients whose OphA was covered by an FDS,

during a follow-up of 7.5 months, OphA showed diminished

flow in 4% of patients and occluded flow in 7% of patients;

OphA occlusion was 8.6% when covered by one device vs.

21% when covered by two devices. Therefore, minimizing the

number of FDSs across the OphA is a crucial factor to preserve

its patency.

After FDS deployment, if the pressure gradient between the

ICA and OphA is large and creates an aspiration effect that

allows the continuation of blood flow, the OphA will always

be patent, or the OphA will be occluded (96). In situations

of robust collateral circulation, the OphA can obtain sufficient

blood from the ECA, the pressure gradient may be abolished,

and the OphA will be occluded (97). Due to the existence

of sufficient collaterals, OphA occlusion usually has no overt

consequences in the majority of cases (86).

Surgical clipping

For paraophthalmic segment aneurysms, surgical

clipping is still a therapeutic option and should always be

considered (98). In a meta-analysis by Falk et al. (99) EVT

and surgical clipping were compared, and no significant

difference in clinical outcome was found between them

for ruptured ophthalmic aneurysms. Aneurysms causing

visual symptoms can be considered candidates for surgical

clipping to improve visual function, and the recovery of

visual function can often be expected when surgical clipping

is performed rapidly before the visual dysfunction becomes

irreversible (100). Moreover, surgical clipping is still a valuable

option in younger patients to avoid long-term antiplatelet

therapy (101).

Summary

For paraophthalmic segment aneurysms, EVT techniques

include coil embolization, FDSs, covered stents, and WEB

devices. Coiling embolization remains the best choice for

ruptured aneurysms. FDS is appropriate specifically for

uncoilable or failed aneurysms. Due to the excessive use of

antiplatelet therapy, aneurysms that are easy to coil should not

be treated by FDS deployment. Both coiling embolization and

FDS deployment can result in a good prognosis. For EVT of

paraophthalmic segment aneurysms, the overall complication

rate is low. Therefore, current EVT techniques offer promising

treatment prospects for paraophthalmic segment aneurysms.

Certainty surgical clipping continues to be a good choice in the

endovascular era.
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FIGURE 9

FDS deployment in a BBA with failed previous stent-assisted coiling. (A,B) Two-dimensional DSA (A) and three-dimensional DSA (B) show a BBA

(arrows) with incomplete embolization of stent-assisted coiling. (C) Unsubtracted DSA shows the FDS (PED) crossing the BBA (arrow) and the

FDS running in the stent (arrowheads). (D,E) Vaso CT without the vessel (D) and shows the FDS opened and covering the BBA in the stent

(Continued)

Frontiers inNeurology 15 frontiersin.org

https://doi.org/10.3389/fneur.2022.913704
https://www.frontiersin.org/journals/neurology
https://www.frontiersin.org


Wang and Yu 10.3389/fneur.2022.913704

FIGURE 9 (Continued)

(arrowheads). (F) Postoperative DSA shows the BBA without immediate complete occlusion; complete occlusion was expected by long-term

follow-up. BBA, blister-like aneurysm; DSA, digital subtraction angiography; FDS, flow-diverting stent; PED, pipeline embolization device; Vaso,

vascular space occupancy.
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