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ABSTRACT
Monoclonal antibody (mAb) candidates from high-throughput screening or binding affinity optimization
often contain mutations leading to liabilities for further development of the antibody, such as aggregation-
prone regions and lack of solubility. In this work, we optimized a candidate integrin α11-binding mAb for
developability using molecular modeling, rational design, and hydrophobic interaction chromatography
(HIC). A homologymodel of the parental mAb Fv regionwas built, and this revealed hydrophobic patches on
the surface of the complementarity-determining region loops. A series of 97 variants of the residues primarily
responsible for the hydrophobic patches were expressed and their HIC retention times (RT) were measured.
As intended, many of the computationally designed variants reduced the HIC RT compared to the parental
mAb, and mutating residues that contributed most to hydrophobic patches had the greatest effect on HIC
RT. A retrospective analysis was then performed where 3-dimentional protein property descriptors were
evaluated for their ability to predict HIC RT using the current series of mAbs. The same descriptors were used
to train a simple multi-parameter protein quantitative structure-property relationship model on this data,
producing an improved correlation. We also extended this analysis to recently published HIC data for 137
clinical mAb candidates as well as 31 adnectin variants, and found that the surface area of hydrophobic
patches averaged over a molecular dynamics sample consistently correlated to the experimental data across
a diverse set of biotherapeutics.
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Introduction

Integrin α11 is a collagen-binding integrin known to be over-
expressed in cancer associated fibroblasts (CAFs) in a non-
small cell lung cancer model, where its upregulation induces
extracellular matrix remodeling and provides a milieu for
enhanced tumorigenesis.1 Based on the hypothesized role of
integrin α11 in disease, we generated a panel of antibodies to
the receptor by cell-based panning of a phage library and
identified a lead candidate with high affinity and function
modulating activity, but poor biophysical properties.

As more biotherapeutics are entering pharmaceutical pipe-
lines, early-stage developability assessment and optimization
strategies for biotherapeutics are in high demand. To that end,
both empirical and computational methods have been devel-
oped for assessing stability, aggregation, hydrophobic interac-
tion, viscosity, and other liabilities.2–4 Successful efforts have
also been made to use rational design to reduce aggregation
and improve solubility by mutating hydrophobic surface
regions derived from a crystal structure.5–7

In the absence of a crystal structure, homology models
have been used to derive predictions for properties such as
aggregation, viscosity and clearance,8–11 and structural surface
hydrophobicity descriptors have been shown to correlate to
HIC RT.12–14 More recently, multi-parameter protein

quantitative structure-property relationship (QSPR) models
have been developed to predict high-concentration viscosities
of mAbs using surface hydrophobicity and charge descriptors
from full antibody homology models and similar protein
QSPR models have been reported for predicting chromato-
graphic behavior, including HIC.15–17 The earlier work of
building single-parameter hydrophobic patch predictors was
validated appropriately using experimental data for fewer than
twenty sequences.8,12 For the multi-parameter models that are
being constructed and applied to experimental antibody prop-
erty prediction,10,15,16 large sets of sequences and experimen-
tal data are required for model building and validation.
Ideally, such datasets would include negative data in order
to robustly train predictive models and advance the field in
the direction of data driven computational predictions, e.g.,
available protein thermostability benchmark datasets have
allowed machine learning to be applied, resulting in accurate
thermostability predictions.18 Fortunately, data from multiple
experiments for developability on 137 diverse mAbs in clinical
trials or approved at the time of publication have been made
available,2 and a series of 31 adnectin variants with percent
inclusion body data has recently been published.19

In this work, a homology model of a lead integrin α11
binding mAb was generated and used for structure-guided
optimization of HIC RT. Regions of significant
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hydrophobicity on the surface of the model were identified
and experimental mutagenesis of the key residues involved in
these hydrophobic patches was performed. Following small-
scale expression, several variants had reduced HIC RT com-
pared to the parent mAb and most showed retained binding
to integrin α11 as assessed by flow cytometry. We provide the
sequences and experimental data for this series of 97 integrin
binding mAb variants (Supplementary Information), and pre-
sent a retrospective analysis of the performance of the com-
putational predictions on our dataset as well as the published
datasets,2,19 with the goal to identify consistently useful
descriptors for developability predictions on the diverse land-
scape of biotherapeutics.

Results

The integrin α11 antibody NB0268 was identified by whole
cell selections using an antibody phage library.20 The Fv
region of NB0268 was modeled and its van der Waals
surface was analyzed for hydrophobicity and electrostatics
(Figure 1). The log P hydrophobicity surface revealed
hydrophobic regions on the complementarity-determining
regions (CDRs) and polar regions on the framework sur-
face. Protein patch analysis revealed a number of regions of
significant surface hydrophobicity, especially on the CDRs
and the electrostatic surface revealed a general lack of
significant surface charged regions except for a small posi-
tively charged region on the surface of the framework of
the light chain. When tested by HIC, NB0268 did not elute
from the column during the 30 min method described
herein. Thus, the high degree of CDR hydrophobicity

identified by homology model analysis was confirmed
empirically.

Rational design of mutants for improved developability

The binding and functional characteristics of NB0268 make it
an attractive therapeutic candidate, but its significant hydro-
phobicity could lead to challenges in development, due to, for
example, poor solubility and aggregation. Residues assumed
to be contributing to CDR hydrophobicity (as determined by
the homology model) were identified for site-directed muta-
genesis. In addition, a few variants in CDR-L2 were chosen
specifically based on a recent study.21 In total, 39 single
mutations were generated by mutating A51, S52, S53, Y55,
and Y94 on the light chain (7 variants); and Y30, Y54, Y57,
W100, Y101, and Y102 on the heavy chain (32 variants),
replacing them with mostly polar and charged amino acids,
e.g., His, Asp, Ser, Thr, Gln, Gly (Figure 2).

HIC and integrin binding results for the 97 variants tested

The 39 single mutants were analyzed for binding (flow cyto-
metry) and HIC RT (Supplementary Information). The resi-
dues in CDR-H3 at the center of the largest hydrophobic
patch were found to contribute significantly to the poor HIC
RT of NB0268, as three of five W100 mutants (His, Asp, Gln)
eluted, all of the seven Y101 mutants eluted, and six of seven
Y102 mutants eluted. For mutations in the heavy chain posi-
tions Y30, Y54, Y57, only 3 of 11 eluted from the column. The
likely reason for this is that Y30 is on the edge of a smaller
hydrophobic patch along with Y54, and Y57 is not part of a

Figure 1. Homology model of the variable domains of the parental integrin binding antibody NB0268. The backbone of the Fv domain is depicted as ribbons with
the CDRs highlighted (A) and hydrophobic patches are shown in green (B). The log P hydrophobicity surface is shown in (C) where green is hydrophobic and purple
is polar. In (D), the electrostatic surface displays delta negative regions in red and positive regions in blue.
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patch. Of note, most of the mutants showed maintained
binding to integrin α11, with loss of binding observed for
only two of 39 single mutants.

The Y54S mutant increased the integrin α11 binding signal;
therefore, hydrophobicity in this region is not a requirement
for binding. Building from this, 57 Y54 double mutants were
expressed, of which 24 were in positions Y30 x Y54 and 33
were in positions Y54 x Y102. For Y30 x Y54 double mutants,
16/24 variants (67%) eluted, representing a modest improve-
ment after eliminating a relatively small hydrophobic patch.
For the Y54 x Y102 double mutants, 30/33 variants (91%)
eluted from the column, some with quite favorable elution
times. This is exemplified by Y54H x Y102E with a RT of

21.3 min, which is the lowest of all variants tested, and the
integrin α11 binding is maintained for this double variant. The
effect of mutating the heavy chain CDR residues on HIC RT is
summarized in Figure 3. Y101 and Y102 mutants have the
greatest favorable impact, reducing the RT below 27.5 minutes
for most variants. These residues also happen to have a large
hydrophobic surface area at the center of the patches (Figure 2)

On the light chain, the A51D and S53D variants eluted, but
with relatively high retention times (28.9 min and 29.1 min,
respectively). The variant S52D did not elute, nor did Y55D.
Furthermore, none of the Y94 mutants eluted. The light chain
mutants either had relatively high HIC RT or did not elute;
therefore, the effect was small when mutating residues that

Figure 2. Parental mAb residues selected for mutation. Atoms belonging to residues which contribute to a hydrophobic patch are colored green while others are
colored blue, and these colors are mapped to the sequence at the bottom. CDRs, as defined by the Kabat scheme, are dark grey in the sequence as is the
corresponding 3D backbone ribbon.

Figure 3. Effect of mutating the heavy chain CDR residues on HIC RT. The number of variants for each position which do not elute from the column are shown in red,
while the amount that elute more slowly than 27.5 minutes are shown in light red. The number of variants for each position which elute are shown in light blue, and
the amount that elute faster than 27.5 minutes are shown in blue.
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were not part of a large hydrophobic patch, and, overall,
mutating residues that contribute to large surface hydropho-
bic patches was successful in reducing HIC retention times.

Structural protein property descriptor predictions of HIC RT

In order to further investigate the predictive ability of 3-dimen-
tional (3D) protein properties for experimental hydrophobicity,
we generated antibody antigen-binding fragment (Fab) homol-
ogy models for all variants tested and calculated the total hydro-
phobic patch surface areas of the CDRs. We found that there is a
trend where the higher the hydrophobic surface area of the CDRs,
the higher the HIC RT (Figure 4A). More specifically, the higher
the sum of the surface areas of hydrophobic patches, the higher
the HIC RT, and, if we only count the CDR regions, the correla-
tion is retained. Finally, if a LowModeMD ensemble is generated,-
22 and average descriptor values are obtained from the sample, the
correlation increases. The best correlation observed for a single
descriptor is avg_cdr_hyd (r2 = 0.29), which is the sum of the
surface areas of the hydrophobic patches at the CDRs averaged
over a LowModeMD sample of conformations. In comparison,
the Black and Mould sequence-based hydrophobic index23 has a
Pearson correlation r2 of 0.21 to the HIC RT (Figure 4B).

Protein QSPR model predictions of HIC retention times

In an effort to generate a more predictive model with a greater
correlation to HIC RT, partial least squares (PLS) regression
QSPR models were generated and optimized for this system
using a genetic algorithm to optimize multiple linear regres-
sion models (GA-MLR). This resulted in a 2-point QSPR
(r2 = 0.47, see Figure 4B, and a leave-one-out cross validation
correlation x2 = 0.44) including avg_HI, which is the hydro-
phobic imbalance value as described by Salgado et al., and
avg_hyd_1, which is the surface area of the largest hydropho-
bic patch averaged over the LowModeMD ensemble.12 The 2-
point QSPR equation is shown below.

HICRT ¼ 4:29 þ 3:94Xavg HI þ 0:05Xavg hyd 1

ðQSPR 2 PredÞ
For the two measures of hydrophobicity, their coefficients

are positive where the more hydrophobic, the higher the HIC
RT, as one would expect from a biophysical perspective.

The hydrophobic patch descriptors were generally able to
assign high values to non-eluting antibodies and low values to
fast-eluting variants, such as Y54H x Y102E (see Figure 5).
Twenty nine of the 30 (97%) top scoring variants from the
QSPR model had a reduced HIC RT compared to the parent,
and many with binding affinity maintained. This model
would be useful for screening libraries of NB0268 mAb var-
iants generated by experimental techniques, or by computa-
tional protein design for those with reduced HIC RT.

Hydrophobicity descriptor HIC RT predictions for
antibodies in clinical development

In order to test if the protein property descriptors calculated
can be predictive for a broader range of antibodies, we modeled
the 137 mAbs in clinical development that have published HIC

RTmeasurements.2 Applying identical methods to model, sam-
ple, and calculate properties as used for the NB0268 variants,
we found a similar trend where the more hydrophobic the CDR
surface, the higher the HIC RT (Figure 6A). We found that the
3D descriptors were more predictive than the sequence-based
method, but that their correlations to experimental HIC RT are
generally weaker compared to the NB0268 variants. This is to
some extent expected since the 137 mAbs are clinical candi-
dates and have likely been selected based on optimal solubility
behavior. This is apparent in the HIC RT histogram at the top
of Figure 6A, compared to that of Figure 4A. It is more difficult
to rank order such a narrow range of data points for HIC RT,
and a relatively predictive descriptor again was avg_cdr_hyd,
which is the sum of the surface areas of hydrophobic patches at
the CDRs averaged over a LowModeMD sample of
conformations.

A QSPR model was trained on this data using the GA-MLR
method. This resulted in a 3-point QSPR (r2 = 0.38, see Figure 6B,
and a leave-one-out cross validation correlation x2 = 0.34) includ-
ing ASPmax, which is the maximum average surface property
value as described by Salgado et al.,13 avg_cdr_hyd (described
previously), and the pro_dipole_moment, which is a measure of
how strongly the charge of the protein is polarized. The 3-point
QSPR equation is shown below:

HICRT ¼ 4:24 þ 11:10XASPmax þ 0:0016Xavg cdr hyd

� 0:0008X pro dipole moment ðQSPR 3 PredÞ
For the two measures of hydrophobicity, their coefficients

are positive where the more hydrophobic, the higher the HIC
RT, as one would expect from a biophysical perspective. This
QSPR model, trained on diverse IgG1 candidates, can be
applied to roughly predict HIC RT for future IgG1 mAbs,
although identical modeling methods would need to be used.

Performance of hydrophobicity descriptors on adnectin %
IB prediction

There is an additional dataset available of 31 adnectin triple-
mutant variant sequences, each having percent inclusion body
data, a measure of insoluble protein aggregate formation.19

This data was modeled in similar fashion to the two previous
examples and the % IB is correlated to the sequence-based
Black and Mould hydrophobic index and also to the 3D
hydrophobicity descriptors calculated (see Figure 6C).23 The
original publication reported that a sequence-based multi-
parameter aggregation predictor, Zagg, achieved a correlation
r2 = 0.61, and this is similar to what we observe simply for
sequence-based hydrophobic index.19 The avg_hyd is the
hydrophobic patch surface area averaged over a
LowModeMD generated ensemble of model conformations,
and its correlation to % IB is r2 = 0.70. In this case, a QSPR
model was not trained because the single sequence and hydro-
phobic patch descriptors are adequately predictive.

Discussion

This work has demonstrated that HIC RT can be reduced by
mutating residues responsible for hydrophobic patches. We
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have observed that hydrophobic patch surface areas, and
related descriptors, can be used broadly for HIC RT optimiza-
tion, and that training a multi-parameter protein QSPR can
enhance predictiveness for a given series of variants and
experimental data. This method has also been validated on
publicly available experimental data for a variety of biother-
apeutics and we have contributed a new series of 97 mAb
sequences with HIC RT and integrin binding data
(Supplementary Information).

Applicability of structural protein property descriptors to
HIC RT optimization

Consistent with recent work,16 mutating CDR residues
responsible for large hydrophobic patches proved successful

for reducing HIC RT, and double mutants of these residues
further reduced HIC RT. For the three residues primarily
responsible for large CDR hydrophobic patches, W100,
Y101, and Y102, 46 of 52 (88%) of their mutants eluted
from the column. The vast majority of the Y101 and Y102
variants elute faster than 27.5 minutes (Figure 3). These
residues are at the center of the CDR patches and contribute
greatly to the hydrophobic surface area, and this is likely the
reason why their variants have the most dramatic favorable
effect on HIC RT. Quantitatively, the correlation of the HIC
RT to the hydrophobic patch surface area is more modest.
However, if the avg_cdr_hyd descriptor is used as a filter
eliminating the variants that are greater than 450 Å2, 30 of
the 32 top-predicted variants elute, representing a prediction
accuracy of 94%.

Figure 4. Comparison of structural protein property descriptors to HIC RT for the 97 NB0268 variants tested (A). The HIC RT is the x-axis throughout, and its
histogram is shown at the top. Antibodies that did not elute from the column were assigned an elution time of 30 minutes, representing the maximum value
possible. The Pearson correlation r2 between the descriptor and the HIC RT is reported on each scatter plot. hyd_sa is the sum of the surface areas of all hydrophobic
patches on the homology model. cdr_hyd is the same value but only calculated near the CDR regions. avg_cdr_hyd is the cdr_hyd value averaged over a
LowModeMD generated sample of conformations. The parental integrin α11 mAb is colored purple throughout, light chain variants are green, heavy chain single
mutants are blue, and double mutants are red. (B) Comparison of protein QSPR model performance to sequence-based hydrophobic index for the 97 mAb variants
tested. hyd_idx is the Black & Mould hydrophobic index based on sequence alone. avg_HI is the hydrophobic imbalance descriptor, and QSPR_2_Pred is the 2-point
protein QSPR model prediction.
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Adding charged residues in place of polar residues on the LC
CDRs near the hydrophobic patches did not reduce HIC RT.
Future work could include adding charges near the edges of the
CDRs, as this strategy has been used to reduce aggregation.5 It
has been observed that differences in HIC retention times
between variants of the same molecule can be the result of
conformational change.3 The QSPR model has an outlier, the
HC Y54D x Y102D double mutant, which does not elute from
the HIC column while having a remarkably low hydrophobicity
score (shown in Figure 5). This is surprising because the single
mutant Y102D and the double mutant Y54Q x Y102D both
eluted with HIC RT of 26.6 min and 23.8 min, respectively.
However, the single mutant Y54D did not elute either; therefore,
it may be that Y54D variants are misfolding or causing some
other anomaly, which also may account for the loss of binding of
Y54D x Y102D (Supplementary Information).

The CDR-H2 sequence is SSYSS from position 52 to 56
and the nearest human germline (IGHV3-48) has SSSSS in
this region. It could be that SSDSS, which is not seen in any
germlines at this position, is electronegative enough to cause
misfolding. Furthermore, Y102D is a second negatively
charged residue added to the CDRs, likely reducing the iso-
electric point of the antibody, and potentially causing aggre-
gating interactions that would cause the protein to stick to the
column. These are potential explanations for why the

prediction outlier molecule, Y54D x Y102D, did not elute.
Also, Y54D contains SSDSS and DS in the exposed, flexible
region of CDR-H2 and would represent an isoaspartate for-
mation motif; it is best avoided to prevent the risk of losing
efficacy during long-term storage.11 In general, during com-
putational screening, one can increase prediction performance
by avoiding radical mutations such as introducing two
charged residues, proline, glycosylation sites, and can filter
out potential degradation motifs, such as isomerization and
oxidation and liabilities.

Knowledge gained from predictions on 137 clinical
candidates and adnectins

Generally, clinical candidates and US Food and Drug
Administration-approved antibodies have relatively low HIC
RT, and data for other developability experiments such as stabi-
lity and aggregation fall in appropriate ranges, as described
recently.2 Computationally, when engineering antibodies, one
can compare a candidate and its 3D properties to those in this set
of 137 candidates. Any candidates with unusually large CDR
hydrophobic patch surface areas can be flagged for potentially
slow HIC elution. Other properties such as charge and dipole
moment can be used to profile candidates against clinical mAbs
and liabilities can be identified early on, such as isoaspartate

Figure 5. Parental mAb (top) compared to Y54H x Y102E (middle) and Y54D x Y102D (bottom). Y54H x Y102E is the fastest eluting variant due to the reduction in
hydrophobic patch surface area. Y54D x Y102D is a false positive outlier in the HIC RT predictions which, despite having a significant reduction in hydrophobic surface
area, does not elute. On the right side, 2D projections of the Fv domain surface patches are shown for each variant.
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formation sites, glycosylation, and Met and Trp oxidation sites.-
3,11,24,25 A 3-point protein QSPR model with a stronger correla-
tion to HIC RT was generated for this dataset, and it does
correlate when applied to the independent set of 97 integrin
mAbs; however, the correlation is not significantly stronger
than that of the individual descriptors. The individual descrip-
tors correlate across biotherapeutic classes and the QSPRmodels
are best used for screening variants of the sequences on which
they were trained. Future work is needed to develop global
developability predictors using the experimental data available
that can be applied during novel mAb discovery and optimiza-
tion. In the case of the adnectin inclusion body data, the 3D
descriptor performance is comparable to the sequence-based
hydrophobic index;23 however, this is likely due to the fact that
only 3 residues were mutated, each having solvent-exposed side-
chains. In the other two datasets, where there is more variation,
the 3D methods clearly outperform the sequence-based hydro-
phobic index. A 3D protein QSPR model was not generated for

this dataset because the single parameter predictors are provid-
ing an adequate correlation and any further training would likely
be over-fit to variants of the 3 residues mutated, which were
already well explored in the study. The single descriptor predic-
tions are much more likely to successfully transfer to variants of
other residue positions for this adnectin series.

Insights gained on biologics modeling and protein QSPR
predictions

Antibodies can be modeled adequately for developability opti-
mization with homology modeling. There are currently
roughly 3,000 crystal structures of antibody variable domains
in the Protein Data Bank (PDB). The Fab models produced in
this study based on homologous framework and CDR grafting
proved adequate for property calculations. The 137 clinical-
stage mAbs were each expressed on the human IgG1 scaffold,
as were the currently studied integrin α11 mAbs. Therefore,

Figure 6. Comparison of structural protein property descriptors to HIC RT for 137 diverse clinical candidate mAbs (A). The plots report the Pearson correlation
r2 between the descriptor and experimental HIC RT, with the top-most plot being a histogram of the HIC RT values. hyd_idx is the Black & Mould hydrophobic
index based on sequence alone. hyd_sa and avg_cdr_hyd are described in Figure 3. (B) Comparison of protein QSPR model predictions of HIC RT for 137
diverse clinical candidate mAbs. ASPmax is the maximum average surface property (or hydrophobicity) descriptor and QSPR_3_Pred is a 3-point QSPR model fit
to HIC RT for this series. (C) Comparison of structural protein property descriptors to inclusion body data available for 31 adnectin variants. The plots report the
Pearson correlation r2 between the descriptor and the experimental % IB, whose histogram appears as the top plot. hyd_idx is described above, hyd_sa is the
sum of the surface areas of all hydrophobic patches on the homology model. avg_hyd is the same value but calculated as an average over a LowModeMD
generated sample of conformations.
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all mutations were within the variable domain and it was not
necessary to model the Fc domain or full mAb tetramers. If
the mutations for a given series are within the Fab region,
then the methods described here should be applicable. If a
given series of data for antibodies contains mutations on the
hinge, or Fc domain, then these regions will need to be
modeled, and the structural descriptors and protein QSPR
could be applied for developability optimization.10,15 These
methods may also present a challenge when working with
unusual CDR loops either in sequence or in size. In such
cases, obtaining a crystal structure of one of the candidate
Fabs as a template for modeling the others is recommended.
Antigen bound co-crystals are also very useful for determin-
ing mutants that are more likely to retain target binding while
optimizing solubility.7

Molecular dynamics sampling can rectify homology mod-
eling errors when generating structural protein descriptors for
experimental predictions. In earlier work on this topic, prop-
erties were averaged over molecular dynamics simulations.8 In
this study, LowModeMD with implicit solvation was used to
generate variable sidechain and flexible loop ensembles of
each homology model. LowModeMD focuses velocities on
low frequency motions, and is a much faster method for
conformational sampling than classical dynamics performed
in explicit solvent. In each of the 3 datasets studied, the
LowModeMD-averaged descriptors had a higher correlation
to the experiment than that calculated using the homology
models alone. The accuracy of homology modeling is highly
dependent on the sequence similarity of the structural tem-
plate(s) used, and for mAb variable domains, the framework
modeling is generally successful (backbone RMSD < 1), as are
the LC CDRs and HC CDRs 1 and 2. The CDR-H3 accuracy
varies in homology modeling and this,26,27 as well as sidechain
conformational variation, can explain why the MD averaging
improves experimental predictions. The conformational
ensemble produced by LowModeMD likely smoothes out
sensitivity in homology modeling, reducing error, especially
when template quality is poor. The more uncertain the
homology model, the more flexible sampling is likely
required. LowModeMD sampling takes approximately 1 min-
ute of computation time per sample for a Fab structure;
therefore, most researchers using a standard laptop could
model up to 100 antibodies per day with this method. For
larger libraries, high-performance computing is required for
conformational sampling; however, static models can be used
if they provide an adequate training set prediction, and if only
small variations are being made (single and double mutants)
in library generation.

In this work, PLS regression QSPR modeling was chosen,
as opposed to machine learning or other more complex algo-
rithms, because regression provides a human readable equa-
tion that can be used for biophysical model justification. The
genetic algorithm optimizer to identify PLS models given
several parameters was useful for finding small combinations
of parameters on which to apply PLS fitting. Other methods
such as machine learning techniques could be used to produce

models with stronger correlations, but with a risk of over-
fitting and a lack of biophysical explanation. Classifiers can
assign mAbs as “slow” or “fast” eluters and one such method
is Bayesian decision tree classification, which provides human
readable rules given descriptors, which can be highly accurate
and backed by biophysical meaning.

Modeling the integrin α11 parental mAb and applying
rational design to identify and mutate residues largely respon-
sible for CDR hydrophobic patches proved successful for
reducing HIC RT. The hydrophobic patch surface area aver-
aged over a LowModeMD sample consistently correlates to
the HIC and % IB data studied across biotherapeutic classes.
This single parameter should transfer well to other biologic
optimization projects. Multi-parameter QSPR models can be
used to increase the correlation and predictive power for a
given series of sequences, as was demonstrated on the HIC
data for 97 integrin α11 mAb variants. More large published
experimental datasets on biotherapeutic developability are
needed as is future work to generate more robust computa-
tional predictors.

Materials and methods

Phage selections

Fab-phage from Library F20 were cycled through four rounds
of binding selection using a parental cancer associated fibro-
blast (CAF) cell line as the background depleting step and an
overexpressing CAF cell line as the target selection step.
10x10^6 cells were used for selections and were incubated
for 2 hrs at 4C in 1 ml growth culture medium with a library
of 3 × 1013 Fab-phage. Phage were eluted from cell-pellets
using 0.1 M hydrochloric acid, incubated for 10 min at room
temperature, and were subsequently neutralized with 1 M Tris
buffer. Cell debris was removed from phage eluate by high
speed centrifugation.

Antibody homology model generation

A homology model of the variable region of the parental mAb
was created using the Antibody Modeler application in MOE
2016.0802.28 Using the method described by Maier and
Labute,29 a homology search was performed and 2R8S was
used as the framework template for both chains. For the
CDRs, 4KZE, 4XVU, 4XVU were used as templates for light
chain CDR1, 2, and 3, respectively, while 3PNW, 3S34, and
3AUV were used for the heavy chain CDR 1, 2, and 3,
respectively. This chimeric template is 97% identical to the
parent for the VL region and 90% identical for VH. For high-
throughput antibody model generation of the datasets studied,
the Bio MOE extension of MOE 2016.0802 was used to gen-
erate all Fab models. For each antibody, the best scoring Fv
and CDR templates were used to build variable region models,
and these were grafted onto the trastuzumab (Herceptin) Fab
structure 1N8Z and energy minimized with the Amber10:
EHT forcefield in MOE 2016.0802 for Fab model completion.-
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30 The first adnectin sequence was modeled with the
Homology Model application in MOE 2016.0802 from the
fibronectin template PDB 1FNF and the Automatic
Homology Model application within Bio MOE was used to
generate the 31 adnectin variant models studied.31

Property calculations on 3D models

Hydrophobic patches were identified with the Protein Patch
Analyzer application in MOE 2016.0802. Patches consist of
regions where a hydrophobic potential equal to or greater
than that of a methyl group persists over surface area
greater than 50 Å2. The hydrophobic potential is deter-
mined using the SLogP method for each atom and mapping
the result onto the surface. For averaged LowModeMD
sample-based patch surface area calculations,22,32 the frame-
work backbone atoms where restrained to 0.25 Å of their
modeled positions, the alpha carbons of the H3 loops where
restrained to 2 Å and the alpha carbons of the other CDRs
to 1 Å. Averaged patch surface area calculations were per-
formed on 50 samples for each structure using the Dynamic
Property Sampling application within the Bio MOE exten-
sion of MOE 2016.0802 where the default Amber10:EHT
forcefield and the reaction field solvation model was used.
Other properties were calculated from the Protein
Properties application in MOE 2016.0802 and the
sequence-based hydrophobic index is calculated by a cus-
tom MOE implementation of the method.23,33 The protein
QSPR calculations such as PLS fitting were performed with
QSAR Model application in MOE 2016.0802 and the GA-
MLR method within the AutoQSAR extension to MOE was
used to identify PLS models.

Purification of IgGs

Transfections were performed using the ExpiFectamine
293 Transfection Kit according to manufacturer’s protocol
and were cultured at 37 C for 6 days in a CO2 incubator.
Cultures were centrifuged twice at 6000 g for 10 min each,
followed by 0.45 um filtration to remove cells.
Recombinant Protein A Sepharose was washed three
times in 1x PBS pH 7.4. One mL of Sepharose was
added to each sample and incubated on a rotator for
1 hour at room temperature. Samples were fed through
separate poly prep columns to collect the Sepharose beads.
Beads were washed with 1x PBS pH 7.4 for 10 column
volumes and eluted with IgG elution buffer (Pierce).
Eluate was neutralized immediately with Tris-Cl pH 8
upon elution. Peak fractions were pooled and dialyzed
into 1x PBS pH 7.4. IgG concentrations were quantified
using a nanodrop.

HPLC-HIC analyses

The HPLC-HIC analyses were performed with the Agilent
1290 Infinity LC system, including an Agilent 1290 Infinity
Binary Pump, an Agilent 1290 Infinity Multisampler an
Agilent 1290 Infinity, a Column Compartment, and an
Agilent Infinity Diode Array Detector. To screen the mAbs

hydrophobicity, 100 µL media sample was injected onto a
7.5 × 75 mm, 10 μm TSKgel Ether-5PW from Tosoh equili-
brated with 1.5 M ammonium sulfate and 0.1 M sodium
phosphate buffer, pH 6.5 (mobile phase A) at flow rate
1.0 mL/min. To elute the mAbs, a salt gradient was estab-
lished from 100% mobile phase A to 100% mobile phase B
(0.1 M sodium phosphate buffer, pH 6.5) in 30 min. The
column was re-equilibrated with mobile phase A for 10 min
before the next injection.

Binding screens by flow cytometry

CAF cells were stably transfected to overexpress integrin
α11 and their parental cell lines were used to establish
background levels of expression (integrin α11-negative).34

Briefly, cells were dissociated from flasks using TrypLE
express reagent for 4 min at 37 C. Cells were resuspended
in 1x PBS + Ca/Mg (Thermo) and filtered to remove
clumps before staining. Cells were then plated in 96-well
V bottom plates at 300,000 c/ml and spun to remove any
wash media. Antibodies were diluted to 100 nM and
added to the cells for 1 hr at 4 C. After 2x washes,
secondary antibody was added to cells (Gt anti Hu-Fc
Alexa 647, Jackson ImmunoResearch) and incubated for
30 min at 4 C. Cells were then washed 2x before being
resuspended in 200 uL FACS buffer for reading on
Cytoflex (Beckman Coulter). Fold changes in MFI between
CAF overexpressing cells relative to their parental MFI are
listed in the supplementary information. Binding was con-
sidered to be ‘lost’ if it was below a 2-fold shift in signal
on CAF cells or considered to be ‘increased’ if it was
greater than two times the parental fold shift on CAF cells.

Abbreviations and Symbols

mAb Monoclonal antibody
HIC RT Hydrophobic interaction chromatography

retention time
Fv Variable fragment
MOE Molecular Operating Environment
GB/VI Generalized Born/volume integral
RMSD Root mean square distance
MD Molecular dynamics
LowModeMD Molecular dynamics focused on low frequency

vibrations
CDR Complementarity-determining region
Fc Crystallizable fragment
log P Logarithm of the octanol/water partition

coefficient
GA-MLR Genetic algorithm for optimizing multiple linear

regression
QSPR Quantitative structure-property relationship
PLS Partial least squares
IB Inclusion body
LC Light chain
HC Heavy chain
Fab Fragment antigen binding
VL Variable region of the light chain
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VH Variable region of the heavy chain
IgG Immunoglobulin G
FACS Fluorescence-activated cell sorting
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