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Abstract

Introduction:We investigated metabolites in plasma to capture systemic biochemical

changes associated with Alzheimer’s disease (AD).

Methods: Metabolites in plasma were measured in 59 AD cases and 60 healthy par-

ticipants of African American (AA), Caribbean Hispanic (CH), and non-Hispanic white

(NHW) ancestry using untargeted liquid-chromatography–based ultra-high-resolution

mass spectrometry.Metabolite differences betweenAD and healthy, ethnic groups and

apolipoprotein E gene (APOE) 𝜀4 status were analyzed. Untargeted network analysis

identified pathways enriched in AD-associatedmetabolites.

Results: A total of 5929 annotated metabolites were measured. Partial least squares

discriminant analysis (PLS-DA) inferred that AD clustered separately from healthy

controls (area under the curve [AUC] = 0.9816); discriminating pathways included

glycerophospholipid, sphingolipid, and non-essential amino acid (alanine, aspartate,

glutamate) metabolism. Metabolic features in AA clustered differently from CH and

NHW (AUC = 0.9275), and differed between APOE 𝜀4 carriers and non-carriers

(AUC= 0.9972).

Discussion:Metabolites, specifically lipids, were associated with AD, APOE 𝜀4, and eth-

nic group. Metabolite profiling can identify perturbed AD pathways, but genetic and

ancestral background need to be considered.

This is an open access article under the terms of the Creative Commons Attribution-NonCommercial License, which permits use, distribution and reproduction in any
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1 INTRODUCTION

The understanding of the pathogenesis of Alzheimer’s disease (AD) is

incomplete. Genetic and molecular mechanisms have been proposed,

but no single gene variant ormolecularmechanism can fully explain the

complexity of this disorder. Thus, it is likely that genetic variants affect

downstreammetabolic pathways. Finding systemic molecular changes

between disease and healthy states could identify biological mecha-

nisms, potentially leading to early diagnosis and therapeutic develop-

ment and possibly successful interventions.

Metabolomics is a method of deep molecular phenotyping that

represents the underlying biochemical and physiological layer of the

genome, transcriptome, and proteome. Metabolomics provides a pre-

cise and comprehensive analysis of phenotypic abnormalities in which

the individual components are physiologically described. This snap-

shot of the metabolic state of individuals is possible due to advances

in high-resolution mass spectrometric platforms with high sensitivity

and specificity1 that can strengthen the study at the human population

level. For this study, we conducted untargeted metabolomics profile

analyses in plasma to identify endogenous and exogenous metabolites

associated with clinical AD, and to identify differences by racial/ethnic

group and APOE genotype.

2 METHODS

2.1 Participants

The Washington Heights, Inwood Columbia Aging Project (WHICAP)

has recruited a representative community-based group of individu-

als age 65 years or older through a collaborative effort with the Cen-

ters for Medicare and Medicaid and through the use of marketing

rolls. The composition of the cohort reflected the community sur-

rounding Columbia University Medical Center and comprises non-

Hispanic whites (24%), African Americans (28%), and Caribbean His-

panics (48%), and 67% of the cohort are women. After obtaining

informed consent, participants were interviewed in either English or

Spanish. During each assessment, participants received a standard-

ized neuropsychological test battery andmedical interview. Blood was

drawn, bar-coded, and brought to the laboratory within 2 hours of col-

lection for DNA extraction and storage of plasma and serum. All of

themedical, neurological, psychiatric, and neuropsychological data col-

lected were reviewed at a consensus conference by clinicians who are

experienced in the diagnosis of AD and related dementias. Diagnosis of

clinical ADwas based on accepted criteria.2

For this investigation, fresh plasma was obtained, processed, and

frozen within 2 hours from individuals who had been evaluated at

least twice to ensure stability of the clinical diagnosis AD and the

lack of dementia in healthy controls. These individuals were equally

divided between the three ethnic groups: AfricanAmerican, Caribbean

Hispanic, and non-Hispanic white, and between cases and controls

(Table 1).

2.2 Metabolomics acquisition and analyses

We acquired metabolites by conducting untargeted metabolomics

from the plasma in 119 cases and controls from the WHICAP cohort

using a previously standardized method.3 Untargeted LC-based ultra-

high-resolution mass spectrometry (LC-UHRMS) allowed deep pheno-

typing of the human metabolome, providing measures of metabolites

in most Kyoto Encyclopedia of Genes and Genomes (KEGG) human

metabolic pathways.4 After chromatographic separation using meth-

ods previously described,5 each sample was injected on each column

(HILIC with positive electrospray ionization [ESI] and C18 with neg-

ative ESI) three times, to obtain three technical replicates per col-

umn. Data were processed through a computational pipeline that

leverages open-source feature detection and peak alignment soft-

ware, apLCMS6 and xMSanalyzer,7 to create a feature table with

the mass-to-charge (m/z) ratio, retention time, and the abundance of

each ion in each sample.6-8 The feature table was used for statisti-

cal analyses followed by untargeted pathway analysis using the soft-

ware Mummichog.8 The LC-UHRMS platform detects >1500 chemi-

cal signals that arise from core nutrient metabolism, lipids, the micro-

biome, diet-derived chemicals, pharmaceuticals, and environmental

contaminants, as well as >100,000 untargeted features.9 For simplic-

ity, we refer to the mass spectral features as metabolites. Results

described as annotations refer to level 4 and level 5 confidence

of feature identification by criteria of Schymanski et al.10 Results

described as identifications refer to level 1 confidence (accurate

mass, retention time, and MS/MS fragmentation matching authentic

standards).

2.3 Metabolomics data analysis

Raw metabolite intensities were corrected for batch effects using

ComBat.11 Metabolites missing in >30% of the samples were excluded

from further analysis. Metabolite values missing or of low quality were

imputed to half the value of the lowest level of detection for each
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metabolite.12 Intensities were quantile normalized, log-transformed,

and auto-scaled to normalize distributions.13

Principal component analyses (PCA) of normalized values were

used to estimate stratification by ethnic/racial group, disease status,

and APOE 𝜀4. Partial least squares discriminant analysis (PLS-DA)

implemented in the mixOmics14 package was used to conduct super-

vised dimension reduction analysis to obtain a linear combination of

the features that correlated with variability by ethnic/racial group, dis-

ease status, and APOE 𝜀4 in themetabolomics data.

We tested the association of individual metabolites with AD adjust-

ing for age, sex, APOE 𝜀4, and ethnic/racial group. In addition, we

tested the association of these metabolites with AD independently

in each ethnic/racial group (defined by PCAs and ancestry analysis of

GWAS data) to identify both ancestry-specific and population-based

metabolomics signatures in AD. Then, we tested the association of

APOE 𝜀4 with metabolite intensities, adjusting for age and sex. For

association testing of independent metabolites, we declared nomi-

nal significance at P < .05. Nominally significant metabolites were

subsequently tested for pathway enrichment. Pathways enriched for

metabolites associated with traits of interest were detected using

module-enrichment analysis implemented in mummichog.8 Statistical

significance of enriched pathwayswas determinedusing a permutation

test adjusting for multiple testing.15,16

3 RESULTS

Untargeted metabolomics profiles were completed in 119 individuals,

including 40 African American, 40 Caribbean Hispanic, and 39 non-

Hispanicwhite from theWHICAP cohort. Using theHILIC columnwith

positive electrospray ionization (ESI), we identified >9700 features, of

which 5929 were putatively annotated using xMSannotator. The fea-

tures did not showbatch-related variation, and a total of 6375 features

were present in at least 70% of the samples studied, of which 1704

metabolites were annotated with xMSannotator confidence level 2 or

3. Using the C18 column with negative ESI, we measured >6700 fea-

tures, of which 3759were present in at least 70% of the samples.

3.1 Metabolomic profiles of AD

We compared metabolites between AD and controls adjusted for age,

sex, and ethnic/racial group, and we found several metabolic features

nominally associated with AD (uncorrected P < .05) measured on both

columns (Figure 1A, Table S2) as well as unique metabolic profiles

(Table 2).

Although none of the individual metabolites reached experiment-

wide significance after correcting for multiple testing, we identified

several metabolites annotated with a confidence level 2 by xmsan-

notator that were associated with AD at P < 10e-03 (Table 2). In

particular, we identified benzyl chloride, various adducts of benzenes

and toluenes, omega 3 fatty acids, ceramide, and carnitines that are

associated with AD.

RESEARCH INCONTEXT

1. Systematic review: A systematic review of the litera-

ture (PubMed and Web of Science) revealed few studies

with limited sample size studying unbiasedmetabolomics

assays in Alzheimer’s disease (AD). Sphingolipid, amino

acid, and lipid metabolism were enriched in AD, but vali-

dation and replication were limited.

2. Interpretation: We conducted an unbiased plasma-

metabolomics assay in amulti-ethnic population from the

Washington Heights, Inwood, Columbia Aging Project

(WHICAP). In addition to disease-specific profiles, we

identified differences in metabolomics profiles by ethnic

group and by apolipoprotein E gene (APOE) 𝜀4. We

found several novel pathways enriched in metabolites

associated with AD and confirmed previous findings in

sphingolipid and amino acidmetabolism pathways.

3. Future directions: Our results suggest that studies need

to consider genetic and ancestral background to fully

understand themetabolic heterogeneity in ADpathogen-

esis. Differences in ethnic group and genetic background

will be needed to be fully investigated in order to identify

robust profiles associated with AD.

In addition, features from the HILIC-positive data indicated that

alteredpolyunsaturated fatty acid biosynthesis, alanine, aspartate, glu-

tamate, glycerophospholipid, and sphingolipid metabolism (Figure 1C)

were also associated with AD metabolome-wide. Data from the C18-

negative column implicated altered glycolysis and gluconeogenesis,

pyruvate, alanine, and aspartate metabolism in cases versus controls

of AD. Individual metabolites that contributed to enrichment of these

pathways are described in the SupplementaryMaterial.

TABLE 1 Demographic characteristics of cases and controls
analyzed in the study

Cases Controls

Caucasian(N) 19 20

Age 89.21301 93.00000

Sex (% female) 79% 60%

APOE allele frequency (%) 13.2 2.5

African American (N) 20 20

Age 86.38012 91.05000

Sex (% female) 80% 90%

APOE allele frequency (%) 30 17.5

Hispanic (N) 20 20

Age 83.80178 91.55000

Sex (% female) 85% 90%

APOE allele frequency (%) 15 10
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F IGURE 1 Metabolomewide association study in cases and controls of AD. (A) Ametabolomewide association study (MWAS) found 382
features altered in cases and controls at nominal significance of P< .05 In red: features lower in cases, in green features higher in cases: (B). A
PLS-DA showsmetabolomic patterns different between cases and controls (unadjusted for age and sex variables). (C) Pathway analysis using
mummichog showsmost probablemetabolic pathways altered between cases and controls.We tested enrichment of pathways amongmetabolites
that were nominally significant in association with AD (P< .05) in models unadjusted and adjusted for APOE, respectively. Displayed pathways are
enriched at P< .05, corrected for multiple testing

3.2 Metabolomic differences by ethnic/racial group

Within each ethnic/racial group, we found that African Americans

with AD had altered glycolysis and amino acid metabolism as well as

polyunsaturated fatty acid metabolism. Non-Hispanic whites with AD

had altered amino acid, fatty acid, and glycosphingolipid metabolism,

and Caribbean Hispanic cases had altered amino acid metabolism

(Figure 2). When restricting the analysis to controls, we that
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TABLE 2 Individual metabolites associated with AD status and annotated with a confidence score > 2

m/z Time BETA P
chemical_

ID

Match

Category

Theoretical

m/z delta_ppm Name Formula

Monoisotopic

mass

127.03 53.80 −0.82 5.23E-04 HMDB59882 Unique 127.03 7.08 Benzyl chloride C7H7Cl 126.02

121.10 271.70 0.79 7.31E-04 HMDB59877 Multiple 121.10 0.17 Propylbenzene C9H12 120.09

HMDB59819 o-Ethyltoluene C9H12 120.09

HMDB13733 124-Trimethy-
lbenzene

HMDB40458 124-Tris
(methylene)
cyclohexane

HMDB59901 Hemimellitene

HMDB41924 Mesitylene

HMDB59848 m-Ethyltoluene

HMDB34029 Isopropylbenzene

594.58 68.20 −0.72 1.04E-03 HMDB04951 Unique 594.58 0.62 Ceramide
(d18:120:0)

C38H75NO3 593.57

291.20 41.60 0.72 1.12E-03 HMDB31098 Multiple 291.20 1.27 (9Z11E13E15Z)-
4-Oxo-
9111315-
octadecatetraenoic
acid

C18H26O3 290.19

302.23 41.10 −0.79 1.38E-03 HMDB13288 Multiple 302.23 0.93
Nonanoylcarnitine

C16H31NO4 301.23

HMDB06320 26-
Dimethylheptanoyl
carnitine

determined underlying metabolic differences in participants based on

their ethnic/racial group were not driven by the presence of disease

(Figure 3A, Table S1).

Comparedwith CaribbeanHispanics and non-Hispanic whites, PLS-

DA suggested that features in African Americans clustered differ-

ently (Figure 3), including altered amino acid metabolic pathways

such as arginine and proline metabolism, aspartate and asparagine

metabolism, and glycine, serine, alanine, and threonine metabolism.

Saturated fatty acid beta oxidation was also identified based on vari-

able importance in the projection (VIP) scores from the PLS-DA

(Figure 3).

3.3 Metabolomic profiles associatedwith theAPOE
genotype

We also investigated metabolic differences driven by APOE 𝜀4. PLS-

DA identified near-complete separation between APOE 𝜀4 carriers

and non-carriers (Table S3). In contrast to pathways identified by AD

diagnosis, the presence of APOE 𝜀4 was associated with changes in

arachidonic acidmetabolism, driven by features with putativematches

to octadecatrienoic acid and eicosatrienoic acid (Figure 4A and B),

changes in the pentose phosphate pathway, and in chondroitin sulfate.

After adjusting for APOE 𝜀4, the pathways associated with AD were

largely the same (Figure 1C).

4 DISCUSSION

We compared untargeted metabolomics in patients with AD and

healthy controls, equally divided between African Americans,

Caribbean Hispanics, and non-Hispanic whites. The goal of this

investigation was to identify metabolites associated with disease

while adjusting for the strongest genetic risk factor, APOE status, and

ethnic/racial group. Therefore, we used a simple case-control design

equally stratified by ethnic/racial group.

We found significant differences comparing exogenous and endoge-

nous metabolites in patients with AD and healthy controls. Similar dif-

ferences were observed in a comparison of metabolic profiling in brain

tissue from the middle frontal and inferior temporal gyri in healthy

controls, patients with AD, and those with mild cognitive impairment

(MCI) in the Baltimore Longitudinal Study.17 An untargeted approach

has also been used to correctly classify patients with MCI or AD when

compared with controls with 97.7% accuracy.18 However, metabo-

lite analyses identified 22 putative biochemical pathways, including

interlinked areas of metabolism (polyaminemetabolism and L-arginine

metabolism).

In this report, we identified several metabolites associated with

AD that were altered in the fatty acid biosynthesis pathway. Of inter-

est, dysregulation of unsaturated fatty acidmetabolismwas previously

reported in brain tissue from patients with AD compared to healthy

controls.17 The disruption in polyunsaturated fatty acid biosynthesis

may have several downstream effects: inflammation, oxidative stress,
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F IGURE 2 Ethnic differences. A bubble plot that shows pathways altered in controls of the three ethnic groups. Size of bubbles is proportional
to overlap size of pathway and P-values are corrected for multiple testing

cell maintenance, or cell death. Several amino acid metabolism-related

pathways were also enriched among metabolites that were associ-

ated with risk of AD. Lower levels of glutamate and aspartate, and

higher levels of glutamine have been observed in the temporal cortex

in postmortem samples from patients with AD.19 A different cohort

also showed elevations in plasma levels of glutamine in AD patients.20

We identified metabolites involved in dynorphin metabolism associ-

ated with AD, consistent with previous studies in postmortem samples

from patients.21 Expression of dynorphin, an endogenous opioid pep-

tide, increases with age and has been associated with cognitive impair-

ment in rodent models.22

We found ceramide to be significantly associated with AD, and it

has been suggested that ceramide promotes neuronal apoptosis, A𝛽

accumulation,23 and has been seen at increased levels in patients with

AD and co-morbid conditions.24 In addition, lower levels of plasma

acylcarnitine were found in AD patients compared to controls. Plasma

acylcarnitines predict altered fatty acid beta oxidation and ketogen-

esis and have been reported to be depressed in patients with AD.25

Metabolic features also differed significantly in the three ethnic/racial

groups, especially among African Americans, despite the individuals

being of similar in age and residing in the same geographic location.

Very few studies have investigated the overall metabolic differences

by ethnicity/race. Investigators from the Women’s Health Initiative

cohort identified significant differences inmetabolite profiles between

African Americans and individuals of European ancestry (https://

www.ahajournals.org/doi/abs/10.1161/circ.139.suppl_1.MP55). Simi-

lar differences in amino acid and lipid metabolism were observed in a

metabolic profiling studyof serummetabolites inAfricanAmericanand

European American patients with bladder cancer.26 Thus, genetic and

metabolic factors could help to explain ethnic/racial and racial dispar-

ities in the risk factors associated with AD. Similar pathways emerge

whenwe asses difference byADor ethnic/racial group, suggesting that

metabolome profiling from plasma could be used to identify racial dif-

ferences in disease.

DifferencesbetweenAPOE 𝜀4carriers andnon-carrierswereappar-

ent and remainedwhen analyses were restricted to healthy individuals

from all three ethnic/racial groups. Of interest, metabolites associated

with AD were different from those associated with APOE 𝜀4. Hexose

phosphorylation and arachidonic acidmetabolismpathwaysweremost

enriched amongmetabolites that were associated with APOE 𝜀4. APOE

𝜀4 carriers converting toMCI/AD had higher arachidonic acid /docosa-

hexaenoic acid ratios in phospholipids compared to cognitively normal

𝜀4 and non-𝜀4 carriers.27 Alterations in plasma arachidonic acid were

observed in the brains of 𝜀4 carrier mice compared to non-carriers.27

Taken together these results suggest that understanding of

metabolic heterogeneity in AD pathogenesis may enable identification

of biological mechanisms for specific subgroups with the disease.

Namely, those carrying an APOE 𝜀4 allele and among those of African

orHispanic ancestry. This study demonstrates the ability of untargeted

metabolomics to reveal biochemical differences in plasma based on

ethnicity/race, the presence of APOE 𝜀4, and AD, thus informing study

design for optimal power of discovery in larger studies.
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