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In order to interact seamlessly with robots, users must infer the causes of a robot’s
behavior–and be confident about that inference (and its predictions). Hence, trust is
a necessary condition for human-robot collaboration (HRC). However, and despite its
crucial role, it is still largely unknown how trust emerges, develops, and supports human
relationship to technological systems. In the following paper we review the literature
on trust, human-robot interaction, HRC, and human interaction at large. Early models
of trust suggest that it is a trade-off between benevolence and competence; while
studies of human to human interaction emphasize the role of shared behavior and
mutual knowledge in the gradual building of trust. We go on to introduce a model of
trust as an agent’ best explanation for reliable sensory exchange with an extended
motor plant or partner. This model is based on the cognitive neuroscience of active
inference and suggests that, in the context of HRC, trust can be casted in terms of
virtual control over an artificial agent. Interactive feedback is a necessary condition
to the extension of the trustor’s perception-action cycle. This model has important
implications for understanding human-robot interaction and collaboration–as it allows
the traditional determinants of human trust, such as the benevolence and competence
attributed to the trustee, to be defined in terms of hierarchical active inference, while
vulnerability can be described in terms of information exchange and empowerment.
Furthermore, this model emphasizes the role of user feedback during HRC and suggests
that boredom and surprise may be used in personalized interactions as markers for
under and over-reliance on the system. The description of trust as a sense of virtual
control offers a crucial step toward grounding human factors in cognitive neuroscience
and improving the design of human-centered technology. Furthermore, we examine
the role of shared behavior in the genesis of trust, especially in the context of dyadic
collaboration, suggesting important consequences for the acceptability and design of
human-robot collaborative systems.

Keywords: trust, control, active inference, human-robot interaction, cobotics, extended mind hypothesis, human
computer interaction
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INTRODUCTION

Technology greatly extends the scope of human control, and
allows our species to thrive by engineering (predictable) artificial
systems to replace (uncertain) natural events (Pio-Lopez et al.,
2016). Navigating and operating within the domain of regularities
requires considerably less motor and cognitive effort (e.g.,
pressing a switch to lift heavy weights) and less perceptual and
attentional resources (Brey, 2000); thereby increasing the time
and energy available for other activities. However, the inherent
complexity of technological systems invariably leads to a state
of “epistemic vulnerability,” whereby the internal dynamics of
the system are hidden to the user and, crucially, must be
inferred from the observer via the behavior of the system.
Indeed, current misgivings about machine learning rest upon
the issue of explainability and interpretability namely, the extent
to which a user can understand what is going on “under the
hood” (Došilović et al., 2018). By epistemic vulnerability here
we mean that the user relies on inference to understand the
machine–what the machine does, how it does it, how its actions
change given context, etc. Critically, the lack of opacity of these
processes may give rise to suspicions and qualms regarding
the agent’s goals. What factors influence trust during human-
robot interaction, and how does human inference modulate the
continuous information exchange in human-computer systems?
It is widely recognized that trust is a precondition to (successful)
human-machine interactions (Lee and See, 2004; Sheridan,
2019a). However, despite great effort from researchers in the field,
we still lack a computational understanding of the role of trust
in successful human interactions with complex technological
systems. Here, we review contemporary theories of trust and
their associated empirical data in the context of human-machine
interaction. Drawing on the literature in cognitive science of
active inference (Friston et al., 2006), control (Sheridan, 2019b),
and hierarchical perception-action cycles (Salge and Polani,
2017), we introduce a cross-disciplinary framework of trust–
modeled as a sense of virtual control. To understand the role
of trust in robotics, we first present a brief overview of basic
cognitive functions, focusing on the organization of motor
control. We then explain the fundamental components of trust–
in terms of active inference–and conclude with some remarks
about the emergence and development of trust in the context
of dyadic human-robot collaboration (HRC), which we take as
a good use case for this approach to trust.

SURPRISE MINIMIZING AGENTS

From the standpoint of contemporary cognitive neuroscience,
perception and action are means for living organisms to
reduce their surprise (i.e., acquire information) about (past,
current, and future) states of the world (Friston et al., 2006).
The brain according to this framework is considered to be
a constructive, statistical organ that continuously generates
hypotheses (i.e., beliefs) to predict the most likely causes of the
sensory data it encounters (i.e., sensations). These predictions
then guide behavior accordingly in a top-down fashion (Gregory,

1980). Various unifying and complementary theories have been
proposed to describe this process (e.g., the free energy principle,
active inference, predictive processing, dynamic logic, and the
Bayesian brain hypothesis). Three fundamental brain functions
are defined as follows: (1) perception senses change in the
surroundings, (2) cognition predicts the consequences of change,
and (3) action controls the causes of change. This tripartition
is reflected in the hierarchical functional architecture of brain
systems (Kandel et al., 2000), speaking to the brain as an engine
of prediction ultimately aiming at the minimization (and active
avoidance) of surprising states (see Figure 1). There are several
ways of describing the requisite (neuronal) message passing–
in terms of Bayesian belief updating (Friston et al., 2017).
Perhaps the most popular at present is predictive coding (Rao
and Ballard, 1999), where inference and learning is driven
by prediction errors, and agency emerges from perception-
action loops (Fuster, 2004; Parr and Friston, 2019), continuously
exchanging information with the sensorium. By sense of agency
we refer to the feeling of control over one’s actions and their
perceived consequences (Gallagher, 2000; Haggard, 2017).

As underwriting perception and action (Méndez et al., 2014),
cognition (i.e., active inference or planning) is closely related
to evaluating the consequences of action in relation to prior
beliefs about homeostatic needs of survival and reproduction;
preparing responses to anticipated change (Pessoa, 2010). Here,
beliefs correspond to Bayesian beliefs (i.e., posterior probability
distributions over some hidden state of the world)–as opposed
to propositional beliefs in the folk psychology sense. Minds and
their basic functions–such as perception, emotion, cognition, and
action–ultimately seek good predictive control. That is, they are
continuously aiming to minimize uncertainty about states of
the world, where uncertainty is simply expected surprise (i.e.,
entropy), given a course of action. There are two fundamental
ways to avoid (expected) surprise: (1) change one’s cognition,
beliefs or hypotheses (i.e., perception), or (2) change the world
(i.e., action). This distinction is crucial in the context of robotic
systems, which are quintessentially concerned with changing the
causes of sensations, rather than changing perceptual inference
via cognition (Jovanović et al., 2019).

In short, action aims at reducing uncertainty, where
exploratory behavior leads us to interact “freely” with objects
in the world–to improve our generative models of the way
they behave, maximizing the fit between them, and ultimately
rendering these behaviors more predictable (Pisula and Siegel,
2005). A generative model is at the heart of active inference–
and indeed the current treatment. Technically, models are a
probabilistic specification of how (sensory) consequences are
caused by hidden or latent states of the world. It generally
comprises a likelihood; namely, the probability of a sensory
outcome given a hidden state–and prior beliefs over hidden
states. Maximizing the fit or alignment between a generative
model of the sensed world–and the process generating sensory
outcomes corresponds to minimizing surprise (e.g., prediction
error) or–in more statistical terms–maximizing the evidence for
their model (Hohwy, 2016). In the setting of active inference,
this is often referred to as self-evidencing. In active inference,
(expected) surprise is approximated with (expected) variational
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FIGURE 1 | Perception models afferent changes in states of the world detected by receptor cells (e.g., in the retina) all along the perceptual hierarchy. In this control
diagram,

⊗
denotes a comparator. The red arrows denote inference and learning (i.e., driven by prediction errors) that compare (descending) predictions with

(ascending) sensations. Cognition and higher order processing attempt to predict sensory input and futures states of the world based on available (generative)
models; thereby, minimizing prediction error. Action organizes the motor hierarchy in an attempt to actively control the efferent consequences of ongoing events;
namely, by modifying causes anticipated through perceptual means, thereby altering the system’ dynamics to make them more predictable (i.e., less surprising).
Though not specified on this diagram, perception can be further subdivided into interoception and exteroception; respectively, modeling changes in the internal and
external world. Emotion–and related notions of selfhood–usually arise via predictive processing of interoceptive sensations, often known as interoceptive inference
(Seth, 2013, 2014; Seth and Friston, 2016).

free energy; thereby providing a tractable objective function for
perception and action. The integration of efferent (motor) and
afferent (sensory) signals results in what can be termed the
sensation of control, or feeling of agency, whereby sensorimotor
mismatch is minimized.

These three functions of perception-cognition-action form a
hierarchical system with sensorimotor signals at the lowest levels
of the hierarchy, and abstract cognition (executive functions
of goal- directed planning and decision-making) at the highest
levels (Schoeller et al., 2018). Perception is organized in
a hierarchical fashion, with bottom-up sensory signals (e.g.,
“a change in color from red to green”) being continuously
predicted by top-down cognitive models (e.g., “green-light
authorization for crossing the street”). Action models are
also organized hierarchically, whereby fine motor interaction
with the external world (e.g., typing on a keyboard), are
contextualized by higher order goals (e.g., writing a paragraph),
themselves prescribed by high abstract plans (e.g., getting

a paper accepted in a conference)–ultimately underwriting
existential goals–corresponding to the organization of life itself
(Schoeller et al., 2018).

A key notion is precision weighting, which refers to
the reliability or salience of prediction errors. The higher
the precision, the more impactful the prediction errors on
how processing unfolds. In Active Inference terms, precision
represents the agent’s confidence that certain action policies (i.e.,
sequence of actions) will produce the states the agent highly
expects (Friston et al., 2014). Predictive agents decide what
actions to pursue based on the predicted sensory consequences
of the action–choosing those behaviors that are most likely to
minimize surprise over the long term, and so maximize their time
spent in the sensory states they expect. The performance of action
policies to reduce prediction error can be plotted as a slope that
depicts the speed at which errors are predicted to be managed
along the way. The steepness of the slope indicated how fast
errors are being reduced given some policy: the steeper the slope
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the faster the rate, the shallower the slope the slower the rate. If
the speed of error reduction is faster that expected, the action
policy should be made more precise; and if the rate is slower
than expended, and errors are amassing unexpectedly, then the
policy isn’t as successful at bringing about those future sensory
states that are expected, and this should be taken as evidence for
weighing an action policy as having low precision.

Change in the rate at which error is being resolved manifests
for humans as emotional valence–we feel good when error is
being reduced at a better than expected rate, and we feel bad
when error is unexpectedly on the rise (Joffily and Coricelli,
2013; Schoeller, 2015, 2017; Schoeller and Perlovsky, 2016;
Schoeller et al., 2017; Van de Cruys, 2017; Kiverstein et al.,
2019; Perlovsky and Schoeller, 2019; Wilkinson et al., 2019;
Nave et al., 2020). Valence systems provide the agent with a
domain general controller capable of tracking changes in error
managements and adjusting precision expectations relative to
those changes (Kiverstein et al., 2019; Hesp et al., 2021). This
bodily information is a reflection of an agent’s perceived fitness–
that is, how adaptive the agent’s current predictive model is
relative to their environment.

Affective valence is widely acknowledged to play an important
role in trust (Dunn and Schweitzer, 2005). Positive feelings have
been shown to increase trusting, while negative feelings diminish
it (Dunn and Schweitzer, 2005). The active inference framework
helps to account for this evidence, suggesting that positive and
negative feelings are in part a reflection of how well or poorly
one is able to predict the actions of another person. As detailed in
the following section, affectivity plays a crucial role in mediating
exchanges with robots, often acting as a cardinal determinant
of trust in that context specifically (Broadbent et al., 2007). As
a consequence, robotic design that considers affect–and related
higher-level constructs–are likely to enhance productivity and
acceptance (Norman et al., 2003).

AGENCY AND EMPOWERMENT IN
HUMAN-TECHNOLOGICAL EXTENSION

The relevance of active inference for robotics has been
experimentally demonstrated in Pio-Lopez et al. (2016). In
the context of automation, understanding human agency is all
the more important–as experimental studies have demonstrated
that one can prime for agency with external cues (leading to
abusive control), and clinical studies reveal that an impairment of
control is associated with depression, stress, and anxiety-related
disorders (Abramson et al., 1989; Chorpita and Barlow, 1998).
The integration of efferent (motor) and afferent (sensory) signals
results in what can be termed the sensation of control or a feeling
of agency (Salomon et al., 2016; Vuorre and Metcalfe, 2016),
which depends on the correspondence of top-down (virtual)
predictions of the outcomes of action, and the bottom-up (actual)
sensations. As illustrated in Figure 1, the brain compares actual
sensory consequences of the motor action with an internal model
of its predicted sensory consequences. When predicted sensory
consequences match incoming sensory signals, the movement is
attributed to the self and a (confident) sense of agency is said

to emerge (Wolpert et al., 1995; Hohwy, 2007; Synofzik et al.,
2008; Salomon et al., 2016). Situations where there is a mismatch
between intended and observed actions we also see a feeling
of loss of agency, and an attribution of the movement (or lack
thereof) to an external source. For example, if someone was
to move my arm then there would be the sensory experience
but without the prediction. If instead I was to try to move my
arm, but due to anesthetic I was unable to, there would be
the prediction but not the sensory confirmation. Agency then
is just another hypothesis (or Bayesian belief) that is used to
explain interoceptive, exteroceptive, and proprioceptive input. If
sensory evidence is consistent with my motor plans, then I can be
confident that “I caused that.” Conversely, if I sense something
that I did not predict, then the alternative hypothesis that “you
caused that” becomes the best explanation (Seth, 2015). The
accompanying uncertainty may be associated with negative affect
such as stress or anxiety (Stephan et al., 2016; Peters et al., 2017).
Again, the very notions of stress and anxiety are treated as higher-
level constructs–that best explain the interoceptive signals that
attend situations of uncertainty and adjust precision accordingly;
e.g., physiological autonomic responses of the flight or fright sort
(Barrett and Simmons, 2015; Seth and Friston, 2016).

To measure the amount of control (or influence) an agent
has and perceives, Klyubin et al. (2005) proposed the concept
of empowerment. Empowerment is a property of self-organized
adaptive systems and is a function of the agent perception-
action loop, more specifically the relation between sensors
and actuators of the organism, as induced by interactions
between the environment and the agent’s morphology (Salge
and Polani, 2017). Empowerment is low when the agent has no
control over what it senses, and it is high the more control is
evinced (Friston et al., 2006). An information-theoretic definition
has been proposed, whereby empowerment is interpreted as
the amount of information the agent can exchange with its
environment through its perception-action cycle. According to
Klyubin et al. (2005), empowerment is null when the agent
has no control over what it is sensing, and it is higher the
more perceivable control or influence the agent has. Hence,
“empowerment can be interpreted as the amount of information
the agent could potentially inject into the environment via its
actuator and later capture via its sensor.” Consider for example
the difference between passively watching a movie and being
engaged with the same content in an immersive virtual reality
setting. Crucially, empowerment is a reflection of what an agent
can do, not what the agent actually does (Klyubin et al., 2005),
and maximizing empowerment adapts sensors and actuators to
each other. In other words, empowerment can be described
in terms of sensorimotor fitness–i.e., the spatial and temporal
relevance of the feedback the robot gets on its own behavior.
For example, a robot that gets multisensor feedback on the
probability of success of its actions has greater empowerment
than a robot who is deprived of, say, visual information or which
receives delayed information (the greater the delay, the weaker
the empowerment). This calls forth a framework where the so-
called exploration/exploitation dilemma (crucial for safety in
HRC) can be casted as a behavioral account of the perception-
action cycle.
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Technology considerably increases human empowerment
(Brey, 2000), freeing the human animal from many niches
or geographical constraints (e.g., climate or geology), and
allowing increasingly complicated narratives and trajectories
to develop within the scope of human control (e.g., cranes
allow the manipulation of heavy systems beyond mere human
capabilities). Predictive organisms are attracted to–and rewarded
by–opportunities to improve their predictive grip on their
environments–i.e., to improve their empowerment. By definition,
technological extension of the perception-action cycle offers
a powerful way of expanding empowerment, but to function
effectively it needs to be integrated with the agent’s sensorimotor
dynamics. In other words, technology must enter the agent’
extended repertoire of behaviors. That inclusion requires the
technological extensions to be modeled internally by the agent
in the same capacity of its own sensorimotor contingencies, at
some level of abstraction. This (self) modeling of technological
extension is key to the emergence of trust–in active inference
terms: a high precision on beliefs about how the technology will
behave and evolve relative to our own sensorimotor engagements.
This is an extension of the same mechanism giving rise to
agency beyond the realm of the body. As we attempt to show in
the next section, this extension of human control beyond mere
motor action and its cognitive monitoring requires trust–as a
sense of virtual control in an extended perception-action cycle
(Sheridan, 1988). The study of human agency has clear relevance
for robotic motor control, but to our knowledge it has not yet
been applied to the problem of trust in complex technological
systems or human-robot interaction. In the next section, we
examine the possibility of modeling trust in relation to active
inference and empowerment.

TRUST AS VIRTUAL CONTROL IN
EXTENDED AGENCY

Within the context of human-robot interactions (Lee, 2008),
optimal trust is crucial to avoid so-called disuse of technology
(i.e., loss of productivity resulting from users not trusting
the system), but also abuse of technology (i.e., loss of safety
resulting from overreliance on the system). Hence, the cognitive
neuroscience of trust has implications for both safety and
management (Sheridan and Parasuraman, 2005; Lee, 2008).
Indeed, technological abuse and overreliance on automation
count among the most important sources of catastrophes
(Sheridan and Parasuraman, 2005). From a theoretical point
of view, tremendous variations exist in what trust represents
and how it can best be quantified, and several definitions
have been suggested with potential applications for automation
(Muir, 1994; Cohen et al., 1999). An exhaustive review–of the
large body of work devoted to trust literature–is outside the
scope of this article: excellent reviews can be found in Lee
and See (2004) and Sheridan (2019b). Here, we present the
fundamental elements of these models of trust, in the light of
perception-action loops, and potential applications to robotics to
demonstrate the relevance of the active inference framework for
human factors in HRI.

Several measures of trust exist in a variety of settings from
management, to interpersonal, and automation. In reviewing the
literature on trust, Lee and See identified three categories of
definitions; all fundamentally related to uncertainty and control
(2004). The fundamental relation between trust and uncertainty
appears most salient in situations when the uncertainty derives
from the realization of goals or intentions (e.g., in human-
robot interactions, or employee-employer relationships), where
internal details about the agent are unknown, leaving the trustor
vulnerable. In the context of robotics–where human action is
extended by robotic systems–the match between goals of the
(extended) human agent and those of the (extending) robotic
agent is crucial in determining the success of the relation
(whether the agent will make use of the extension). In order of
generality, the definitions identified by Lee and See are: (1) trust
as intention to (contract) vulnerability, (2) trust as vulnerability,
and (3) trust as estimation of an event likelihood. Note that these
three general definitions, derive from early definitions of trust by
Muir (1994) and Mayer et al. (1995), according to whom trust is
a trade-off between ability (A) and benevolence (B), whereby a
reliable system is high in both A and B (Figure 2).

The importance of externalizing goals of robotics systems (i.e.,
transparency) at all levels of the hierarchical perception-action
loop cannot be stressed enough–for successful communication
and gradual building of trust (Sheridan and Parasuraman,
2005). This is well captured in the standard definition of
trust by Sheridan (2019b), where communication of goals
(or transparency) plays a crucial role among the seven item
scales of trust (see Table 1).

In summary, trust is fundamentally related to human control
to the extent that it is required for any extension of the
perception-action cycle (i.e., when the success of the performance
depends on some other agent’s perception-action cycle, rather
than one’s own). Above, we saw that vulnerability is a function
of empowerment in the extended agent (the more extended the
agent, the more vulnerable), which can be evaluated through
interaction with the robotic perception-action cycle. This may
help to explain why operator curiosity is an important source
of accidents in the robot industry (Lind, 2009), as curiosity
aims to reduce uncertainty about the technology and so increase
trust and control, and suggests potential solutions in the field of

FIGURE 2 | Muir and Mayer model of trust as a function of the trustee’s ability,
benevolence and reliability (1995) where risk perception affects risk action.
This bipartition of trust as ability and benevolence amounts to two different
levels in the motor hierarchy of the extended agent (e.g., the robot), whereby
benevolence refers to the high-level goals motivating the extended agent and
ability refers to the means of the agent to realize these goals, i.e., the
sophistication of its low-level motor output in relation to the task at hand.
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TABLE 1 | Standard definition of trust by Sheridan (2019b).

(1) Statistical reliability (lack of error).

(2) Usefulness (ability of the system to do what is most important, e.g., in trading benefits and costs).

(3) Robustness (ability and flexibility of the system to perform variations of the task).

(4) Understandability (transparency of the system in revealing how and why it is doing what it is doing).

(5) Explication of intent (system communicating to the trustee what it will do next).

(6) Familiarity (to the user based on past experience).

(7) Dependence (upon the system by the trustee as compared to other ways of doing the given task).

accidentology. Trust is required in situations of uncertainty; and
it varies as the system exhibits predictable regularities. Sheridan
and Meyer models suggest that one will trust a predictable
system, to the extent that one can act upon that system to obtain
similar results over time, and eventually render its behavior more
predictable through incremental alterations.

We have considered how a sense of agency emerges, as the
resolution of mismatch between (1) the (perceptual) expectation
(i.e., hypothesis) about the consequences of (motor) action, and
(2) the perceived results of action (observation, perception). We
introduced the idea of trust as a sense of virtual, extended control.
In other words, trust is a measure of the precision, or confidence,
afforded by action plans that involve another (i.e., of the match
between one’s actions–and their underlying intentions–and the
predicted sensory consequences through another agent). As such,
“trust” is an essential inference about states of affairs; in which the
anticipated consequences of extended action are realized reliably.
From the point of view of “emotional” inference (Smith et al.,
2019), trust is therefore the best explanation for a reliable sensory
exchange with an extended motor plant or partner. Given the role
that affect plays in tuning precision on action policies, “reliable”
here means a reliable way to reduce expected free energy (via the
extended interaction). We are attracted by, or solicited to use, a
tool or device because it affords to us a means of reducing error,
in a better than expected way relative to doing the same work in
the absence of technological extension.

It is generally assumed that trust in any system increases
with evidence of that system’s reliability (Figure 3). The greater
the convergence of behavior models between trustor and trustee
(i.e., the largest the benevolence), the greater the trust in the
relationship (Hisnanick, 1989). Perhaps, this explains why simple
mimicry facilitates adoption, or why one tends to agree with
people who behave similarly–we generalize shared goals on
the basis of shared behavior (Cirelli, 2018). The similarity-
attraction hypothesis in social psychology predicts that people
with similar personality characteristics will be attracted to each
other (Morry, 2005). Hence, technology that displays personality
characteristics–similar to those of the user–tends to be accepted
more rapidly (Nass et al., 1995). As machines become increasingly
intelligent, it is crucial that they communicate higher-order goals
accordingly (Sheridan, 2019b). Communication of goals can be
simplified by rendering the perception-action cycle explicit/and
augmenting sensors to indicate their perceptual range (e.g.,
the human retina affords some information about the portion
of the visual field it senses); thereby, greatly reducing the
risk of accidents.

Finally, trust is a fundamentally dynamic process that
eventually leads to a state of dependence (Figure 4). This
is best exemplified in the context of information technology,
whereby the information is no longer stored internally (e.g.,
phone numbers, navigation pathways, historical facts) but all
that is known is the access pathway (my phone’s contact list,
my preferred web mapping service, a Wikipedia page). As
suggested by the Sheridan scale, the dynamics of trust go beyond
mere predictability and ultimately lead to a state of prosthetic
dependence in the context of the specific task. This is evident in
the context of automation, which increases the perception-action
cycle at an exponential rate, thereby leading to a high abandon
rate of past practices, as new technologies are adopted. Formally
speaking, as technology allows the agent to reduce prediction
error (by better understanding the problem space, and through
more empowered actions) the agent comes to expect that slope of
error reduction within those contexts and relative to the specific
tasks. The result is a gradual loss of interest or solicitation by
previous less potent forms of HRCs–they have become outdated
and so have lost their motivational appeal.

In the context of interpersonal relationships, Rempel et al.
(1985) described trust as an evolving phenomenon, where growth
is a function of the relationships progress. They further argue that
the anticipation of future behavior forms the basis of trust at the
earliest stages of a relationship. This is followed by dependability,
which reflects the degree to which behavior is consistent. As
the relationship matures, the basis of trust ultimately passes
the threshold of faith, which has been related to benevolence
(Lee and See, 2004); i.e., coordination on higher order goals
driving behavior. Crucially, an early study of the adaptation of
operators to new technology demonstrated a similar progression
(Hisnanick, 1989). Trust in that context depends on trial-and-
error experience, followed by understanding of the technology’s
operation, and finally, a state of certainty or faith (see Figure 5).
Lee and Moray (1992) made similar distinctions in defining the
factors that influence trust in automation.

TRUST DURING DYADIC
COLLABORATION

We have seen that the essential components of trust (benevolence
and competence) can be cast in terms of the confidence in
beliefs at (respectively) high and low levels in the motor
hierarchy, but how can active inference contribute to the science
of extended agency? In this section, we examine the role of
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FIGURE 3 | On the left, levels of trust from Dietz and Den Hartog (2006). On the right, cross-plot of (objective) trustworthiness compared to (subjective) trust by
Sheridan (1988), Sheridan (2019b). As a pioneer in the study of trust in technology, Sheridan further suggested that (subjective) trust can be cross-plotted against
(objective) trustworthiness. This representation engenders four extremes: justified trust or distrust, blind trust (trusted untrustworthy; i.e., misuse) and missed
opportunity (untrusted trustworthy; i.e., disuse). The dotted curve represents calibration, which is linear when trust is justified. Poor calibration can lead to loss of
safety (due to overconfident misuse), or loss of productivity (due to underconfident disuse).

FIGURE 4 | Dynamics of trust over time–with four phases from discovery to faith: for a consistently reliable system, dependence (i.e., risk) is inversely proportional to
uncertainty, assessed through a cycle of trial and error, until a threshold is reached. Through cycles of trial and errors, trust gradually evolves from predictability
(model) to dependability (control) to a state of faith (overreliance). Our model suggests that boredom is a marker of overreliance.

expectations in the context of dyadic interaction. So, what
would a formal (first principles) approach like active inference
bring to HRC? At its most straightforward, trust is a measure
of the confidence that we place in something behaving in
beneficial ways that we can highly predict. Technically, this
speaks to the encoding of uncertainty in generative models of
dyadic interactions. These generative models necessarily entail
making inferences about policies; namely, ordered sequences
of action during dyadic exchanges (Moutoussis et al., 2014;
Friston and Frith, 2015). This could range from turn taking
in communication (Wilson and Wilson, 2005; Ghazanfar and
Takahashi, 2014) to skilled interactions with robotic devices. At
its most elemental, the encoding of uncertainty in generative
models is usually framed in terms of the precision (i.e., inverse
variance) or confidence (Friston et al., 2014). Crucially, every
(subpersonal) belief that is updated during active inference can
have the attribute of a precision or confidence. This means

that the questions about trust reduce to identifying what kind
of belief structure has a precision that can be associated with
the construct of “trust.” In generative models based upon
discrete-state spaces (e.g., partially observed Markov decision
processes) there are several candidates for such beliefs. Perhaps
the most pertinent–to dyadic interactions–are the beliefs about
state transitions; i.e., what happens if I (or you) do that. For
example, if I trust you, that means I have precise Bayesian beliefs
about how you will respond to my actions. This translates into
precise beliefs about state transitions during controlled exchanges
(Parr and Friston, 2017; Parr et al., 2018). This means that
I can plan deep into the future before things become very
uncertain and, in turn, form precise posterior beliefs about
the best courses of action, in other words our policies align
(see Figure 5).

Conversely, if I do not trust you, I will have imprecise beliefs
about how you will respond and will only be able to entertain
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FIGURE 5 | Waves of technological adoption related to predictive slopes of
extended engagement (empowerment) during versioning of the technology.
Indeed this is an oversimplification for the sake of visualization as we are
assuming a linear progression of empowerment over time in the evolving
versions of the technology (i.e., a healthy research and development cycle)
where, for most technologies, newer versions may not present much greater
empowerment as compared to older ones. The important idea here is the
inflection point (flex) indicating the start of technological decay reflecting the
abandon rate of a practice as the experience of better predictive slopes of
extended technological engagements lead to disengagement of non-extended
approaches (e.g., cars replace horses replacing legs). Old slopes are less than
expected and so unsatisfactory as compared to new ones.

FIGURE 6 | A trust dyad, whereby Agent 1 performs action A at t, within the
action policy P, and in collaboration with Agent 2. In a trustworthy relationship,
Agent 1 can expect from Agent 2 an action Policy P’, where P’ is symmetrical
to P (each action of P’ at t + 1 is a response to P at t). Past (observed) actions
are blue and future (anticipated) actions are red. The bold line in between
policies represents the shared policy (or joint narrative), whereby A(t + 1) can
be prepared based on beliefs about anticipated R(t).

short term plans during any exchange. Furthermore, it will be
difficult to infer precise outcomes of any course of action–and
hence hard to entertain a shared policy. This means I will also be
uncertain about which is the best course of action. Technically,
this results in an imprecise belief distribution over policies, which
is normally associated with negative affect or some form of angst

(Seth and Friston, 2016; Badcock et al., 2017; Peters et al., 2017).
Notice, that now there is not just error in the environment to
deal with but also the uncertainty of the other. As uncertainty
increases, negatively valenced feelings emerge as a reflection of
that change, and in turn reduce precision on the policies related
to that collaboration. The result is the agent is less likely to be
attracted to enact policies of extension with that other person or
robot, and so much more likely to revert to using more habitual
(and already highly precise) ways of reducing error. In short,
almost by definition, engaging with an untrustworthy partner is,
in a folk psychological sense, rather stressful.

Clearly, this active inference formulation is somewhat
hypothetical. There will be many other belief structures that could
be imprecise; for example, prior beliefs about the policies I should
entertain and, indeed, the precision of likelihood mappings (that
map from latent or hidden states of the world to observed
outcomes). The latter is usually considered in terms of ambiguity
(Friston et al., 2017; Veissière et al., 2019). In other words, I
could consider your behavior or responses ambiguous–and that
could render you untrustworthy; even if I have very precise beliefs
about the latent states you are likely to navigate or pursue. In
short, it may be an open question as to whether the precision of
state transitions, likelihood contingencies or prior beliefs about
policies manifest as differences in trust. This brings us to a
fundamental motivation for the formalization of trust in terms
of active inference.

It is possible to build models of dyadic exchange under ideal
Bayesian assumptions using active inference (e.g., Moutoussis
et al., 2014; Friston and Frith, 2015). This means that one
can optimize the prior beliefs inherent in these models to
render observed choice behavior the most likely. Put another
way, one can fit active inference models to empirical behavior
to estimate the prior beliefs that different subjects evince
through their responses (Parr et al., 2018). These estimates
include a subject’s prior beliefs about the precision of various
probability distributions or Bayesian beliefs. In turn, this means
it should be possible to phenotype any given person in an
experimentally controlled (dyadic) situation and estimate the
precision of various beliefs that best explain their behavior.
One could, in principle, then establish correlations between
different kinds of precision and other validated measures
of trust, such as those above. This would then establish
what part of active inference best corresponds to the folk
psychological–and formal definitions of trust. Interestingly, this
kind of approach has already been considered in the context
of computational psychiatry and computational phenotyping;
especially in relation to epistemic trust (Fonagy and Allison,
2014). Epistemic trust is a characteristic of the confidence placed
in someone as a source of knowledge or guidance. Clearly,
this kind of trust becomes essential in terms of therapeutic
relationships and, perhaps, teacher pupil relationships. Finally,
one important determinant of the confidence placed in–or
precision afforded–generative models of interpersonal exchange
is the degree to which I can use myself as a model of
you. This speaks to the fundamental importance of a shared
narrative (or generative model) that underwrites any meaningful
interaction of the sort we are talking about. This can be
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articulated in terms of a generalized synchrony that enables
a primitive form of communication or hermeneutics (Friston
and Frith, 2015). Crucially, two agents adopting the same
model can predict each other’s behavior, and minimize their
mutual prediction errors (Figure 6). This has important
experimental implications, especially in the context of HRC,
where robotic mimicry can be seen as mere self-extension
for the user, leading to what philosophers of technology
call relative transparency (where whatever impacts the robot
also impacts me–see Brey, 2000). The self being the product
of the highest prediction capacities, when another agent
becomes more predictable it also increases the similarity at
the highest levels in the cognitive hierarchy and thereby
facilitates joint action.

This mutual predictability is also self-evident in terms of
sharing the same narrative; e.g., language. In other words,
my modeling of you is licensed as precise or trustworthy if,
and only if, we speak the same language. This perspective
can be unpacked in many directions; for example, in terms
of niche construction and communication among multiple
conspecifics (in an ecological context) (Constant et al., 2019;
Veissière et al., 2019). It also speaks to the potential importance
of taking into account self-models in HRC design, allowing both
users and robots to represent each other’s behavior efficiently.
Indeed, on the above reading of active inference, such shared
narratives become imperative for trustworthy exchanges and
collaboration. Indeed, current models suggest that the rise of
subjectivity and the “self ” are grounded in privileged predictive
capacities regarding the states of the organism compared to the
external environment (Limanowski and Blankenburg, 2013; Apps
and Tsakiris, 2014; Allen and Friston, 2016; Salomon, 2017). As
such, dyadic trust in another agent (biological or artificial) can
be viewed as a process of extending these predictive processes
beyond the body and rendering the external agent as part of
a self model. Moreover, recently robotic interfaces have been
used to induce modulations of self models by interfering with
sensorimotor predictions. This in turn gives rise to phenomena
closely resembling psychiatric symptoms (Blanke et al., 2014;
Faivre et al., 2020; Salomon et al., 2020).

CONCLUSION

In the light of our increasing dependence on technology,
it is worth considering that the largest aspect of human
interactions with machines (their use) essentially rests
upon vague approximative mental models of the underlying
mechanisms (e.g., few smartphone users can understand the
functioning of a computer operating software). Technically,
in active inference, the use of simplified generative models
(e.g., heuristics) is an integral part of self-evidencing. This
follows because the evidence for a generative model (e.g.,
of how a smartphone works) can be expressed as accuracy
minus complexity. In this setting, complexity is the divergence
between posterior and prior beliefs–before and after belief
updating. This means the generative model is required to
provide an accurate account of sensory exchanges (with

a smartphone) that is as simple as possible (Maisto et al.,
2015). In short, the best generative model will be, necessarily,
simpler than the thing it is modeling. This principle holds
true of technology in general (extending the scope of human
perception-action cycles), and automation specifically (replacing
these perception-action capabilities). We have examined
the concept of trust from the standpoint of control and
perception-action loops and found that trust components
(i.e., competence and benevolence) are best casted in terms
of an action-cognitive hierarchy. By examining trust from
the standpoint of active inference, we were also better
able to understand phenomena, such as exploration-related
accidents, and the gradual building of trust with shared goals,
narratives and agency. One of the benefits of this model is
that it applies to any sort of collaborative enterprise between
humans and machines. Although the specifications of the
machine (e.g., its size, its use, etc.) and the nature of the
collaboration (e.g., occasional, constant, autonomous, etc.)
will of course change how and what one models about the
collaborative machine, the trust one feel emerges from the
identical process of modeling their states and behaviors over
time in ways that allow them to be included in one’s own
generative model (in a particular context). HRC is of course
only a first step and it will be interesting going forward
to consider how this model of trust as extended predictive
control practically is applied to the wide variety of cases
where humans and machines are working closely together in
our world today.

As the complexity and autonomy of artificial systems
go up, so too will the complexity and sophistication of the
model we generate about the behaviors of those systems. In
the case of collaborating with artificial intelligence systems
this becomes even more challenging, and would increasingly
require useful opacifications of the underlying decision
making mechanisms that drive those system’s behaviors.
The science of human-robot interaction could make rapid
progress if objective measures of trust were developed, and
the neuroscience of agency does offer such metrics. It is
here that a simulation setup of the sort offered by active
inference could play an important part. Among the potential
biomarkers for agency and control, the N1 component of
event related electrical brain responses–a negative potential
occurring approximately 100 ms after stimulus onset–is
attenuated during self-produced or predicted events, relative
to that observed during externally generated feedback. As
machine become increasingly intelligent, it is to be expected that
not only users will develop more sophisticated (generative)
models of their internal behavior and the reliability of
these behavior, but robots will also adapt to interindividual
differences (Sheridan, 2019b), hence reciprocally monitor the
trustworthiness of users, and thereby allow for safer and more
productive interaction.

In this paper we have proposed a novel view of trust as
extended (predictive) control, a view that is well poised to help
us elucidate the mechanisms underlying trust between humans,
and between humans and technological artifacts. However, this
should only be seen as the beginning. The field of HRC is quickly
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evolving, as the robots we find ourselves collaborating with are
increasingly complex and autonomous. Degree of autonomy
is of particular importance here for thinking about HRCs. As
autonomy increases in our robotic partners different forms of
collaboration are bound to emerge, and new requirements for
trusting those artifacts will be necessary. While we do not have
the space here to fully explore these more complex examples in
current and future HRC, we can at least say that transparency
and ethical-design will become increasingly important. Given
the framework we have proposed, for trust to emerge in these
complex interactions human agents need to be able to accurately
(or at least usefully) model the sorts of decision-trees that the
autonomous artificial agents make use of in various contexts. The
means by which such transparency can be achieved is a topic for
further research.

Furthermore, as artificial intelligence systems evolve in
complexity we will inevitably be interacting with technological
artifacts that are able to model humans in return. This two-way
predictive modeling will result in new forms of collaboration
and new approaches to developing a trusting relationship (see
Demekas et al., 2020). Collaborative dynamics between humans
is already being modeled using the AIF (Ramstead et al., 2020), in
which predictive agents model each other’s generative model in
ways that allow groups to temporarily become a unified error-
minimizing machine. With the possibility of future artificial
autonomous agents using variations of a prediction hierarchy like
humans use, exploring the emergent dynamics between human
and artificial agents in this way becomes possible as well.

KEY POINTS:

• Mind–all brain–is a constructive, statistical organ that
continuously generates hypotheses to predict the most
likely causes of its sensory data.

• We present a model of trust as the best explanation
for a reliable sensory exchange with an extended motor
plant or partner.

• User boredom may be a marker of overreliance.
• Shared narratives, mutual predictability, and self-models

are crucial in human-robot interaction design and
imperative for trustworthy exchanges and collaboration.

• Generalized synchrony enables a primitive form
of communication.

• Shared generative models may allow agents to predict each
other more accurately and minimize their prediction errors
or surprise, leading to more efficient HRC.
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