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Abstract: Notwithstanding the widespread use and promising clinical value of chemotherapy,
the pharmacokinetics, toxicology, and mechanism of mitoxantrone remains unclear. To promote
the clinical value in the treatment of human diseases and the exploration of potential subtle effects
of mitoxantrone, zebrafish embryos were employed to evaluate toxicity with validated reference
genes based on independent stability evaluation programs. The most stable and recommended
reference gene was gapdh, followed by tubα1b, for the 48 h post fertilization (hpf) zebrafish embryo
mitoxantrone test, while both eef1a1l1 and rpl13α were recommended as reference genes for the 96 hpf
zebrafish embryo mitoxantrone test. With gapdh as an internal control, we analyzed the mRNA
levels of representative hepatotoxicity biomarkers, including fabp10a, gclc, gsr, nqo1, cardiotoxicity
biomarker erg, and neurotoxicity biomarker gfap in the 48 hpf embryo mitoxantrone test. The mRNA
levels of gclc, gsr, and gfap increased significantly in 10 and 50 µg/L mitoxantrone-treated 48 hpf
embryos, while the transcript levels of fabp10a decreased in a dose-dependent manner, indicating
that mitoxantrone induced hepatotoxicity and neurotoxicity. Liver hematoxylin–eosin staining and
the spontaneous movement of embryos confirmed the results. Thus, the present research suggests
that mitoxantrone induces toxicity during the development of the liver and nervous system in
zebrafish embryos and that fabp10a is recommended as a potential biomarker for hepatotoxicity
in zebrafish embryos. Additionally, gapdh is proposed as a reference gene for the 48 hpf zebrafish
embryo mitoxantrone toxicity test, while eef1a1l1 and rpl13α are proposed as that for the 96 hpf test.

Keywords: reference genes; stability evaluation; zebrafish embryos; mitoxantrone; toxicity evaluation;
biomarker selection

1. Introduction

Zebrafish is a recent addition to vertebrate models of human disease and drug screening, rapidly
contributing major insights into these fields. Nearly 70% of human genes have orthologues in zebrafish
genomes [1], making zebrafish useful for assigning functions to all proteins encoded by human
genes [2]. More than 75% of human genes implicated in disease have counterparts in zebrafish,
providing an opportunity to analyze their roles in this model system [3]. Zebrafish tumors share
conservation of expression profiles at levels different from tumors of humans [4]. The technology
developments of transgenes and xenografts give rise to abundant zebrafish models of cancer, including
lymphoblastic T-cell leukemia and pancreatic cancer [5]. There is some similarity between zebrafish
and humans in terms of the nervous system, the cardiovascular system, and the digestive system.
Zebrafish tissues and organs (brain, liver, heart, intestinal, etc.) fully develop within 72 hpf (hours
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post fertilization) [6]. Zebrafish embryos have been well recognized as an alternative to traditional
experimental animals.

These factors promote zebrafish as a model for research on clinical drugs. Mitoxantrone
(Novantrone) is an antineoplastic well known for inhibiting DNA replication and RNA synthesis
in both dividing and non-dividing cells [7]. Clinically, mitoxantrone hydrochloride (Figure 1)
injection was in wide use instead of mitoxantrone without hydrochloric acid molecules. Mitoxantrone
hydrochloride has the same curative effect with mitoxantrone, but with much higher solubility. Human
metabolites of mitoxantrone include most unchanged protype drug and some metabolites, including
mono/dicarboxylic acids [8] and cycle naphthoquinoxaline [9]. The metabolites of mitoxantrone have
same bioactivity with parent structure. The bile route is the main metabolism pathway and urine
route also accounts [10,11]. Notwithstanding the widespread use and promising clinical value on the
chemotherapy and the knowledge attained from clinical practice, pharmacokinetics, and toxicology,
the mechanism of mitoxantrone remains unclear. For example, the effect of mitoxantrone on brain
tumors is limited because of its poor ability to cross the blood–brain barrier [12]. The risk and
pathway of mitoxantrone-induced cardiotoxicity and heart failure are vague [13]. Cytostatic agents
and most of their intermediates and metabolites are usually bioactive after in vivo metabolism, making
them bioactive even in the effluent. These agents thus are toxic to aquatic organisms at very low
concentrations [14,15]. As a cytostatic agent, mitoxantrone exhibits bioactivity and likely poses adverse
effects to aquatic organisms. The clinical values in the treatment of human diseases and the exploration
of potential subtle effects of mitoxantrone have yet to be further investigated. Zebrafish offers a new
approach in the research of mitoxantrone.
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Figure 1. The molecular structure formula of mitoxantrone [hydorehloride].

Quantitative real-time PCR (qPCR), including absolute quantification and relative quantification,
is a widely used method to measure transcript abundance and gene expression. The more popular
relative quantification qPCR, however, bears a high possibility of inaccurate results if improper
reference genes are used. Relative quantification qPCR relies on the hypothesis that reference genes are
expressed at the same level under various experimental conditions in an assay. However, no internal
control is constantly expressed across all developmental stages, different tissues, and experimental
conditions [16]. The choice of optimal reference gene has become the most critical influence in
the relative quantification qPCR method [13]. Reported reference genes in zebrafish contain actin
beta 2 (actβ2) [17], glyceraldehyde-3-phosphate dehydrogenase (gapdh) [18], beta-2-microglobulin (β2m) [19],
ribosomal protein L13a (rpl13α) [20,21], and eukaryotic translation elongation factor 1 (eef1) [22] under
different experimental conditions. However, there is no validation of reference genes in zebrafish
toxicity tests for mitoxantrone.

This study was designed to evaluate the toxicity of mitoxantrone on zebrafish embryos and
determine reliable toxicity biomarkers. To begin with, the stability of candidate reference genes for
relative quantification qPCR in zebrafish embryos exposed to mitoxantrone was evaluated with respect
to different developmental stages. With the suggested internal control gapdh, the expression levels
of a set of typical toxicity biomarker genes in 48 hpf zebrafish embryos were normalized for the
developmental toxicity evaluation of mitoxantrone with respect to zebrafish. The present research
suggests that mitoxantrone induces toxicity during the development of the liver and nervous system in
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embryonic zebrafish and that fabp10a might be a potential biomarker for hepatotoxicity. Additionally,
eef1a1l1 and rpl13α are proposed as reference genes for 96 hpf zebrafish embryo mitoxantrone tests.

2. Results

2.1. Transcript Abundance and Amplification Efficiency of Candidate Reference Genes

All 11 candidate reference genes were amplified with an amplification efficiency (E) of 90–110%
and a correlation coefficient (R2) > 0.980 (Table 1). With diluted cDNA of embryonic zebrafish (24 and
48 hpf) from control and mitoxantrone-treated groups as templates, the qPCR assay was carried out
for transcript abundance based on quantification cycle (Cq) values. Among all, eukaryotic translation
elongation factor 1 alpha 1, like 1 (eef1a1la), polymerase (RNA) II (DNA directed) polypeptide D (polr2d),
tubulin, alpha 1b (tubα1b), rpl13α, actβ2, and gapdh were classified as median transcript abundance genes
(10 < Cq < 26). The transcript level of 18S ribosomal RNA (18S rRNA) was much higher than all others,
with a mean Cq value of 9.44, belonging to high transcript abundance genes (Cq < 10). The last four
genes succinate dehydrogenase complex, subunit A, flavoprotein (Fp) (sdha), TATA box binding protein (tbp),
hydroxymethylbilane synthase, b (hmbsb), and β2m were low transcript abundance genes (Cq > 26).

Table 1. Transcript abundance and amplification efficiency of candidate reference genes.

Gene Name E R2 Mean Cq Value Transcript Abundance

18S rRNA 0.941 0.999 9.44 High transcript abundance

eef1a1l1 0.946 0.999 19.46

Medium transcript abundance

rpl13α 1.016 0.998 20.53

actβ2 0.957 0.999 21.58

gapdh 1.016 0.993 22.69

polr2d 0.922 0.994 25.4

tubα1b 1.001 0.993 25.86

sdha 0.963 0.997 27.92

Low transcript abundance
tbp 0.972 0.996 27.97

hmbsb 0.901 0.987 29.56

β2m 0.959 0.984 31.7

2.2. Stability Evaluation of Candidate Reference Genes—NormFinder, geNorm, and BestKeeper Analysis

To evaluate the expression stability of reference genes of zebrafish embryos for mitoxantrone
test in different developmental stages, three independent algorithm programs—NormFinder [23],
geNorm [24], and BestKeeper [25]—were adopted to calculate the stability or variability values.

According to the NormFinder output results, the stability ranking of candidate reference genes of
the 48 hpf zebrafish embryo mitoxantrone test, in ascending order of M value, was gapdh > eef1a1l1
> tubα1b > sdha > tbp > actβ2 > polr2d > rpl13α > hmbsb > β2m >18S rRNA. The higher the M value,
the less stable the gene. By stepwise elimination of the gene with the highest M value (that is the least
stable gene), the most stable candidate reference gene was gapdh. According to the geNorm output
results, the stability ranking of candidate reference genes of the 48 hpf zebrafish embryo mitoxantrone
test, in ascending order of M value, was gapdh > sdha > tubα1b > eef1a1l1 > actβ2 > rpl13α > β2m > tbp >
polr2d > hmbsb > 18S rRNA. Similar as NormFinder analysis, geNorm suggested that the most stable
gene was gapdh. The stability was meanwhile analyzed using the BestKeeper program, with geomean
values based on Cq values of candidate reference genes. Each gene was given a geomean value, and
the lower ranking values represent more stable genes. The descending stability order of candidate
genes in stability was 18S rRNA> actβ2 > β2m > eef1a1l1 > gapdh > tubα1b > sdha > rpl13α > polr2d > tbp
> hmbsb (Table 2).
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Table 2. Stability analysis of candidate reference genes in the zebrafish embryo mitoxantrone test
before 48 hpf *.

M Value * NormFinder geNorm BestKeeper

rpl13α 0.021 0.678 1.70
actb2 0.013 0.668 1.22
polr2d 0.020 0.842 2.00

18sRNA 0.034 1.517 0.37
hmbsb 0.026 1.266 2.37
sdha 0.012 0.589 1.48
tbp 0.012 0.814 2.00
β2m 0.029 0.790 1.31

eef1a1l1 0.009 0.667 1.35
gapdh 0.007 0.574 1.45
tubα1b 0.010 0.613 1.46

* The higher the M value, the less stable the gene. The three most stable genes were marked with the underline for
each algorithm.

As both suggested by NormFinder and geNorm programs (Table 2), gapdh was the most stable
candidate reference gene with a minimum M value. In the second place, the tubα1b gene was relatively
stable. The 18S rRNA gene was not recommended as a reference gene in the present study, whereas
with the least M value in BestKeeper analysis. The main reason was that the 18S rRNA gene exhibited
a very high transcript abundance. Thus, gapdh, followed by tubα1b, was recommended as a reference
gene for the 48 hpf zebrafish embryo mitoxantrone test.

According to the NormFinder output results (Table 3), the stability ranking of candidate reference
genes of the 96 hpf zebrafish embryo mitoxantrone test, in ascending order of M value, was tbp >
eef1a1l1 > polr2d > actβ2 > rpl13α > β2m > sdha > hmbsb > tubα1b > 18S rRNA > gapdh. geNorm program
analyzed and ranked the gene stability as rpl13α > tbp > actβ2 > polr2d > eef1a1l1 > β2m > sdha > hmbsb >
tubα1b > 18S rRNA > gapdh. As for the BestKeeper output, the rank was as follows: 18S rRNA > eef1a1l1
> rpl13α > actβ2 > polr2d > tbp > hmbsb > gapdh > β2m > sdha > tubα1b. The M values of candidate
reference genes in the 96 hpf embryo mitoxantrone test were generally higher than those in the 48 hpf
embryo mitoxantrone test, suggesting that the expression levels were fluctuant. The most stable genes
included eef1a1l1, rpl13α, and tbp. As the expression of tbp was classified as low transcript abundance,
the present study suggests that eef1a1l1 and rpl13α should be employed as reference genes for the
96 hpf zebrafish embryo mitoxantrone test.

Table 3. Stability analysis of candidate reference genes in the zebrafish embryo mitoxantrone test
before 96 hpf *.

M Value * NormFinder geNorm BestKeeper

gapdh 0.083 3.910 1.93
sdha 0.008 1.731 2.05

eef1a1l1 0.002 1.578 1.17
rpl13α 0.004 1.478 1.43
actβ2 0.004 1.529 1.56

tubα1b 0.034 2.139 2.62
tbp 0.001 1.514 1.61

polr2d 0.002 1.539 1.56
β2m 0.005 1.666 1.93

hmbsb 0.009 1.761 1.74
18S rRNA 0.080 2.948 0.74

* The higher the M value, the less stable the gene. The three most stable genes were marked with the underline for
each algorithm.
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2.3. Expression Normalization and Comparison of Target Genes Based on Gapdh Internal Control

The expression levels of a set of target genes were normalized with gapdh. The target set included
the remaining ten genes—18S rRNA, polr2d, tbp, hmbsb, rpl13α, actβ2, tubα1b, eef1a1l1, sdha, and
β2m—used in this study. To analyze the inducement factors for expression levels changing of target
changes, the comparisons between embryos at 24 hpf and 48 hpf, exposed and unexposed embryos at
24 hpf, exposed and unexposed embryos at 48 hpf were conducted respectively. Compared to the 24 hpf
control (0 µg/L mitoxantrone) groups, the normalized expression levels of four genes, including hmbsb,
polr2d, rpl13α and tbp significantly decreased (p < 0.05), while two genes 18S rRNA, β2m increased
significantly (p < 0.05) at the 48 hpf control groups (Figure 2a); the normalized expression levels of
five genes, including 18S rRNA, eef1a1l1, polr2d, rpl13α and tbp decreased significantly, while hmbsb
and β2m increased significantly at 24 hpf embryos with 10 µg/L mitoxantrone treatment (Figure 2b).
Notably, compared to the 48 hpf control groups, the normalized expression levels of 18S rRNA, polr2d,
tbp, hmbsb, rpl13α, actβ2, tubα1b, eef1a1l1, sdha, and β2m showed no changes at 10 µg/L mitoxantrone
exposed 48 hpf embryos (Figure 2c).
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2.4. The Expression Analysis of Toxicity Biomarkers in Embryonic Zebrafish to Mitoxantrone Exposure 

The normalized expression levels of common zebrafish toxicity biomarker genes were analyzed 
in 48 hpf embryonic zebrafish to gradient concentrations of mitoxantrone (Figure 3). The maximum 
non-lethal concentration for 96 h (96 h-LC0) was 100 μg/L mitoxantrone. Therefore, we conducted 
present research on lower concentrations illuminating the sublethal effect of mitoxantrone on embryo 
development. The data showed that the expression of fabp10a, gclc, gsr, and nqo1 changed significantly 

Figure 2. Normalization expression analysis of a set of target genes with gapdh as a reference gene.
(a) The relative normalized expression levels of target genes at 48 hpf unexposed embryos comparing
to 24 hpf unexposed embryos; (b) the relative normalized expression levels of target genes at 24 hpf
embryos with 10 µg/L mitoxantrone treatment comparing to 24 hpf unexposed embryos; (c) the relative
normalized expression levels of target genes at 48 hpf embryos with 10 µg/L mitoxantrone treatment
comparing to 48 hpf unexposed embryos. Each group was conducted in triplicate (n = 3). All values are
expressed as means ± standard error of the mean (SEM). * represents significant difference compared
to control, p < 0.05.

2.4. The Expression Analysis of Toxicity Biomarkers in Embryonic Zebrafish to Mitoxantrone Exposure

The normalized expression levels of common zebrafish toxicity biomarker genes were analyzed
in 48 hpf embryonic zebrafish to gradient concentrations of mitoxantrone (Figure 3). The maximum
non-lethal concentration for 96 h (96 h-LC0) was 100 µg/L mitoxantrone. Therefore, we conducted
present research on lower concentrations illuminating the sublethal effect of mitoxantrone on embryo
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development. The data showed that the expression of fabp10a, gclc, gsr, and nqo1 changed significantly
in 48 hpf embryos exposed to mitoxantrone. Compared to the control, the mRNA levels of gclc,
and gsr of 48 hpf embryos to 10 and 50 µg/L mitoxantrone were higher, while their mRNA levels
in 100 µg/L mitoxantrone group were lower. The mRNA levels of fabp10a decreased as exposure
concentrations increased. These results suggest that mitoxantrone potentially induces hepatotoxicity
in the developmental period of zebrafish embryos.

The classic neurotoxicity biomarker gene gfap was also influenced by mitoxantrone exposure.
The mRNA levels of gfap increased significantly in 10 and 50 µg/L mitoxantrone-treated 48 hpf
embryos and decreased in the 100 µg/L mitoxantrone group. These results suggest that mitoxantrone
induces neurotoxicity in the embryonic development period of zebrafish.

The mRNA levels of erg increased in 48 hpf embryos exposed to 10 µg/L mitoxantrone. As the
mitoxantrone concentrations rose to 50 and 100 µg/L, the expression of erg became commensurate
with the control.
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2.5. Liver Histopathology Analysis

The liver histopathology was analyzed at 72 hpf zebrafish embryos when the liver tissues
histogenesis was completed. Liver hematoxylin-eosin (HE) staining showed abnormal pathological
observation, including irregularly and loosely arranged liver tissue, vacuolization, and swelling
hepatocytes in the liver tissue of some zebrafish embryos (72 hpf) exposed to 10 µg/L mitoxantrone
(Figure 4b). More serious pathological abnormity was observed in liver tissues of embryos (72 hpf)
exposed to 50 and 100 µg/L mitoxantrone (Figure 4c,d), including irregular arrangement, reduced size,
hepatocyte constriction and pyknosis. The histopathology analysis confirmed the mitoxantrone-induced
hepatotoxicity under gradient concentrations exposure, which was consistent with results from the
expression analysis of the toxicity biomarkers.
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Figure 4. The hematoxylin-eosin staining microphotographs of zebrafish liver (72 hpf) exposed to
gradient concentrations of mitoxantrone (×400). The zebrafish embryos exposed to 0 (a), 10 (b), 50 (c)
and 100 (d) µg/L mitpxantrone were observed at 72 hpf with hematoxylin–eosin staining. The black
arrow indicated the liver tissues. The scale bar indicated 50 µm.

2.6. Spontaneous Embryo Movement

Neurotoxicity was also observed with decreased spontaneous movement. The spontaneous
movement was recorded in 24 hpf zebrafish embryos every 60 s. The data showed that the spontaneous
movement rates increased significantly in 10 µg/L mitoxantrone exposed embryos (p < 0.05), and
the spontaneous movement rates decreased significantly when zebrafish embryos were exposed to
mitoxantrone concentrations higher than 100 µg/L in a dose-dependent manner (p < 0.05) (Figure 5).
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Figure 5. The numbers of spontaneous movement of zebrafish embryos (24 hpf) in 60 s. Eight embryos
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* represents significant difference compared to control, p < 0.05.

3. Discussion

3.1. The Parameters Related with Reference Gene Stability

qPCR data analysis first involved subtracting the Cq values of the internal controls from the Cq
values of target genes to obtain ∆Ct. ∆Ct values were then compared to the control group for ∆∆Ct
or further analysis. The Cq values of internal controls and target genes were the algorithm basis of
the relative quantitative real-time PCR assay. The Cq value represented the initial concentration of
the template. If the concentration became too high, the amplification would be insufficient; if the
concentration was too low, the amplification curve would be non-linear. Among the 11 candidate
genes in the study, eef1a1la, rpl13α, actβ2, gapdh, polr2d, and tubα1b were classified as median transcript
abundance genes, which were more appropriate as reference genes.

Normalization in relative quantitative qPCR assay was based on the linear relationship of
Cq values between target genes and reference genes; namely, the regression coefficient was 1 [26].
The deviation of the regression coefficients from 1 resulted from the drift of E values (theoretically
100%) of reference genes and target genes. E values far from 100% might yield misleading results.
In this study, we estimated E values of all primers using the dilution series method (calibration curve),
confirming that E values ranged from 90 to 110%. Thus, the regression coefficient was nearly 1.

Another important parameter was the correlation coefficient (R2). R2 represented the correction
of reference gene abundance and the total amount of mRNA/cDNA presented in the samples. In this
study, R2 values of all genes were more than 0.980, meaning a high level of positive linear relation
between candidate reference gene abundance and the total amount of samples.

3.2. Validation of Reference Genes Based on Three Independent Algorithm Programs

In the present study, NormFinder [23], geNorm [24] and BestKeeper [25] were used respectively
to grade and to rank the stability of given candidate reference genes. The independent algorithm
programs suggested gapdh as the most stable reference gene, followed by tubα1b, for the 48 hpf zebrafish
embryo mitoxantrone test. As for the 96 hpf zebrafish embryo mitoxantrone test, both eef1a1l1 and
rpl13α genes were suggested as reference genes with more stability than the other candidates. There
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were some differences in stability rank of candidate reference genes from three algorithm programs,
which was acceptable because of their difference in the raw data input and mathematical approach.

The gapdh gene belonged to the earliest validated reference genes in zebrafish embryos, including
cross-subfamily cloned embryos [27]. In the present study, the mRNA level of gapdh was stable in the
48 hpf zebrafish embryos exposed to mitoxantrone. In addition, its expression in zebrafish embryos
exposed to Microcystin-LR [28] was constant. In various tissues of adult zebrafish, gapdh was also
a recommendatory reference gene [22]. Recently, RNA-seq analysis showed that gapdh expression
remained unchanged in adult zebrafish upon TDCIPP exposure [19]. According to present research,
combined with these previous reports, it is highly speculated that the mRNA levels of zebrafish gapdh
were relatively stable in the embryo stage.

In zebrafish, eef1α1l1, encoding eukaryotic translation elongation factor 1 alpha 1 for protein
translation, was a relatively stable reference gene. The gene eef1α1l1 has been reported as a reference
gene for ovarian follicles of adult zebrafish [29], embryos [30], and larvae exposed to BPA structural
analogs [31]. Similarly, BestKeeper and NormFinder in the present study suggested eef1α1l1 as
a reference gene for the 96 hpf zebrafish embryo mitoxantrone test.

In early development research among various tissues of zebrafish embryos (<48 hpf), rpl13α was
reported as a reference control in qPCR [32]. In more reports, rpl13α was used as a reference gene with
other genes. In a locomotor activity assessment of 7 dpf zebrafish embryos, rpl13α was combined with
eef1α as a reference gene for normalization [33]. In fast myotomal muscle fibers recruitment research
of adult zebrafish, rpl13α and actβ2 were employed for normalization in qPCR [21]. In research on
adult zebrfish exposed to 17α-ethinylestradiol, tubα1b served as a reference gene along with actβ2
and eef1α [34]. In practical use, no genes can act as a universal reference under different experimental
conditions [16,17]. Usually, a combination of two or more stable reference genes as an internal control
for normalizing is suggested. However, the combination of gapdh and tubα1b was not recommended,
due to its less stability value than single gapdh gene in 48 hpf embryos mitoxantrone test.

The present research confirmed again that not all housekeeping genes were expressed constantly
under different time courses, tissues, and experimental conditions. One of the most frequently
used reference genes of zebrafish, actβ2 [18,21,34–38], was found to be inappropriate as an internal
control in the present study. The mRNA levels of actβ2 varied between 24 and 48 hpf. Similarly, 18S
rRNA, tbp, polr2d, and β2m were unstable during the embryonic development period of zebrafish.
The combination of eef1a1l1 and rpl13α was advisable for the internal control in the 96 hpf zebrafish
embryo mitoxantrone study.

3.3. Evaluation of Toxicity and Biomarker of Embryonic Zebrafish to Mitoxantrone

Representative toxicity biomarkers of liver included gclc, gsr, nqo1, and fabp10a. The proteins
encoded by gene gclc (glutamate-cysteine ligase, catalytic subunit), gsr (glutathione reductase), and nqo1
(NAD(P)H dehydrogenase, quinone 1) all participated in oxidation and detoxification in liver tissue, whose
abnormal expression represented hepatotoxicity [39]. The catalytic subunit of glutamate-cysteine
ligase, encoded by gclc, catalyzed the formation of gamma glutamate-cysteine from L-glutamate and
L-cysteine. The expression and activity of GCLC reflected susceptibility to oxidative stress [40]. The
gsr gene encoded for glutathione-disulfide reductase (also named glutathione reductase), an enzyme
catalyzing the reduction of glutathione disulfide to the sulfhydryl form glutathione. The latter was
a critical molecule in resisting oxidative stress [41]. The high levels of gsr expression suggested the
increase levels of glutathione, indicating the activity of antioxidant defense system, protecting cells
from damage from mitoxantrone. The gene nqo1 encoded for a cytoplasmic 2-electron reductase
DT-diaphorase, reducing quinones to hydroquinones [14]. The overexpression of NQO1 was reported
to participate in the p53 stability regulation mechanism by increasing the content of NAD+, preventing
the canceration of cells [42]. Also, NQO1 played a key role in ubiquinone and vitamin E quinone
metabolism. These quinones protected cellular membranes from peroxidative injury in their reduced
state [43]. The expression of gclc, gsr, and nqo1 was induced by low concentrations of mitoxantrone
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other than high concentrations, implying different action modes of mitoxantrone in liver. The gene
fabp10a (fatty acid binding protein 10a, liver basic), encoding fatty acid binding protein, was exclusively
expressed in zebrafish liver [44]. The coding protein transported proteins for fatty acids and other
lipophilic substances [45]. fabp10a was widely used as a hepatotoxicity biomarker in zebrafish [46,47].
Mitoxantrone exposure inhibited the expression of fabp10a mRNA in 48 hpf embryonic zebrafish
in a dose-dependent manner. The data suggest that fabp10a might act as a biomarker of zebrafish
embryos to mitoxantrone. The expression level of fabp10a decreased with the rise of mitoxantrone
concentrations, suggesting mitoxantrone hepatotoxicity. Histopathological analysis of liver tissue
showed hepatopathy, confirming the mitoxantrone-induced hepatotoxicity, even at a low exposure
concentration. The results were consistent with previous rodent researches. Hepatotoxic signs, reduced
hepatic levels and increased oxidized glutathione, and decreased ATP hepatic levels were reported in
rat liver with mitoxantrone treatment, confirming the mitoxantrone-induced hepatotoxicity in rat [48].

According to previous cell experiments in vitro, mitoxantrone is oxidized by a cytochrome
P450-mediated reaction generating quinone intermediates and quinonediimine metabolites [13]. ROS
increase and mild oxidative stress were reported after mitoxantrone treatment in rat H9c2 cells [49].
In present study, with the increase expression levels of oxidation and detoxification related genes
together with histopathological results, we inferred that mitoxantrone induced oxidative damage in
zebrafish embryo liver in vivo.

The erg gene, also named the ether-à-go-go-related gene, was expressed in the early development
stage of zebrafish embryos [50]. The erg gene coded for the alpha subunit of a potassium ion channel,
contributing to the electrical activity of the heart [51]. erg was a popular toxicity biomarker for the
heart [52]. Compared to the control, the expression level of the erg gene in embryonic zebrafish exposed
to mitoxantrone showed no significant change.

In this study, neurotoxicity was assessed according to the mRNA level of gfap. Glial fibrillary
acidic protein (GFAP) is a type III intermediate filament protein exclusively expressed in astrocytes
(AS) and considered a particular component of AS [53]. Thus, the expression of the gfap gene was
associated with nervous system development. The gfap gene was widely adopted as a neurotoxicity
biomarker in zebrafish [54]. The mRNA level of gfap in 48 hpf embryonic zebrafish was affected
by mitoxantrone. These results suggest that mitoxantrone might induce neurotoxicity in embryonic
zebrafish. Mitoxantrone exposure decreased the rate of spontaneous zebrafish embryo movement in the
study, confirming that mitoxantrone had potential neurotoxic effects on zebrafish embryo development.
Spontaneous embryo movement was a result of the combined action of muscle and neural systems.
Spontaneous zebrafish embryo movement has been employed broadly as a toxicological endpoint for
the chemical assessment on fish [55]. The rate of spontaneous zebrafish embryo movement decreased
after exposure to herbicide cyhalofop-butyl [56], bactericide difenoconazole [57], and heart medications
propranolol [58], but increased after pesticide biphenthrin exposure [59]. The underlying mechanism
might be related to the protein channels on the cell membrane. For example, propranolol inhibited
spontaneous movement by reducing the activity of sodium channels [59], whereas biphenthrin
activated the spontaneous movement by elongating the open time of protein channels [60].

In conclusion, the most stable gene was gapdh, followed by tuba1b, in the 48 hpf embryo
mitoxantrone test. Both eef1a1l1 and rpl13α are recommended as reference genes in the 96 hpf zebrafish
embryo mitoxantrone test. The single gene gapdh was proposed as a reference gene in the zebrafish
embryo toxicity test of mitoxantrone after stability re-evaluation and comparison. With gapdh as
an inner control, the mRNA levels of representative hepatotoxicity toxicity biomarkers, such as
fabp10a, gclc, gsr, nqo1, and neurotoxicity biomarker gfap were changed after mitoxantrone exposure,
indicating that mitoxantrone induced hepatotoxicity and neurotoxicity. Liver pathological analysis
and spontaneous embryo movement supported these results. The transcript levels of fabp10a decreased
in a dose-dependent manner, establishing a potential biomarker of mitoxantrone hepatotoxicity in
zebrafish embryos. The data suggest that mitoxantrone might induce toxicity during the development
of the liver and nervous system in embryonic zebrafish.
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4. Materials and Methods

4.1. Zebrafish Maintenance

Wild type zebrafish AB (Danio rerio) parents were purchased from China Zebrafish Resource
Center (CZRC) and maintained in our laboratory. The husbandry protocol was in accordance with the
Zebrafish Book [61]. The zebrafish facility (ESEN EnvironScience, Beijing, China) was maintained under
a day/night cycle of 14 h/10 h, 28 ± 0.5 ◦C with water conditions of 500–550 µS/cm and pH 7.0–7.5.
Fish were fed live brine shrimp 3 times a day.

4.2. Zebrafish Embryo Toxicity Test

Mitoxantrone hydrochloride (CAS: 70476-82-3, M6545) was purchased from Sigma. Mitoxantrone
was dissolved in an E3 buffer (5 mM NaCl, 0.17 mM KCl, 0.33 mM CaCl2, 0.33 mM MgSO4) to a final
concentration of 1 g/L [62]. Stock solution was stored in the dark at 4 ◦C. Before the test, stock solution
was diluted with an E3 buffer to working concentrations (0, 10, 50 and 100 µg/L) and pre-conditioned
at 28 ◦C. The maximum non-lethal concentration for 96 h (96 h-LC0) was 100 µg/L mitoxantrone.
The zebrafish embryo toxicity test was an improvement on the fish embryo acute toxicity (FET) test,
based on OECD 236 guidelines [55]. Healthy wild-type zebrafish, at a 1:1 male/female ratio, were
placed in segregated spawning tanks the day before the FET experiment. The tanks were made of food
grade plastic and transparent. Each tank has a capacity of 3 L. Dividers were removed after the onset
of the light cycle the next day, and embryos were collected 30 min afterward. Embryos were rinsed
twice in the E3 buffer before the observation and selection of fertilized, synchronously developed eggs
under stereomicroscopy Model S8 AP0 (Carl Zeiss, Oberkochen, Germany). Selected embryos were
randomly transferred into pre-conditioned 6-well plates 703001 (Nest Biotechnology, Wuxi, China)
at 3 hpf. The plates were put into 28 ± 0.5 ◦C chamber one hour ahead of exposure. Each well was
distributed with 10 embryos and 6 mL of 0 (E3 buffer control), 10, 50 and 100 µg/L freshly diluted
mitoxantrone. Each plate with a concentration of mitoxantrone or an E3 buffer control was considered
a group. Each group was carried out in triplicate. All plates were conditioned at 28 ± 0.5 ◦C in a 14 h
light/10 h dark chamber. 70% volume of solutions in each well were replaced, and dead embryos were
abandoned every 24 h.

4.3. RNA Extraction and Reverse Transcription

Embryos from the control groups and the mitoxantrone treatment groups were collected at 24,
48, 72, and 96 hpf, separately. Discarded the exposure solutions as much as possible. Thirty embryos
in each 1.5 mL Eppendorf tube were immediately frozen in liquid nitrogen. RNA was extracted
with TRizol reagent (Invitrogen, Shanghai, China) following the manufacturer’s instructions. RNA
was dissolved in RNase-free water and qualified by Nanodrop 2000 and agarose gel electrophoresis.
Qualified RNA was reversely transcripted for cDNA via PrimeScript RT reagent Kit with gDNA Eraser
(TaKaRa, Dalian, China) following the manufacturer’s instructions. All samples were stored at −80 ◦C.

4.4. Primer Design and Quantitative Real-Time PCR

A set of candidate reference genes were chosen according to published articles for zebrafish
embryo study (Table 4). These genes were reported as an internal control in qPCR studies of zebrafish
under various conditions. The primer designing procedure is as follows: (a) Search the sequence
information of reported genes or their orthologue genes in zebrafish. (b) Pick up primers based on
the online software Primer3web version 4.0.0 (http://bioinfo.ut.ee/primer3/, accessed on 20 April
2016). (c) Verify primer specificity via the online software Primer-BLAST (http://www.ncbi.nlm.nih.
gov/tools/primer-blast/index.cgi?LINK_LOC=BlastHome, accessed on 20 April 2016). (d) Synthesize
primers with Shanghai Sangon.

http://bioinfo.ut.ee/primer3/
http://www.ncbi.nlm.nih.gov/tools/primer-blast/index.cgi?LINK_LOC=BlastHome
http://www.ncbi.nlm.nih.gov/tools/primer-blast/index.cgi?LINK_LOC=BlastHome
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Table 4. Candidate reference genes of zebrafish embryos used in the toxicity test.

Gene Symbol Gene Name Accession Function Primer Sequence (5′–3′)

18S rRNA [63,64] 18S ribosomal RNA Generic 18S ribosomal RNA F: cacttgtccctctaagaagttgca
R: ggttgattccgataacgaacga

eef1a1l1 [29–31] eukaryotic translation elongation
factor 1 alpha 1, like 1 NM_131263.1 Factor for protein translation F: CTGGAGGCCAGCTCAAACAT

R: ATCAAGAAGAGTAGTACCGCTAGCATTAC

rpl13α [58,61] ribosomal protein L13a NM_212784 Genetic Information Processing F: TCTGGAGGACTGTAAGAGGTATGC
R: AGACGCACAATCTTGAGAGCAG

actβ2 [18] actin, beta 2 NM_181601.4 Cytoskeletal structural protein F: TCTGGTGATGGTGTGACCCA
R: GGTGAAGCTGTAGCCACGCT

Gapdh [19,27] glyceraldehyde-3-phosphate
dehydrogenase NM_001115114.1 Catalytic enzyme in glycolytic pathway F: GATACACGGAGCACCAGGTT

R: CAGGTCACATACACGGTTGC

polr2d [27] polymerase (RNA) II (DNA
directed) polypeptide D NM_001002317.2 Enzyme for transcription F: CCAGATTCAGCCGCTTCAAG

R: CAAACTGGGAATGAGGGCTT

tubα1b [65] tubulin, alpha 1b NM_194388 Cytoskeletal structural protein F: TGGAGCCCACTGTCATTGATG
R: CAGACAGTTTGCGAACCCTATCT

Sdha [22] succinate dehydrogenase complex,
subunit A, flavoprotein (Fp) NM_200910 Enzyme in tricarboxylic acid cycle F: GAGTCTCCAATCAGTATCCAGTAGTAGA

R: CACTGTGTGCGAGCGTGTTG

Tbp [66] TATA box binding protein NM_200096.1 Transcription factor F: CTTACCCACCAGCAGTTTAGCAG
R: CCTTGGCACCTGTGAGTACGACTTTG

hmbsb [22] hydroxymethylbilane synthase, b NM_001024388.1 Enzyme in heme synthesis F: AAGAGCGTAATAGGCACCAGTTC
R: GTTCTCCCAGCCCATTCTCTTC

β2m [67] beta-2-microglobulin NM_131163 Beta chain of a major histocompatibility
complex I molecular

F: AGGATTGTCTGCTTGGCTCTCT
R: GGAGTGGAGACTTTCCCCTGTAC
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All primer pairs were testified for amplification efficiency (E) and correlation coefficient (R2).
Zebrafish cDNA of the 24 hpf control group was gradually diluted as 50 (original gradient), 5−1,
5−2, 5−3, and 5−4. With the gradients and negative control as a template, all primers were testified
in a CFX96 qPCR (Bio-Rad, Hercules, CA, USA) assay for an amplification curve. Based on the
amplification curve, samples from both control and treatment groups (24, 48, 72, and 96 hpf) were
diluted to a certain concentration and carried out for the qPCR assay. All reaction systems (25 µL) were
as follows: 12.5 µL of SYBR Green Premix (Tiangen, Beijing, China), 2 µL of cDNA template, primer
forward/reverse 0.5 µM, add MilliQ water up to 25 µL. The reaction procedure was as follows: 95 ◦C
for 15 min; 95 ◦C for 10 s, and 60 ◦C for 30 s. 40 cycles. Followed a melt curve procedure: 65–95 ◦C
with increments of 0.5 ◦C every 5 s. Quantification cycle (Cq) cutoffs of 40 were applied. All reactions
were carried out in triplicates.

4.5. Stability Evaluation of Candidate Reference Geness

Amplification curves were analyzed for primer quality via CFX Manager software (Bio-Rad).
Efficiency, R2, and Cq values and relative quantities were collected to evaluate the transcript abundance and
variability. Three independent algorithm programs: geNorm [24], NormFinder [23], and BestKeeper [25]
analyzed the stability of the reference gene set, separately.

4.6. Expression Normalization of Target Genes Based on Gapdh as Internal Control

The stability of the recommended most stable gene gapdh was re-evaluated and compared with
Bio-Rad CFX Manager software. The expression of a set of zebrafish embryo target genes was
normalized with the suggested reference gene gapdh as an internal control.

4.7. Expression Analysis of Toxicity Biomarkers in Embryonic Zebrafish Exposure to Mitoxantrone

The expression levels of classical toxicity biomarker genes fabp10a, gclc, gsr, nqo1, gfap, and erg in
48 hpf embryonic zebrafish exposed to gradient mitoxantrone (0, 10, 50, and 100 µg/L) were analyzed
with gapdh as internal control. The primers (Table 5) were designed and synthesized as described in
Section 2.4. All reaction systems (25 µL) were as follows: 12.5 µL of SYBR Green Premix (Tiangen,
Beijing, China), 2 µL of cDNA template, and 0.5 µM primer forward/reverse. Up to 25 µLof MilliQ
water was added. The reaction procedure was as follows: 95 ◦C for 15 min; 95 ◦C for 10 s, and 60 ◦C
for 30 s. 35 cycles. 65–95 ◦C with increments of 0.5 ◦C every 5 s for melt curve. Quantification cycle
(Cq) cutoffs of 35 were applied. All reactions were carried out in triplicates.

Table 5. The primers sequence of toxicity genes in embryonic zebrafish.

Gene
Symbol Gene Name Accession Primer Sequence (5′–3′)

fabp10a fatty acid binding protein 10a,
liver basic NM_152960.1 F: CCAGTGACAGAAATCCAGCA

R: GTTCTGCAGACCAGCTTTCC

gclc glutamate-cysteine ligase,
catalytic subunit NM_199277.2 F: AAAATGTCCGGAACTGATCG

R: AACGTTTCCATTTTCGTTGC

gsr glutathione reductase NM_001020554.1 F: CAACCTTGAAAAGGGCAAAA
R: AAACTGGATCCTGGCACATC

nqo1 NAD(P)H dehydrogenase, quinone 1 BC065622.1 F: CTCAAGGATTTGCCTTCAGC
R: CGCAGCACTCCATTCTGTAA

gfap glial fibrillary acidic protein NM_131373.2 F: CCTGACCTGTGACCTGGAAT
R: TCCAGCAGCTTCCTGTAGGT

erg potassium voltage-gated channel,
subfamily H (eag-related), member 6a NM_212837.1 F: CAGATGCTCCGTGTGAAAGA

R: TGCGGTTCAGATGAAGACAG
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4.8. Liver HE Staining

During the toxicity test, three exposed embryos in each group (0, 10, 50 and 100 µg/L) at were
collected for HE staining at 72 hpf. At 72 hpf, when the liver tissues developed and functioned
completely, zebrafish embryos were collected without exposure solutions and infiltrated in 4%
paraformaldehyde for tissue fixation in the dark for 24 h. The tissue biopsies and staining protocol
were conducted on the basis of the previous reports [68]. After dehydration with gradient ethanol and
dimethylbenzene, tissues were immersed in liquid paraffin at 65 ◦C followed by cooling at −20 ◦C.
Embedded tissues were trimmed, sliced (to a thickness of 3 µm), and stored at room temperature.
The tissue slides were rehydrated with dimethylbenzene and gradient ethanol for hematoxylin
(Sinopharm CAS#17372-87-1, Beijing, China) and eosin (Sinopharm CAS#517-28-2, Beijing, China)
staining. Finally, slides were mounted in balsam neutral for storage and microscopic observation
(Olympus BX53, Tokyo, Japan).

4.9. Microscopic Observation and Counting

The zebrafish embryo toxicity test was conducted from 3 hpf in pre-conditioned 6-well plates.
Each well was distributed with 10 embryos and 6 mL of 0 (E3 buffer control), 10, 50, 100, 270 and
500 µg/L freshly diluted mitoxantrone. Each plate with a concentration gradient or an E3 buffer
control was considered a group. All plates were conditioned at 28 ± 0.5 ◦C in a 14 h light/10 h dark
chamber. Each group was repeated in six biological repeats. Eight embryos in each group (0, 10, 50,
100, 270, and 500 ug/L mitoxantrone) were observed under microscope at 24 hpf. The rates of embryo
(n = 48 totally in each group) spontaneous movement during 60 s were recorded. All values were
expressed as means ± standard error of the mean (SEM).

4.10. Statistical Analysis

A statistical analysis and drawing was conducted, mainly based on OriginPro 8.0. The data
was analyzed by the Levene test and two-way analysis of variance (ANOVA) at a significant level of
5% (p < 0.05). A post-hoc test after the ANOVA was conducted in SPSS 17.0. Multiple comparisons
between the groups were performed using the Student–Newman–Keuls test method.
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