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ABSTRACT

We describe a multiple alignment program named
MAP2 based on a generalized pairwise global align-
ment algorithm for handling long, different intergenic
and intragenic regions in genomic sequences. The
MAP2 program produces an ordered list of local mul-
tiple alignments of similar regions among sequences,
where different regions between local alignments
are indicated by reporting only similar regions. We
propose two similarity measures for the evaluation
of the performance of MAP2 and existing multiple
alignment programs. Experimental results produced
by MAP2 on four real sets of orthologous genomic
sequences show that MAP2 rarely missed a block of
transitively similar regions and that MAP2 never
produced a block of regions that are not transitively
similar. Experimental results by MAP2 on six
simulated data sets show that MAP2 found the
boundaries between similar and different regions
precisely. This feature is useful for finding conserved
functional elements in genomic sequences. The
MAP2 program is freely available in source code
form at http://bioinformatics.iastate.edu/aat/sas.html
for academic use.

INTRODUCTION

High-quality human genomic sequences have been produced
and genomic sequences from other species including mouse,
rat, chicken, dog and fish are becoming available. Genomic
sequences from other species are useful in understanding of
the human genome through comparative analysis (1–8). A
fundamental tool in comparative analysis of genomic
sequences is a multiple sequence alignment program for com-
paring genomic sequences. A number of alignment programs
have recently been developed to compare genomic sequences
of at least 100 kb (9–11). Those recent programs have
increased the capacities of the previous programs by two to

four orders of magnitude. However, because multiple seq-
uence alignment is a computationally difficult problem (12),
continued improvements to the existing techniques are neces-
sary to meet the needs of comparative analysis of genomic
sequences.

We describe a multiple alignment algorithm based on a
pairwise alignment algorithm recently developed by Huang
and Chao (13). The pairwise alignment algorithm extends the
Needleman–Wunsch algorithm (14) to handle genomic
sequences with similar regions (such as exon and regulatory
regions) separated by different regions (such as intron and
intergenic regions). In a single step of dynamic programming
computation, the pairwise algorithm produces an optimal
alignment consisting of an ordered list of aligned similar
regions separated by unaligned different regions. The multiple
alignment algorithm builds alignments progressively by using
the pairwise algorithm, where the pairwise algorithm is guided
by intermediate alignments. In the progressive alignment
approach, more similar sequences are aligned earlier than
less similar sequences (15). When two intermediate align-
ments are combined into a larger alignment, only the similar
regions of the intermediate alignments are candidates for
alignment by the pairwise alignment. In other words, the dif-
ferent regions of the intermediate alignments remain as parts
of the different regions of the larger alignment. This feature
prevents the algorithm from making errors of aligning differ-
ent regions of one intermediate alignment with similar regions
or different regions of the other intermediate alignment.

The algorithm is implemented as a program named MAP2.
The MAP2 program requires the conserved blocks to occur
in the same order and orientation in all input sequences.
Experimental results produced by MAP2 on four real sets
of orthologous genomic sequences show that MAP2 rarely
missed a block of transitively similar regions and that
MAP2 never produced a block of regions that are not transit-
ively similar. Experimental results produced by MAP2 on six
simulated data sets show that MAP2 found the boundaries
between similar and different regions precisely. This feature
is useful for finding conserved functional elements in genomic
sequences. Results produced by existing programs are
included for comparison.
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METHODS

We define a general multiple sequence alignment and describe
an algorithm for computing a general alignment. Then, we
present two measures for the evaluation of alignments.

A multiple alignment algorithm

A general alignment of K sequences consists of similarity
blocks and difference sections in an increasing order of
sequence positions. A similarity block is an ordinary align-
ment of regions of the sequences, where for each sequence, a
non-empty region of the sequence is present in the block. Each
region in the similarity block is transitively similar to every
other region in the block. A difference section involves some
regions of the sequences, where either no region is present in
the section for some sequence, or one region in the section
is not transitively similar to another region in the section. In
other words, similarity blocks are intended to cover regions
conserved among all the sequences, whereas difference
sections are intended to cover the remaining regions. Only
regions in each similarity block are aligned and reported.
For genomic DNA sequences, similarity blocks are usually
made of conserved exon and regulatory regions, whereas
difference sections are usually made of different intron and
intergenic regions. An example alignment of four sequences is
shown in Figure 1.

A general multiple alignment of K sequences is computed
by using the pairwise algorithm of Huang and Chao (13) in the
progressive alignment paradigm of Feng and Doolittle (15).
The pairwise algorithm computes an optimal alignment of two
sequences in linear space and quadratic time, where an align-
ment consists of similarity blocks separated by difference
sections. The pairwise algorithm improves the Needleman–
Wunsch algorithm (14) by finding an ordered list of similar
regions between the two sequences. This feature is suitable for
comparison of genomic sequences with conserved regions
separated by different regions.

In the pairwise algorithm of Huang and Chao, a new type of
alignment components called difference sections is introduced
in addition to the standard components of substitutions and
gaps. A difference section consists of one or two sequence
regions that are not aligned. A difference section is given a

constant penalty. An alignment consists of similarity blocks
and difference sections, where a similarity block consists of
ordinary substitutions and gaps from the Needleman–Wunsch
alignment model. Under the Needleman–Wunsch alignment
model, different sequence regions are also aligned, where the
penalty of different regions is linear in their lengths. However,
under the extended model, long different regions have to be in
the difference sections of an optimal alignment. Otherwise, the
long different regions would incur heavy penalties and the
alignment would not be optimal. In addition, the boundaries
of the long different regions are precisely identified and shown
on the optimal alignment.

The pairwise algorithm is used in two situations in the
progressive alignment paradigm. First, it is used to compute
the normalized similarity score (NS score) for each pair of
input sequences. The NS score of two sequences is the score of
an optimal alignment of the two sequences divided by the
length of the alignment. Second, the pairwise algorithm is
extended to take as input two alignments and to produce as
output an alignment of the two alignments. The extension
involves dealing with difference sections in the input align-
ments and changing substitutions from pairs of bases to pairs
of alignment columns. By the definitions of similarity blocks
and difference sections, all difference sections in the input
alignments must be parts of difference sections in the output
alignment, or all similarity blocks in the output alignment must
come from parts of similarity blocks in the input alignments.
The score of a substitution with two alignment columns is the
arithmetic average of all pairwise scores of bases from the
columns (16,17).

The algorithm for computing a general multiple alignment
of K sequences works in two steps. In Step 1, for each pair of
sequences, the NS score of the two sequences in the pair is
computed. Then, all the pairs of sequences are arranged in a
decreasing order of their NS scores. In Step 2, initially, each
sequence is treated as an alignment with just one similarity
block. Next, the pairs of sequences are processed one at a time
in the above order. For the current pair of sequences, if the two
sequences are in different alignments F and G, then an align-
ment of F and G is constructed, and the alignments F and G are
replaced by the resulting alignment. Otherwise, no action is
taken. This process terminates when a final alignment of all the

1   476  GCAGAAAAACCAGACTGTCAGTTTGCCTC  506  666  TTGACACAAACAAATATATTGAAAGTGTAGATACTG
1   207  GCAGAAAAATCAGACTGTCAG----CCTC  233  393  TTGACACAAG----TATATTGAAAGTGTAGATACTG
1   789  GCACAAAAACCAGATTGCCAGTTTGCCTC  819  979  TTGGCACAGCCAAACACATTGAGAGAGTAAAAACCA
1   553  GCAGAGAAAGCAG-CTGTTGGTTCACCTC  582  638  TTGACATAATTAAATACACTGAAAAGGTAGATACTG

TCCCAAGTGAACTTTGGCATTTTGGATAT  732   966  CCTTCAGTTGTTCTGTTTAAA GATATAAA---TTAATTTGCCAA
TTCCAAGTGAACTTTGGCATTTTGGATAT  455   699  CCTTCAGTTGTTCTGTTTAAA GATATAAA---TTAATTTGCCAA
TTCCAAGTGAACTTTAGTATTTTGAGTTT  1045 1528  CCTTCAGTTACTCTGTTTAGG GATATGAAGAATTAATTTGCCAA
TACTAAGTGAACTGTG---TTTTGGATTT  701  1326  CCTTCA-TTGCTGTGTTTAAAGATATAAATAATTAACATGCCA-

TTAATTGTGAACTGTTTTATAAACTATCTTAAAATGGTTAGTAGA------CCAG 1057 2387
T-AATTGTGAACTGTTTTATAAACTATCTTAAAATGGTTAGCAGA------CCAG 789 1452
TTAATTATGTATTGTTTTAT-------CTTAAAATGGTTAATAAA------CCAG 1615 1980
-----TGTATACTGTTGTATAATACGTTGTAAAATTGTTTTTACATACTTACCAG  1419 1633

1   476  GCAGAAAAACCAGACTGTCAGTTTGCCTC  506  666  TTGACACAAACAAATATATTGAAAGTGTAGATACTG
1   207  GCAGAAAAATCAGACTGTCAG----CCTC  233  393  TTGACACAAG----TATATTGAAAGTGTAGATACTG
1   789  GCACAAAAACCAGATTGCCAGTTTGCCTC  819  979  TTGGCACAGCCAAACACATTGAGAGAGTAAAAACCA
1   553  GCAGAGAAAGCAG-CTGTTGGTTCACCTC  582  638  TTGACATAATTAAATACACTGAAAAGGTAGATACTG

TCCCAAGTGAACTTTGGCATTTTGGATAT  732   966  CCTTCAGTTGTTCTGTTTAAA GATATAAA---TTAATTTGCCAA
TTCCAAGTGAACTTTGGCATTTTGGATAT  455   699  CCTTCAGTTGTTCTGTTTAAA GATATAAA---TTAATTTGCCAA
TTCCAAGTGAACTTTAGTATTTTGAGTTT  1045 1528  CCTTCAGTTACTCTGTTTAGG GATATGAAGAATTAATTTGCCAA
TACTAAGTGAACTGTG---TTTTGGATTT  701  1326  CCTTCA-TTGCTGTGTTTAAAGATATAAATAATTAACATGCCA-

TTAATTGTGAACTGTTTTATAAACTATCTTAAAATGGTTAGTAGA------CCAG 1057 2387
T-AATTGTGAACTGTTTTATAAACTATCTTAAAATGGTTAGCAGA------CCAG 789 1452
TTAATTATGTATTGTTTTAT-------CTTAAAATGGTTAATAAA------CCAG 1615 1980
-----TGTATACTGTTGTATAATACGTTGTAAAATTGTTTTTACATACTTACCAG  1419 1633

Figure 1. An example alignment of four sequences. Each different section is indicated by a rectangle, which consists of the start and end positions of each region in the
difference section.
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sequences is constructed. In addition to the final alignment, all
the intermediate alignments constructed in Step 2 are saved
and reported along with the order in which the alignments are
generated. The order is represented by a binary tree, which
shows a similarity relationship among the K sequences. An
intermediate alignment shows an ordered list of regions con-
served among a subset of sequences.

Let N be the total length of the K sequences, and M be the
total size of the K � 1 alignments constructed in Step 2. Then,
the time requirement of the algorithm is proportional to N2 and
its space requirement is proportional to N + M. Note that each
alignment is constructed in linear space. The algorithm is
implemented as a C program named MAP2, an improved
version of MAP (18).

MAP2 is better at finding boundaries between similar and
different regions than existing programs because MAP2 uses
the pairwise algorithm of Huang and Chao (13). The existing
programs are based on the Needleman–Wunsch algorithm,
which produces a global alignment of two entire sequences.

Two similarity measures

An alignment is evaluated by two complementary measures
called sum-of-pairs cost and weakest-link percent identity.
The sum-of-pairs cost of a column in a similarity block is
the number of pairwise differences on the column, where a
pairwise difference is a pair of different bases or a pair of a
base and a gap symbol. Note that a pair of gap symbols is not
counted as a pairwise difference. The average sum-of-pairs
cost of an alignment is the sum of sum-of-pairs costs for
each column in each similarity block of the alignment divided
by the total number of such columns. An alignment with a low
average sum-of-pairs cost means that the bases in the align-
ment are well aligned. The sum-of-pairs measure is a variation
of a widely used measure reviewed by Gusfield (19).

A partition of a similarity block involves breaking the
regions in the block into two groups. The link percent identity
of a partition of a similarity block is the maximum percent
identity of induced pairwise alignments linking the two groups.
An induced pairwise alignment linking the two groups is
obtained from the similarity block by selecting a region
from each group and removing all regions except the two
selected regions. The weakest-link percent identity of a sim-
ilarity block is the minimum link percent identity of all parti-
tions of the block. In other words, if a similarity block has a
partition of its regions into two groups such that no region in
one group is similar to any region in the other group, then the
weakest-link percent identity of the block is very low.

We describe a method for computing the weakest-link
percent identity of a block. The method is based on finding a
maximum-weight spanning tree of a complete graph. In the
complete graph, each region of the block is a node and each
induced pairwise alignment is an edge with the percent iden-
tity of the alignment being the weight of the edge. A spanning
tree of the graph is a subgraph that connects all the nodes and
has no cycles. The weight of a spanning tree is the sum of
weights of every edge in the tree. A maximum-weight span-
ning tree of the complete graph is a spanning tree of the graph
with the maximum weight.

The Kruskal algorithm for finding the edge set of a
maximum-weight spanning tree consists of three steps (20).

(i) Start with an empty edge set. (ii) Rank the edges of the
complete graph in a non-increasing order of weights. (iii) For
each edge in the order, add the edge to the edge set unless
doing so creates a cycle. The resulting edge set is the edge
set of a maximum-weight spanning tree. In Supplementary
Material, we show that the weakest-link percent identity of
the block is the minimum weight of edges in the maximum-
weight spanning tree. An example of the weakest-link percent
identity of a similarity block is given in Figure 2.

Note that the progressive multiple alignment method used in
the MAP2 program is also related to the Kruskal algorithm for
finding a maximum-weight spanning tree of a graph. In this
case, each input sequence is a node of the graph and each
pairwise alignment is an edge with the score of the alignment
being the weight of the edge. The progressive method builds a
multiple alignment in a non-increasing order of edge weights.

The two measures are used to evaluate similarity blocks
produced by different multiple alignment programs. The
sum-of-pairs measure is used in a case where each program
produces a block on the same set of regions. A similarity block
with the lowest average sum-of-pairs cost is considered to
have the highest degree of similarity. However, if some pro-
grams produce a similarity block but the other programs do not
produce any similarity block on the same set of regions, the
sum-of-pairs measure cannot tell whether the regions on a
similarity block are transitively similar to each other. The
weakest-link measure is used in this case to show whether
the regions in a similarity block are transitively similar to
each other. Below we explore the relationship between the
weakest-link measure and transitive similarity.

For a block of regions, two regions r and s in the block are
transitively similar with respect to the block if the induced
pairwise alignment of r and s has a percent identity greater
than or equal to a percent identity cutoff pic, or there is another
region m in the block such that r and m are transitively similar
with respect to the block and so are m and s. The regions in the
block are transitively similar to each other with respect to
the block if for every pair of regions in the block, the regions
are transitively similar with respect to the block. For example,
let pic = 70% and assume that for a block of three regions a, b
and c, the induced pairwise alignment of a and b has a percent
identity of 70%, that of b and c has 75% and that of a and c has
50%. Then, the regions in the block are transitively similar to
each other with respect to the block.

In Supplementary Material, we show that the weakest-link
percent identity of a block is greater than or equal to pic if and
only if the regions in the block are transitively similar to each
other with respect to the block. Thus, if a similarity block has a
low weakest-link percent identity, then the transitive similarity
relationship among the regions of the block is low and is less
likely to be biologically significant. On the other hand, if a
similarity block has a high weakest-link percent identity, then
the transitive similarity relationship among the regions of the
block is high and is more likely to be biologically significant.

RESULTS

The new multiple alignment algorithm described in the last
section is implemented as a C program named MAP2. The
MAP2 program was evaluated on four real sets of DNA
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sequences by the two proposed measures in comparison with
existing programs. Set 1 is a group of orthologous genomic
sequences harboring the cystic fibrosis trans-membrane con-
ductance regulator (CFTR) gene from human, baboon, cow
and mouse with an average length of 206 655 bp (21). Set 2 is a
group of orthologous genomic sequences harboring the stem
cell leukemia (SCL) gene from human, dog, mouse and rat
with an average length of 78 544 bp (22). Set 3 is a group of
orthologous genomic sequences harboring the met proto-
oncogene precursor (MET) gene from human, baboon, cow
and mouse with an average length of 516 097 bp (23). Set 4 is a
group of orthologous genomic sequences harboring the sup-
pression of tumorigenicity 7 (ST7) gene from human, baboon,
cow and mouse with an average length of 536 492 bp (23). The
following parameter values were selected for MAP2 based on
our experiences with genomic sequence alignment (13,24):
match score = 10, mismatch score = �12, difference section
score = �250, gap open score = �38 and gap extension
score = �3.

Six simulated data sets of four sequences each were con-
structed and used to evaluate the performance of the four
programs in dealing with different regions and finding the
boundaries between similar and different regions. The similar
regions in each simulated set are complete exon regions of the
four sequences in the CFTR set. The different regions between
the similar regions in each simulated data set are from genomic
regions of Arabidopsis, Drosophila, fish and bacteria/chicken.

In other words, each simulated data set of four sequences was
constructed by keeping the whole conserved exon regions of
the four sequences in the CFTR set and replacing the rest by
genomic regions of Arabidopsis, Drosophila, fish and bacteria/
chicken. For each group of four similar regions, the percent
identity of any two regions in the group is >70%. For each
group of four different regions, the percent identity of any
two regions in the group is between 34 and 50%.

The following existing multiple alignment programs were
included in the comparison: CLUSTALW (25), CHAOS/
DIALIGN (10), MLAGAN (9), MAVID (11) and T-COFFEE
(26). The CLUSTALW and T-COFFEE programs are
designed for protein sequences, whereas the other programs
are for genomic DNA sequences. MAVID was run on its web
server with the default parameter values. The parameters of
MAVID were not made available on the command line by the
binary code of MAVID. For the rest of the programs, the
programs were run locally. For MLAGAN and CHAOS/
DIALIGN, both default and other parameter values were
considered. The other parameter values were chosen based
on the following rules. If the program has common parameters
with MAP2, then comparable values were chosen for the com-
mon parameters. For each unique parameter of the program, a
value was chosen for the parameter such that based on the
documentation on the parameter, the program may be more
accurate with the value than with the default value. Both
default and the other parameter values were compared on
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the real data sets, and the parameter values that resulted in
better alignments under the two similarity measures were
selected for comparison with MAP2. For CHAOS/DIALIGN,
the default parameter values were selected, whereas for MLA-
GAN, the other parameter values were selected.

The selected values for the four common parameters of
MLAGAN are match score = 18, mismatch score = �22,
gap open score = �68 and gap extension score = �5.
Those values were obtained by multiplying the corresponding
parameter values of MAP2 by a factor of 1.8. The factor of 1.8
was selected so that the match score for MLAGAN is 18. The
selected values for the unique parameters of MLAGAN are
lookback distance = 30, maximum gap length = 8, 3-tuple for
case 1 = (10, 1, 20), 3-tuple for case 2 = (11, 2, 25), 3-tuple for
case 3 = (7, 1, 25) and 3-tuple for case 4 = (6, 1, 25), where the
3-tuple is of the form (wl, nd, sc) with wl standing for word
length, nd for number of degeneracy and sc for score cutoff.
The different 3-tuples were used by MLAGAN in the four
different cases. CHAOS/DIALIGN has 10 unique parameters
and has no common parameter with MAP2. The default param-
eter values for CHAOS/DIALIGN were omitted here.

The CLUSTALW and T-COFFEE programs could not pro-
duce an alignment on any of the four real sets of genomic
sequences because the programs are designed for protein
alignment. Because T-COFFEE is an improvement to
CLUSTALW, T-COFFEE was used to serve as a control
for the sum-of-pairs measure as follows. The default parameter
values for T-COFFEE were used. The regions of an MAP2
block were extracted from the input sequences, an alignment
of the regions was produced by T-COFFEE and the average
sum-of-pairs cost of the alignment was calculated.

The similarity blocks of a multiple alignment produced by
MAP2 on each set of sequences were evaluated by the two
measures. Blocks produced by the three existing programs
were often much longer than blocks produced by MAP2.
A block of an alignment from another program has an intersec-
tion with a block of an MAP2 alignment if they share the same
region of the human sequence. It may not be possible to require
that the blocks share the same set of regions of the input
sequences because the bases in the blocks may be aligned
differently. The intersection sub-blocks of blocks are parts
of the blocks that share the same region of the human seq-
uence. Intersection sub-blocks were evaluated by the sum-of-
pairs measure. The remaining parts of the block that have no
intersection with any MAP2 block were combined into a block
called as an additional block.

The three existing programs produced a number of blocks
over sequence regions that appear in difference sections of the
MAP2 alignment. Those blocks are also called additional
blocks. To assess the degree of transitive similarity of the
regions in every additional block, the weakest-link percent
identity of every additional block from each of the existing
programs was calculated. The total length of additional blocks
was calculated. The weakest-link percent identity of each
MAP2 block was also calculated and so was the total length
of MAP2 blocks.

On the CFTR data set, MAP2 produced an alignment with
70 similarity blocks. Of the 70 MAP2 blocks, 67 blocks have
an intersection with blocks of the CHAOS/DIALIGN align-
ment on the CFTR data set. Of the 67 MAP2 blocks, 65 blocks
have an intersection with blocks of the MLAGAN alignment.
Of the 65 MAP2 blocks, 50 blocks have an intersection
with blocks of the MAVID alignment. In other words, 3
MAP2 blocks have no intersection with any CHAOS/DIA-
LIGN blocks, 5 MAP2 blocks have no intersection with
any MLAGAN blocks and 20 MAP2 blocks have no intersec-
tion with any MAVID blocks. Table 1 shows the average
sum-of-pairs costs for the four sets of MAP2 intersection
sub-blocks and the corresponding sets of intersection sub-
blocks from the three existing programs and T-COFFEE.
The results for T-COFFEE were used as an independent con-
trol for the sum-of-pairs measure. The sum-of-pairs results by
the programs on the SCL, MET and ST7 data sets are also
shown in Table 1.

The total length of the 70 MAP2 blocks, the total length of
all additional blocks for each of the three existing programs
and the results on the SCL, MET and ST7 data sets are
reported in Table 2. Figure 3A shows the distribution of the
weakest-link percent identities of the 70 MAP2 blocks and the
distribution of the weakest-link percent identities of all

Table 1. Average sum-of-pairs costs for sets of intersection sub-blocks of multiple alignments from five programs on the CFTR, SCL, MET and ST7 data sets

Program CFTR SCL MET ST7
S50a S65 S67 S70 S33 S36 S37 S39 S223 S258 S283 S315 S260 S295 S320 S353

T-COFFEEb 1.574 1.579 1.601 1.610 1.560 1.582 1.579 1.595 1.545 1.553 1.555 1.560 1.509 1.524 1.528 1.537
MAP2 1.595 1.597 1.619 1.627 1.583 1.605 1.602 1.618 1.565 1.574 1.574 1.579 1.531 1.546 1.550 1.559
MLAGAN 1.649 1.648 N/A N/A 1.604 1.624 1.622 N/A 1.601 1.610 N/A N/A 1.573 1.586 1.590 N/A
CHAOS/DIALIGN 1.698 1.702 1.722 N/A 1.665 1.687 N/A N/A 1.686 1.693 1.696 N/A 1.631 1.645 N/A N/A
MAVID 1.762 N/A N/A N/A 1.810 N/A N/A N/A 1.719 N/A N/A N/A 1.701 N/A N/A N/A

aThe name S50 means that a set of 50 intersection sub-blocks was selected from every multiple alignment. The number 1.649 on row MLAGAN and column S50 is the
average sum-of-pairs cost of 50 intersection sub-blocks of blocks of the MLAGAN alignment that have an intersection with blocks of the MAP2 alignment. The mark
N/A on row MLAGAN and column S70 means that the MLAGAN alignment does not contain 70 blocks that have an intersection with blocks of the MAP2 alignment.
bThe set of intersection sub-blocks for T-COFFEE was generated from the corresponding set of blocks for MAP2 by running T-COFFEE, once for each MAP2 block,
on the regions of the MAP2 block.

Table 2. Total length (bp) of MAP2 blocks and additional blocks from each of

three existing programs on the CFTR, SCL, MET and ST7 data sets

Programa CFTR SCL MET ST7

MAP2 blocks 24 825 16 488 159 893 152 023
MLAGAN (a-blocks) 38 583 43 399 147 194 221 645
CHAOS/DIALIGN

(a-blocks)
30 337 38 595 134 125 170 338

MAVID (a-blocks) 19 950 27 977 74 756 120 301

aThe notation ‘a-blocks’ represents additional blocks, which have no
intersection with any MAP2 block.
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additional blocks for each of the three existing programs.
Figure 3B–D shows results by the programs on the SCL,
MET and ST7 data sets. The results indicate that MAP2 rarely
missed a block of a weakest-link percent identity >60% and

that MAP2 never produced a block of a weakest-link percent
identity <50%.

The four programs were run on the six simulated data sets.
Figure 3E shows the distribution of the weakest-link percent
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identities of all MAP2 blocks produced on the six simulated
data sets and the distribution of the weakest-link percent
identities of all additional blocks for each of the other three
programs. Each MAP2 block has a weakest-link percent
identity of at least 70%. In contrast, there are over 100 addi-
tional blocks from each of the other programs and each
additional block has a weakest-link percent identity of at
most 50%. In other words, MAP2 did not align any group
of different regions in the six simulated data sets, whereas
each of the other programs aligned many groups of different
regions. Each group of different regions is biologically
unrelated.

The performance of the programs in finding the boundaries
between similar and different regions was evaluated as
follows. For every multiple alignment, the distance between
each block boundary and its exon boundary was computed. An
exon boundary in a multiple alignment of four constructed
sequences was defined as the position of the human exon
boundary in the constructed sequence. The two boundaries
of a block in a multiple alignment of four constructed
sequences were defined as the start and end positions of a
region of the block in the constructed human sequence.
Figure 4 shows the distribution of the distances between
block boundaries and their exon boundaries for each of the
four programs. For each program, a block with the longest
distance from one of its boundaries to an exon boundary was
selected and shown in Supplementary Figure 1. The longest
distances are 21 bp for MAP2, 768 bp for MLAGAN, 770 bp
for MAVID and 297 bp for CHAOS/DIALIGN. For MAP2,
the block boundary is 21 bp inside the exon regions as the exon
regions are less conserved at the boundary. For each of the
other programs, the block boundary is inside the different
regions.

The actual or estimated running times of the programs on
the four real sets are shown in Table 3. MAP2, CHAOS/
DIALIGN and MLAGAN were run locally on a Dell Linux
computer with 1 processor of 3.0 GHz and 4 GB of memory,
whereas MAVID was run on its web server. It took a few
minutes to receive results produced by MAVID. MAP2 was
about 3 � 5 times slower than CHAOS/DIALIGN.

DISCUSSION

We have developed the MAP2 multiple alignment program
based on a generalized pairwise global alignment algorithm
for handling long, different intergenic and intragenic regions
in genomic sequences. The MAP2 program produces an
ordered list of local multiple alignments of similar regions
among sequences, where different regions between local
alignments are indicated by reporting only similar regions.
In addition to the final alignment of all input sequences,
MAP2 reports all intermediate alignments that are constructed
during the course of generating the final alignment, where each
intermediate alignment shows an ordered list of local align-
ments of similar regions among a subset of input sequences.

We comment on an important feature of MAP2 and its
effect on the performance of MAP2. It is shown that for
any optimal alignment of two sequences produced by the
Huang–Chao algorithm, the score of every similarity block
in the alignment is greater than or equal to a non-negative
number d, where �d is the score of a difference section (13).
The MAP2 alignment algorithm, an extension to the Huang–
Chao algorithm, also has this property. For any alignment from
MAP2, the score of any similarity block in the alignment is
greater than or equal to d. The value used for the parameter d in
all MAP2 tests is 250. If each perfect match is given a score of
10, a block of 25 perfect matches has a score of 250.

On a set of sequences, MAP2 produces a major list of
ordered blocks among the sequences, with each block having
a score greater than or equal to d. If a block of score greater
than d is consistent in order with the major list of blocks, then
the block is always produced by MAP2. Otherwise, the block
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Figure 4. The distribution of the distances between the exon boundaries and block boundaries on the simulated data sets for MAP2, MLAGAN, MAVID and
CHAOS/DIALIGN. Exponential scales are used for both directions.

Table 3. The actual or estimated running times (in minutes) of the programs

Data set MAP2 MLAGAN CHAOS/DIALIGN MAVID

CFTR 298.45 2.68 81.47 �6
SCL 60.2 0.65 16.5 �2
MET 2337.07 21.92 526.93 �12
ST7 2789.78 22.75 648.83 �12
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may be missed by MAP2. A block of score less than d is never
produced by MAP2. A sufficiently long block with a suffi-
ciently high weakest-link percent identity has a score greater
than d. The block is statistically significant and is likely to be
biologically significant because a block of biologically
unrelated sequences often has a low weakest-link percent iden-
tity. On the other hand, a block of any length with a low
weakest-link percent identity has a score less than d. The
block is not statistically significant and is less likely to be
biologically significant.

A sufficiently long block with a medium weakest-link
percent identity has a score close to d. If the block score is
greater than d and the block is consistent in order with the
major list of blocks, then the block is reported by MAP2.
However, if the block score is less than d, then the block is
missed by MAP2. This is the reason why MAP2 missed some
blocks with a weakest-link percent identity around 60% on the
test data sets. If a large value is used for the d parameter, then
MAP2 misses some biologically significant blocks. However,
if a small value is used for the d parameter, then MAP2 reports
a lot of insignificant blocks along with significant blocks. We
are currently working on ways to select a proper value for the d
parameter.

The existing multiple alignment programs are based on the
Needleman–Wunsch algorithm. The programs quickly find
regions of strong similarity with fast database search methods,
use the similar regions as anchors to locate bands of diagonals
in the dynamic-programming matrix and compute alignments
in the bands with the Needleman–Wunsch algorithm. The
pairwise alignment method used in MAP2 searches the entire
solution space, whereas the pairwise alignment method in each
of the existing programs searches a fraction of the solution
space for efficiency. In addition, the method used in MAP2
has a feature to deal with long different regions, whereas the
Needleman–Wunsch method lacks the feature. Thus, MAP2
produces much more refined alignments than the existing
programs.

It is difficult to evaluate the performance of a multiple
genomic sequence alignment program because of lack of
large data sets of genomic sequences with experimentally
verified annotations of functional elements. However, based
on the assumption that sequence similarity may lead to
biological significance, every multiple alignment program
looks for a similarity relationship among sequences. Thus,
we have proposed to evaluate the performance of the
MAP2 program by two similarity measures: weakest-link
percent identity and sum-of-pairs cost. The weakest-link
measure is used to decide whether a group of sequence regions
are transitively similar, whereas the sum-of-pairs measure is
used to decide whether individual bases of an alignment of
transitively similar regions are well aligned.

Experimental results produced by MAP2 on the four real
sets of orthologous genomic sequences show that MAP2 rarely
missed a block of transitively similar regions and that MAP2
never produced a block of regions that are not transitively
similar. A special feature of MAP2 is that MAP2 finds
boundaries between similar and different regions precisely.
The results indicate that MAP2 meets a selectivity requirement
for multiple alignment programs, where similar sequence
regions are aligned, but different regions are not aligned
(27,28). In contrast, experimental results produced by the

existing multiple programs on the four real sets of genomic
sequences show that the programs missed a few blocks of
transitively similar regions and that the programs produced
many blocks of regions that are not transitively similar.
Results on the simulated data sets indicate that the existing
programs aligned different regions that are not biologically
related. In addition, the bases of MAP2 blocks were slightly
better aligned than the bases of blocks produced by the
existing genomic alignment programs.

A major weakness of MAP2 is its long running time;
MAP2 takes 2 days on sequences of 500 kb. Thus, MAP2
is not suitable for alignment on the mega-base level. On the
other hand, MAP2 can be used in ordinary laboratories for
analysis of genomic sequences of length up to 500 kb. Align-
ments produced by MAP2 show precisely conserved regions
among the sequences, which are usually exon or regulatory
regions.

SUPPLEMENTARY MATERIAL

Supplementary Material is available at NAR Online.
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