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Toward a more reliable 
characterization of fractal 
properties of the cerebral 
cortex of healthy subjects 
during the lifespan
Chiara Marzi1, Marco Giannelli2, Carlo Tessa3, Mario Mascalchi4 & Stefano Diciotti1*

The cerebral cortex manifests an inherent structural complexity of folding. The fractal geometry 
describes the complexity of structures which show self-similarity in a proper interval of spatial scales. 
In this study, we aimed at evaluating in-vivo the effect of different criteria for selecting the interval 
of spatial scales in the estimation of the fractal dimension (FD) of the cerebral cortex in T1-weighted 
magnetic resonance imaging (MRI). We compared four different strategies, including two a priori 
selections of the interval of spatial scales, an automated selection of the spatial scales within which 
the cerebral cortex manifests the highest statistical self-similarity, and an improved approach, based 
on the search of the interval of spatial scales which presents the highest rounded R2

adj coefficient 
and, in case of equal rounded R2

adj coefficient, preferring the widest interval in the log–log plot. We 
employed two public and international datasets of in-vivo MRI scans for a total of 159 healthy subjects 
(age range 6–85 years). The improved approach showed strong associations of FD with age and yielded 
the most accurate machine learning models for individual age prediction in both datasets. Our results 
indicate that the selection of the interval of spatial scales of the cerebral cortex is thus critical in the 
estimation of FD.

The human brain has a complex shape that cannot be comprehensively described in terms of the Euclidean 
geometry1, which is based on simple primitives, such as points, lines, planes, cubes, etc2. A complementary and 
powerful mathematical framework, namely the fractal geometry3, can be exploited in order to properly capture 
and quantify this level of complexity.

While a fractal object has not a hard-and-fast formal definition4, it can be imagined as a rough, fragmented 
geometric shape whose Euclidean metrics, such as perimeter, area and volume, change depending on the size 
of the measuring element, rather than tending to a single ’true’ value5. A fractal object has a property of self-
similarity, i.e., it can be subdivided into parts, each of which (at least approximately) is a reduced-size copy of 
the whole6. Actually, a strict self-similarity exists only in objects defined by mathematical formulas. On the 
contrary, real world, natural or computer simulated fractals are self-similar only in a statistical sense and over a 
limited interval of spatial scales1, i.e., they show the same statistical distribution of space filling over some scales 
of observation (i.e., not from an infinitesimal to the object size).

In the last 30 years, the fractal analysis has been applied to many structures in the brain7–9, including 
white matter (WM) tracts observed in diffusion-MRI10 and cerebral microcirculation11, 12. In particular, using 
T1-weighted MRI, fractal properties have been demonstrated in grey matter (GM) and WM surfaces and 
segmentations (see, e.g.,5, 13–17). In this regard, Hofman was one of the first researchers who has shown that the 
cerebral cortex manifests fractality16, and this property was confirmed by other studies, including the works 
by Free et al. and Kiselev et al. who demonstrated, using different approaches, that the cerebral cortex presents 

OPEN

1Department of Electrical, Electronic, and Information Engineering “Guglielmo Marconi”, University of Bologna, 
Viale del Risorgimento 2, 40136  Bologna, Italy. 2Unit of Medical Physics, Pisa University Hospital “Azienda 
Ospedaliero-Universitaria Pisana”, Pisa, Italy. 3Division of Radiology, Versilia Hospital, Azienda USL Toscana Nord 
Ovest, Lido di Camaiore (Lu), Italy. 4“Mario Serio” Department of Experimental and Clinical Biomedical Sciences, 
University of Florence, Florence, Italy. *email: stefano.diciotti@unibo.it

http://crossmark.crossref.org/dialog/?doi=10.1038/s41598-020-73961-w&domain=pdf


2

Vol:.(1234567890)

Scientific Reports |        (2020) 10:16957  | https://doi.org/10.1038/s41598-020-73961-w

www.nature.com/scientificreports/

statistical self-similarity5, 13. More recently, the fractal analysis has also been effectively applied to time series of 
brain signals, e.g., in functional MRI18–20.

The most popular index of fractal geometry is the fractal dimension (FD), which represents a quantitative 
measurement of shape complexity21. The FD is usually a fractional value22 and is imagined as a dimension because 
it provides a measure of space filling-capacity22, i.e., it quantifies how much an object fills the space22, 23. Indeed, 
in the same way, we consider the topological dimensions (integer values), which are exponents on length [e.g., 
a surface area is proportional to length2 (topological dimension = 2) or a volume is proportional to length3 
(topological dimension = 3)]1. For example, an FD value within 2 and 3 is typical of a complex and highly folded 
2-D surface, like the human cerebral cortex, that is embedded in a 3-D space.

The FD is an extremely compact measure of shape complexity, condensing cortical thickness, sulcal depth, 
and folding area into a single numeric value—all these indexes being, in fact, closely linked24. More importantly, 
several studies found that information conveyed by FD is additional to that provided by other conventional 
structural features5, 24–30 and that FD is able to detect changes in structural complexity of the cerebral cortex 
associated with healthy aging27, 28, 31 and with neurological diseases25, 26, 29, 30, 32–37.

The box counting algorithm is the most popular and straightforward implementation used to compute the 
FD of real objects which present fractal properties in a statistical sense, but are not described by mathematical 
formulas24, 26. At varying the size s of an exploring box, this algorithm quantifies the space occupied by the object 
(i.e., the number of boxes N(s) needed to fully cover the object). For a fractal object, the relationship between 
log(N(s)) and log(s) is linear over an interval of spatial scales. Actually, since the human brain is a real (not 
mathematical) structure, it exhibits this statistical property only over a limited spatial range, that is defined by a 
lower (mfs, minimum fractal scale) and an upper (Mfs, maximum fractal scale) limit38.

In some previous works27, 28, 39, the interval of spatial scales was selected a priori. For instance, Goñi et al.38 
calculated the FD of the pial surface, i.e., the GM/cerebrospinal fluid (CSF) boundary, of the segmented cerebral 
cortex and WM, extracted from T1-weighted MR images. They chose an a priori range of the box sizes within 
5–40% of the smallest Euclidean dimension of the individual’s pial surface39. In another recent study, Madan 
et al. observed that the FD of the cerebral cortex is a marker of structural complexity changes during aging27, 
but the a priori chosen interval of fractal scales was not sufficiently justified27.

In other works, the scale range analysis has not been completely selected a priori. In particular, Kiselev et al., 
analyzing the cerebral cortex of 6 healthy subjects, set a priori the upper limit of the spatial scales equal to the 
brain size and their results suggested that the cerebral cortex is fractal down to 3 mm, corresponding reasonably 
well to the cortical thickness13. In other studies on the quantification of neuronal dendritic arborizations, the 
linear region in the log–log plot was identified by computing the n-points local slopes, i.e., the difference in 
log(N(s)) divided by log(s) for each n successive points. By this way, it was considered the interval of scales in 
which the local slopes were constant40, 41.

In a recent paper, we proposed an automated selection of spatial scales for the computation of the FD of GM 
and WM using the 3-D box counting algorithm29. This method is based on the search of the interval of spatial 
scales in which the linear regression shows the best fit, as measured by the highest coefficient of determination, 
adjusted for the number of data points (R2

adj)29. Using the FD with automated selection of spatial scales, we 
showed that the structural complexity of the cerebellum and cerebral cortex was reduced in patients with an 
inherited form of neurodegenerative disease, namely spinocerebellar ataxia type 2, as compared to a group of 
healthy controls29. Using the same approach, we predicted the cognitive performance in patients with small 
vessel disease and mild cognitive impairment with different sets of neuroimaging features among which the 
FD of the cerebral WM was the most relevant30. Finally, Krohn et al. demonstrated that the same spatial scale 
optimization can improve accuracy in the FD estimation of the brain in a small sample of healthy controls31. In 
the same work, it has also been shown that the automatically selected scale ranges had a preference for smaller 
minimum fractal scales and shorter intervals (i.e., number of data points in the log–log plot)31.

Given that a minimum span in decades of the interval of scales is needed for an object to be considered fractal 
(see, e.g.41), the assessment of the width of the interval of the automatically selected spatial scales is crucial in 
establishing FD. So far, this aspect has not sufficiently been investigated for GM and WM structures. In particular, 
previous literature on automated selection of spatial scales29–31 did not explicitly take into account the possibility 
that the choice of the highest R2

adj coefficient may be also affected by non-effective decimal places. Given that 
wider intervals in the log–log plot are preferable to justify the existence of fractal properties, we propose that the 
automated selection of the spatial scales should be performed by searching for the interval of spatial scales in 
which the linear regression shows the best fit, as measured by the rounded R2

adj coefficient, and, in case of equal 
rounded R2

adj coefficients, preferring the widest interval.
Conceivably, the employment of different strategies for the selection of the interval of the fractal spatial scales 

may impact on the FD estimation. Therefore, in this study, we aimed at evaluating in-vivo this effect in the FD 
estimation of the cerebral cortex in T1-weighted MRI. We compared four different strategies, including two a 
priori selections of the interval of spatial scales, an automated selection of the spatial scales within which the 
cerebral cortex manifests the highest statistical self-similarity29, 30 and an improved approach based on the search 
of the interval of spatial scales which presents the highest rounded R2

adj coefficient and, in case of equal rounded 
R2

adj coefficient, preferring the widest interval in the log–log plot. This last strategy has been implemented in a 
Python module, called fractalbrain, which is freely available at https​://githu​b.com/chiar​amarz​i/fract​albra​in-toolk​
it (see “Methods” section).

Notably, we employed two public and international datasets of MRI scans for a total of 159 healthy subjects 
(age range 6–85 years). We computed the association between the different FD estimates and age through the 
Pearson coefficient of correlation. Thus, we predicted the individual subject age through a machine learning 
approach (using the out-of-sample error) based on a linear regression in a cross-validation (CV) loop. In 
particular, we fitted separate regression models for each FD estimate strategy in order to identify the best 

https://github.com/chiaramarzi/fractalbrain-toolkit
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predictive model (i.e., the strategy for selection of the interval of fractal spatial scales which gives the most 
accurate predictive age estimates) and compared it with models trained with mean cortical thickness and 
gyrification index (GI) throughout the cerebral cortex.

Results
We utilized the scans collected by public and international datasets of 1 mm-isotropic T1-weigthed images of 
healthy children and adolescents [Nathan Kline Institute (NKI)—Rockland Sample Pediatric Multimodal Imaging 
Test–Retest Sample—NKI2 dataset] and adults [International Consortium for Brain Mapping (ICBM) dataset] (see 
“Methods” section). We used the conventional FreeSurfer processing pipeline to perform the cerebral cortical 
reconstruction of each T1-weigthed image and to compute the mean cortical thickness and GI throughout the 
cerebral cortex (more details in “Methods” section and Supplementary Appendix). Then, we estimated the 
FD of the cerebral cortex of each subject using our implementation of the 3-D box counting algorithm29, 30 
and four different strategies for the selection of spatial scales. They include the use of (1) a priori selection of 
the interval equal to [4 mm–256 mm] (inspired by Kiselev et al.13) (Strategy A priori #1) (2) a priori selection 
equal to 5–40% of the smallest Euclidean dimension of the cerebral cortex39 (rounded to the nearest power of 
2) (Strategy A priori #2), (3) an automated selection of spatial scales, within which the cerebral cortex manifests 
the highest statistical self-similarity29, 30 (Strategy AutomatedMarzi et al., 2018), (4) an improved automated selection 
of the interval of spatial scales, based on the search of the interval of spatial scales which presents the highest 
rounded R2

adj coefficient and, in case of equal rounded R2
adj coefficient, preferring the widest interval in the 

log–log plot (Strategy Automatedfractalbrain).
For both datasets, the quality of the FD estimations has been assessed by individual age prediction through 

a machine learning approach based on a linear regression in a 5-fold CV loop. We fitted a separate regression 
model for mean cortical thickness and GI throughout the whole cortex and for each FD estimate strategy, in 
order to choose the most accurate predictive model. In each model, estimated total intracranial volume (eTIV) 
values and gender have been inserted as additional features (Fig. 1). The performance has been measured through 
the mean absolute error (MAE). Since the results may vary depending on how the data are split in each fold of 
the CV, for each model, we repeated the CV procedure 1000 times. The average MAE from all repetitions was 
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Figure 1.   Overview of the feature extraction procedure for individual age prediction through linear regression 
carried out, separately, for NKI2 and ICBM datasets. We fitted separate regression models for mean cortical 
thickness and gyrification index throughout the whole cortex and for each FD estimate strategy in order to 
select the most accurate predictive model. In each model, estimated total intracranial volume (eTIV) values and 
gender have been inserted as additional features (see the text for other abbreviations).
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computed to get a final model assessment score. For each model, statistical significance of prediction performance 
was determined via permutation analysis (further details in “Methods” section).

NKI2 dataset.  The different strategies for FD estimation have been applied on MRI scans of 73 healthy 
pediatric subjects of the NKI2 dataset, with age ranging from 6 to 17  years (43 males and 30 females, age 
11.8 ± 3.1 years, mean ± standard deviation)42, 43 (see “Methods” section).

The descriptive statistics of the FD values, mfs, Mfs and interval width obtained for each strategy and the 
association between FD estimations and age are reported in Table 1.

The intervals width of spatial scales obtained with the improved approach are larger than those obtained with 
the Strategy AutomatedMarzi et al., 2018. Indeed, the intervals selected with the Strategy Automatedfractalbrain covered 1.5 
(0) decades [median(interquartile range)], while the Strategy AutomatedMarzi et al., 2018 selected intervals covering 
0.9 (0). The Pearson coefficient of correlation between FD values and age was significant (p < 10–15) only for the 
two strategies with automated selection of spatial scales. The significant correlation coefficients were markedly 
negative (r = − 0.83 and r = − 0.79) indicating that FD (i.e., complexity) reduces during brain development. For 
the Strategy Automatedfractalbrain, the scatter plot of FD values vs. age along with the regression line are shown in 
Fig. 2a. As a reference, the scatter plots of mean cortical thickness vs. age and GI vs. age are reported in Fig. 2c,e 
(Pearson correlation coefficient r = − 0.67 and r = − 0.47, respectively). The scatter plot of FDA priori#1 vs. age and 
FDA priori#2 vs. age are shown in Supplementary Figure S1 (panes a and c).

The quality of the FD estimations has been assessed by individual age prediction through a machine learning 
approach. Among all models, the MAE value was lowest for the Strategy Automatedfractalbrain (MAE = 1.29 years). 
All MAE values are provided in Table 2.

ICBM dataset.  The different strategies for FD estimation have also been applied on the International 
Consortium for Brain Mapping (ICBM) dataset. It is composed of MRI examinations of 86 healthy adult and elderly 
subjects with age ranging from 19 to 85 years (41 males and 45 females, age 44.2 ± 17.1 years, mean ± standard 
deviation) (see “Methods” section).

The descriptive statistics of the FD values, mfs, Mfs and interval width obtained for each strategy and 
the association between FD estimations and age are reported in Table 1. The intervals width of spatial scales 
obtained with the improved approach are larger than those obtained with the Strategy AutomatedMarzi et al., 2018. 
Indeed, the intervals selected with the Strategy Automatedfractalbrain covered 1.5 (0) decades [median (interquartile 
range)], while the Strategy AutomatedMarzi et al., 2018 selected intervals covering 0.9 (0.3). The Pearson coefficient 
of correlation between age and FD values was significant (p < 10–9) only for the two strategies with automated 
selection of spatial scales. These significant correlation coefficients were markedly negative (r = − 0.63 and 
r = − 0.70) indicating that FD (i.e., complexity) reduces during healthy aging. Among these values, the Strategy 
Automatedfractalbrain showed the highest correlation coefficient in absolute value, namely − 0.70. For this strategy, 
the scatter plot of FD values vs. age along with the regression line are shown in Fig. 2b. As a reference, the scatter 
plots of mean cortical thickness vs. age and GI vs. age are reported in Fig. 2d,f (Pearson correlation coefficient 
r = − 0.63 and r = − 0.46, respectively). The scatter plot of FDA priori#1 vs. age and FDA priori#2 vs. age are shown in 
Supplementary Figure S1 (panes b and d).

As for the NKI2 dataset, the quality of the FD estimations has been assessed by individual age prediction 
through a machine learning approach (Fig. 1). Among all FD estimates, the MAE value was the lowest for the 
Strategy Automatedfractalbrain(MAE = 11.1 years). All MAE values are provided in Table 2.

Table 1.   Descriptive statistics of the estimated FD values (mean ± standard deviation) in the NKI2 and ICBM 
datasets using four different strategies for selection of the interval of spatial scales (see the text for details). 
Minimum (mfs) and maximum (Mfs) fractal scales, as well as the interval width of spatial scales (median 
(interquartile range) [minimum, maximum]) are also detailed. Finally, the Pearson coefficients of correlation 
r (p-value) between FD estimates and age are shown. FD: fractal dimension; ICBM: International Consortium 
for Brain Mapping; mfs: minimum fractal scale; MFS: maximum fractal scale; NKI2: Nathan Kline Institute—
Rockland Sample Pediatric Multimodal Imaging Test–Retest Sample.

Strategy for selection of spatial 
scales FD estimates (–) mfs (mm) Mfs (mm) Interval width (decades) r

NKI2 dataset

A priori #1 2.26 ± 0.02 4 (0) [4, 4] 256 (0) [256, 256] 1.5 (0) [1.5, 1.5] − 0.15 (0.20)

A priori #2 2.47 ± 0.07 4 (0) [4, 8] 32 (0) [32, 64] 0.9 (0) [0.9, 0.9] − 0.19 (0.10)

AutomatedMarzi et al., 2018 2.55 ± 0.03 1 (0) [1, 1] 8 (0) [8, 8] 0.9 (0) [0.9, 0.9] − 0.83 (< 10–19)

Automatedfractalbrain 2.52 ± 0.02 1 (0) [1, 1] 32 (0) [32, 32] 1.5 (0) [1.5, 1.5] − 0.79 (< 10–16)

ICBM dataset

A priori #1 2.26 ± 0.02 4 (0) [4, 4] 256 (0) [256, 256] 1.5 (0) [1.5, 1.5] − 0.11 (0.30)

A priori #2 2.46 ± 0.06 4 (0) [4, 8] 32 (0) [32, 64] 0.9 (0) [0.9, 0.9] − 0.09 (0.43)

AutomatedMarzi et al., 2018 2.50 ± 0.02 1 (0) [1, 1] 8 (8) [8, 32] 0.9 (0.3) [0.9, 1.5] − 0.63 (< 10–9)

Automatedfractalbrain 2.48 ± 0.02 1 (0) [1, 1] 32 (0) [32, 32] 1.5 (0) [1.5, 1.5] − 0.70 (< 10–13)
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Discussion
The fractal geometry is able to capture the inherent structural complexity of the cerebral cortex which has proven 
to show statistical self-similarity3. The FD is a unit-less index which measures the space-filling capacity of complex 
and statistical self-similar objects, i.e., of structures which have the same statistical distribution of space filling at 
varying the scale of observation, providing a quantitative index of the structural complexity44, 45. In this study, we 
applied the box counting algorithm for estimating FD29 and compared four different strategies for selection of 
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Figure 2.   The scatter plots of FD (estimated by using the Strategy Automatedfractalbrain) vs. age, mean cortical 
thickness value vs. age, gyrification index vs. age, in the NKI2 (a,c,e, respectively) and ICBM (b,d,f, respectively) 
datasets are shown. In each pane, the regression line, the Pearson coefficient of correlation r and the relative 
p-value are also reported (see the text for abbreviations).
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the interval of spatial scales. These strategies include two a priori selections, inspired by previous literature13, 39, 
an automated selection of the spatial scales within which the cerebral cortex manifests the highest statistical self-
similarity29, 30 and an improved approach, based on the search of the interval of spatial scales which presents the 
highest rounded R2

adj coefficient and, in case of equal rounded R2
adj coefficient, preferring the widest interval in 

the log–log plot. In particular, the improved approach has been proposed taking into account that a wider width 
of the interval of the spatial scales is crucial to justify the existence of fractal properties46 and the choice of this 
interval should not be guided by non-effective R2

adj decimal places. We employed two public and international 
datasets of in-vivo MRI scans for a total of 159 healthy subjects for the study of brain development and aging. 
Notably, different strategies for the selection of the interval of the fractal scales produced different FD estimates. 
Moreover, when an automatic strategy was applied, the determined optimal range of spatial scales can vary across 
subjects. From a methodological point of view, the approach of Strategy Automatedfractalbrain has the potential 
to improve the reliability of FD estimation. Accordingly, we found that this improved approach consistently 
showed strong association of FD estimates with age, that exceeded those of mean cortical thickness and GI. We 
have also shown that the prediction error obtained using the FD values with Strategy Automatedfractalbrain was the 
lowest among those obtained using all other FD estimates, mean cortical thickness or also GI, in both datasets.

The significant negative correlations we found between FD values of the cerebral cortex and age in the NKI2 
and ICBM datasets suggest an overall reduction of the structural complexity starting in childhood and continuing 
in adulthood and aging.

Indeed, postmortem studies have found that aging is associated to loss of neuropil and nerve fibers, with a 
reduction of dendrites, spines density and synapses, together with a direct loss of neurons (the latter relatively 
limited in healthy aging)47–49, and all these changes could reduce complexity and potentially modify brain fractal 
properties. In this regard, we performed a comparison with the gyrification index – a common index of structural 
complexity of the human cortex. Indeed, althought FD and GI measure the structural complexity of the cortex 
from different viewpoints5, our results suggest that they share a common decreasing trend with age. In fact, in 
both datasets, we found a steady decrease of the GI with age, in agreement with previous literature. Indeed, the 
GI increases in the very first few years of life50, 51. Then, starting from the age of 4 years, the GI steadily decreases 
with age52–55. In a review by Zilles et al.56, the decrease of the GI with age since childhood has been hypothesized 
to be due to pruning with programmed cell death and reduction of cell numbers and connectivity57 and to the 
increasing gyral width driven by the peak of myelination58, 59. In principle, these anatomical changes could also 
underly a decrease in structural complexity detectable by FD analysis.

So far, a few studies evaluated the possible changes with age of the FD of the normal brain in children and 
adolescents60, adults61 or elderly subjects27.

Blanton et al. evaluated the FD of the pial surface of four regions (inferior and superior frontal lobe, temporal 
lobe and parieto-occipital lobe) in children and adolescents of 6–16 years of age and reported a significant 
increase in cortical complexity with age in frontal lobe regions only60. They supposed that the increasing structural 

Table 2.   Individual age prediction in NKI2 and ICBM datasets using different sets of input features: the 
average MAE values (using 1000 repetitions of the 5-fold CV) between predicted values of test set of the 
5-fold CV and actual values are provided. CT: mean cortical thickness; ICBM: International Consortium for 
Brain Mapping; FDA priori#1: fractal dimension computed using the a priori method #1 for selection of spatial 
scales; FDA priori#2: fractal dimension computed using the a priori method #2 for selection of spatial scales; 
FDAuto_fractalbrain: fractal dimension computed using the automated selection of the spatial scales as in Strategy 
Automatedfractalbrain; FDAuto_Marzi et al., 2018: fractal dimension computed using the automated selection of the 
spatial scales as in Strategy AutomatedMarzi et al., 2018; GI: gyrification index; MAE: mean absolute error; NKI2: 
Nathan Kline Institute—Rockland Sample Pediatric Multimodal Imaging Test–Retest Sample. a In all models, 
estimated intracranial volume (eTIV) values and gender were also included as input features. b All the models 
have a p-value < 0.0002. They have been computed using 5000 permuted-data CV scores simulating the null 
distribution.

Featuresa Average MAEb (years)

NKI2 dataset

CT 1.75

GI 1.81

FDA priori#1 2.04

FDA priori#2 2.37

FDAuto_Marzi et al., 2018 1.43

FDAuto_fractalbrain 1.29

ICBM dataset

CT 12.0

GI 14.2

FDA priori#1 15.8

FDA priori#2 15.8

FDAuto_Marzi et al., 2018 12.3

FDAuto_fractalbrain 11.1
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complexity of the frontal lobe during the development and adolescence may be referred to the emergence of 
the executive functions, as planning and abstract reasoning, that typically emerge at these ages60. For the sake 
of a direct comparison, we applied our newly proposed approach (Strategy Automatedfractalbrain) to the same 
regions considered by Blanton et al. (see Supplementary Appendix). This novel analysis confirmed an overall 
decreasing trend of FD with age in all areas (see Supplementary Figure S2). Differences between our results 
and those obtained by Blanton et al.60 may be due to several reasons. Firstly, they used two different imaging 
acquisition protocols which could have introduced some bias. Moreover, these protocols were sub-optimal, 
because voxel size was anisotropic and slice thickness (1.2 and 1.4 mm) appreciably greater than the common 
1 mm value used in 3D T1-weighted sequences. Secondly, they traced cortical sulci for delimiting boundaries of 
various lobes completely in a manual manner. Thirdly, from a methodological point of view, they calculated the 
FD of the pial surface, while the superiority of the FD of the entire volume of the cerebral cortex as compared 
to the FD of the pial surface has been previously shown25, 26. Fourtly, Blanton et al.60, used the algorithm for FD 
estimation adopted in62, which, unfortunately, lacks many information, e.g., if they used the box-counting, the 
range of spatial scales, the minimum number of data points, etc. Finally, we wish to point out that Blanton et al.60 
analyzed a small (n = 24) sample of normal children and adolescents.

Madan et  al.27, utilizing a sample of 427 individuals (20–80  years old) from the freely available IXI 
(“Information eXtraction from Images”) dataset found that the FD of the cerebral cortex was more sensitive to 
age-related differences than other metrics of cortical morphology such as cortical thickness or gyrification. This 
could reflect the fact that the FD of the cerebral cortex is related to both cortical thickness and folding properties 
of the cortex, summarizing in a single quantitative index the structural complexity characteristics of the cerebral 
cortex24. Madan et al.27 estimated the FD using the dilation method, a procedure alternative to the box-counting 
algorithm, and using a subsample of the entire IXI dataset composed of 581 adults. In particular, they removed 
6 subjects for whom the gyrification index analyses failed to determine a suitable convex-hull surface for at least 
one hemisphere and 130 subjects for whom the surface reconstruction failed at visual inspection, and apparently 
did not use of any form of surface correction. In our study, we carefully corrected the surface errors following 
the recommendations of the FreeSurfer developers, removing only four subjects of the NKI2 dataset in our 
analysis (see “Methods” section for details). Thus, we included also those subjects showing a cerebral cortex more 
challenging for the segmentation process, an occurrence that could be age- and complexity-related.

Concerning the a priori strategies for the selection of interval of fractal spatial scales used in this study, we 
referred to the hypothesis and findings from Kiselev et al.13 and Goni et al.39, but we did not apply the methods 
for FD estimation they proposed.

The used interval of spatial scales in fractal analysis is crucial in brain applications, as shown in this study. 
Indeed, while the interval of spatial scales is not limited for a truly mathematical fractal structure, its actual 
assessment is a fundamental prerequisite for a reliable and proper estimation of FD38 of the cerebral cortex, as 
well as of other biological structures. The interval of spatial scales determines the fractal nature of a structure, 
based on the Mandelbrot’s assertion that "fractals are not a panacea; they are not everywhere"63. The minimum 
width of the interval of spatial scales for which an object may be considered fractal has been widely debated. 
In biological structures, the range of spatial scales is often rather limited, mainly comprised between 0.5 and 2 
decades, as compared to other structures like coastlines or clouds46, 64, 65. Moreover, a spatial scale range of more 
than two orders of magnitude is rarely observed in biological structures1, 22, 65, 66. For these reasons, as minimum 
range of spatial scales, we chose the smallest interval greater than 1 decade41, i.e., 1.2 decades, corresponding to 
5 data points in the log–log plot.

In this study, the widths of intervals of spatial scale obtained with the proposed improved automatic approach 
(Strategy Automatedfractalbrain) were larger than those obtained with the Strategy AutomatedMarzi et al., 2018, i.e., 1.5 
vs. 0.9 decades (median value) in both datasets, thus clearly supporting the existence of fractal properties for 
the cerebral cortex.

In particular, from a biological viewpoint, the existence of a minimum fractal scale reflects the fact that, 
theoretically, at increasing the magnification, the effect of increasing detail (as occurs for pure fractals) may 
vanish, or substantially change, because the morphology of the constituent elements, such as, neurons, becomes 
evident64. However, it is not conceivable that this effect may be relevant for typical voxel size of isotropic high-
resolution T1-weighted MRI, i.e., 1 mm. Indeed, for all subjects of both datasets, the minimum fractal scale 
was 1 mm. In this regard, further studies are needed to explore the hypothesis that the cerebral cortex can still 
present fractal properties for a lower fractal scale and to assess whether the cerebral cortex can show statistical 
self-similarity for a wider interval of spatial scale than that observed so far. In other words, due to limitations in 
spatial resolution of conventional MRI acquisitions, we can probe only a few of the spatial scales of observations 
in which the cerebral cortex might exhibits statistical self-similarity. Further insights into fractal properties of 
the cerebral cortex might be obtained by using T1-weighted MRI data, with higher spatial resolution, acquired 
on ultra-high field (7 T) scanners.

In conclusion, by using two large datasets of healthy subjects and machine learning models for individual 
age prediction, we showed that the selection of the interval of spatial scales is important for a more adequate 
characterization of fractal properties of the cerebral cortex, as well as for a more reliable estimation of FD. 
Furthermore, this study indicates a monotonic decrease in structural complexity (in terms of FD) of the cerebral 
cortex with age during almost all the lifespan.

Methods
NKI2 dataset.  The NKI2 public dataset (https://fcon_1000.projects.nitrc.org/indi/CoRR/html/nki_2.html) 
is composed of MRI scans of 77 healthy pediatric subjects with age ranging from 6 to 17 years (45 males and 32 
females, age 11.7 ± 3.2 years, mean ± standard deviation). It has been focused on creating resource for studying 
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developmental trajectories of brain function and structure and relationships with phenotypic measurements. 
The NKI2 dataset includes a retest scan session for 70 participants. All subjects underwent high resolution 
T1-weighted imaging (with voxel size = 1.0  mm × 1.0  mm × 1.0  mm), functional resting state, task based 
functional MRI (fMRI), diffusion weighted imaging and arterial spin labeling perfusion scans on a 3 T scanner. 
In this study, only the T1-weighted MR images from the first scan were used. All the scans were acquired on 
the same scanner and with the same protocol. More details about scan acquisition parameters can be found 
in Nooner et al.42. The FreeSurfer segmentation procedure (see Cortical reconstruction and segmentation of 
the cerebral cortex section below), after manual editing up to 3 times (see Supplementary Appendix), failed 
for four subjects (IDs: A00052165, A00054578, A00055907, A00055908) who were thus excluded from further 
analysis. For this reason, in this study, we analyzed the remaining 73 subjects (43 males and 30 females, age 
11.8 ± 3.1 years, mean ± standard deviation, age ranging from 6 to 17 years).

ICBM dataset.  We used public data collected by the ICBM and belonging to the 1000 Functional Connectomes 
Project (freely accessible at https://fcon_1000.projects.nitrc.org/). This project has the purpose of providing to 
the broader imaging community a complete access to a large-scale functional imaging dataset. The ICBM dataset 
is composed of MRI examinations of 86 healthy subjects with age ranging from 19 to 85 years (41 males and 45 
females, age 44.2 ± 17.1 years, mean ± standard deviation). All subjects underwent high resolution T1-weighted 
imaging (with voxel size = 1.0 mm × 1.0 mm × 1.0 mm) and resting state fMRI on a 3 T scanner. In this study, 
T1-weighted MR images were employed only. All the scans have been acquired on the same scanner and with 
the same protocol. More details about scan acquisition parameters can be found in Mazziotta et al.67. No subject 
has been excluded after quality assessment of FreeSurfer segmentation outputs (see Cortical reconstruction and 
segmentation of the cerebral cortex section below).

Cortical reconstruction and segmentation of the cerebral cortex.  For each subject, cortical 
reconstruction and volumetric segmentation of the cerebral cortex was performed with the FreeSurfer image 
analysis suite v.5.368 (https​://surfe​r.nmr.mgh.harva​rd.edu/). Mean cortical thickness and GI throughout the 
cerebral cortex have also been recorded from FreeSurfer outputs. More details about FreeSurfer analysis and 
procedures for quality assessment of the cerebral cortical segmentations have been reported in the Supplementary 
Appendix.

Computation of the FD of the cerebral cortex with a 3‑D box counting algorithm.  We 
computed the FD of the cerebral cortex through the 3-D box counting algorithm69, as previously described29, 30. 
Briefly, let I(x,y,z) be a 3-D binary segmentation of the cerebral cortex. A grid containing 3-D boxes of side 
s was superimposed on I(x,y,z) and the number of boxes N(s) needed to fully cover the object was counted. 
The procedure was repeated for various s values (Fig. 3). In order to prevent a systematic influence of the grid 
placement on the object contained in I(x,y,z)4, 70, 71, for each s value, 20 uniformly distributed random offsets were 
applied on the grid origin and the relative box counts have been averaged to obtain a single N(s) value39. For a 

Figure 3.   An example of the grid superimposed on a 3-D binary image in the 3-D box counting algorithm: the 
size s of the cubes contained in each grid (e.g., s = 8, 16, 32, 64 voxels) determines the value of the count N(s) in 
the log–log plane. The figure has been prepared with Matlab R2019b (MathWorks, Natick, MA, US).

https://surfer.nmr.mgh.harvard.edu/
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fractal object, the data points of N(s) versus s within a certain interval of spatial scales in the log–log plane can 
be modeled by a linear regression function. Once the minimum and maximum fractal scales interval have been 
selected, either a priori or automatically (see next section), the FD was computed as the absolute value of the 
slope of the regression line estimated within the selected spatial scales3. An example of the procedure is shown 
in Fig. 3.

This linear relationship in the log–log plane corresponds, in the natural scale, to a power law N(s) = C * s 
−FD, where FD is the exponent (with a negative sign) and C is the prefactor3. Given that the linear regression 
is computed in a log–log plot, the box counting algorithm was applied by using a uniform sampling of the 
spatial scales in the log–log plane, which corresponds to an exponential sampling in the natural scale, i.e., using 
s = 2 k mm, with k = {0, 1, …,8}.

Strategies for selection of the interval of spatial scales.  We estimated the FD of the cerebral cortex 
of each subject using four different strategies for the selection of spatial scales on both NKI2 and ICBM datasets. 
They include the use of an a priori spatial scales range with minimum and maximum fractal scales inspired 
by Kiselev et al. (Strategy A priori #1)13, and by Goñi et al. (Strategy A priori #2)39 (rounded to the next power 
of 2). In particular, Kiselev et al. have proposed a range of spatial scales from 3 mm (a typical value of cortical 
thickness) to 25 cm (the head size), while Goñi et al. have suggested to take into account the values between 5 
and 40% of the smallest Euclidean dimension of the object39. We estimated the smallest Euclidean dimension of 
the cortical ribbon segmentation by firstly computing its bounding box, i.e., the box with the smallest volume 
that fully encloses the cortical ribbon. Then, we derived the 5% and 40% of the shortest side length (rounded to 
the nearest power of 2) and set them as the minimum and maximum fractal scales, respectively.

As third strategy, we adopted an automated selection of spatial scales within which the cerebral cortex 
manifests the highest statistical self-similarity29, 30 (Strategy AutomatedMarzi et al., 2018). This algorithm has been 
previously described in detail and validated on synthetic phantoms30. Briefly, we selected the interval of spatial 
scales in which I(x,y,z) manifests more marked fractal properties, identifying the range of s values in which 
the linear regression shows the highest coefficient of determination (adjusted for the number of data points) 
R2

adj, used as a goodness-of-fit indicator. To this end, we carried out the linear regression for each combination 
of minimum and maximum spatial scales allowed. We considered a minimum number of 4 data points in the 
log–log plane in order to explore a sufficient range of spatial scales (in the worst case, i.e., mfs = 1 mm (for 
k = 0) and Mfs = 8 mm (for k = 3), the interval covers ≈ 0.9 decades) for which a fractal object can be defined. 
This third strategy does not take into account the possibility that the choice of the highest R2

adj value may be 
affected by non-effective decimal places. Given that it is theoretically better to privilege the widest possible spatial 
interval41, 72, we propose a forth strategy based on an improved automated selection of the spatial scales (Strategy 
Automatedfractalbrain). As most statistical measurements, only a few decimal places of R2

adj are actually effective, 
contributing to the significant figures73. Since it can be interpreted as a proportion of explained variance, i.e., a 
percentage value, we followed the common recommendations suggesting that percentage values over 90% (in our 
study, highest R2

adj were > 0.90 for each subject) may need one decimal place73. One decimal place in percentage 
is equivalent to 3 decimal places of the R2

adj in natural scale—thus we rounded the R2
adj using 3 decimal places. 

Given that wider intervals in the log–log plot are preferable to justify the existence of fractal properties, in the 
Strategy Automatedfractalbrain, the automated selection of the spatial scales is performed by searching for the interval 
of spatial scales in which the linear regression shows the best fit, as measured by the rounded R2

adj coefficient 
and, in case of equal rounded R2

adj coefficients, by selecting the widest interval (i.e., the one that contains as 
many points as possible in the log–log plot). In this way, we prevent that scale selection might be guided by non-
effective R2

adj decimal places, and prefer wider intervals in the case of equal (rounded) R2
adj. In order to explore 

at least 1 decade41, we considered a minimum number of 5 data points in the log–log plane—in the worst case 
the interval covers ≈ 1.2 decades which can occur, e.g., for mfs = 1 mm (for k = 0) and Mfs = 16 mm (for k = 4) or 
mfs = 2 mm (for k = 1) and Mfs = 32 mm (for k = 5)).

An example of how the four strategies affects the linear regression fit in the log–log plot is shown in Fig. 4.

Statistical analysis.  For each dataset and for each strategy used for selecting the spatial scales interval, we 
computed the descriptive statistics of FD values of the cerebral cortex along with that of mfs, Mfs and interval 
width. In order to assess the potential use of the FD as a neuroimaging marker of brain development and aging, 
we performed a linear regression analysis and computed the Pearson’s correlation coefficient between FD 
measurements (assessed using the 4 strategies) and age, separately, in both the NKI2 and ICBM datasets. For 
all tests, a p-value < 0.05 was considered statistically significant. As a reference, the correlation analysis between 
mean cortical thickness and age and between GI and age have also been carried out.

Individual age prediction.  We fitted a separate regression model for mean cortical thickness and GI 
throughout the whole cortex and for each FD estimate strategy in order to choose the most accurate model 
in predicting individual age using the ordinary least-square linear regression. In each model, eTIV values and 
gender have been inserted as additional features (Fig. 1). For each model, to evaluate the performance on unseen 
data, the regression task was performed in a 5-fold CV loop. Before each training of the linear regression in 
CV, each feature was standardized with reference to the training set only. Test set data were not used in any way 
during the learning process, thus preventing any form of the peeking effect74. Performance was quantified in 
terms of the MAE between predicted and actual age values computed on the test set of the CV. Given that the 
results may vary depending on how the data are split in each fold of the CV, for each model, we repeated the CV 
procedure 1000 times. The average MAE from all repetitions was computed to get a final model assessment score. 
For each model, statistical significance of prediction performance was determined via permutation analysis—
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recommended especially when the sample size is small75. Thus, for each model, 5000 new models were created 
using a random permutation of the labels (i.e., individual age), such that the input features were dissociated from 
its corresponding individual age, to simulate the null distribution of the performance measure against which the 
observed value was tested76. MAEs were considered significant if the p-value computed using permutation tests 
was < 0.05. We used own code developed in Python programming language (release 3.7.1, available at https​://
www.pytho​n.org/) for data analysis.

 Data availability
The datasets analysed during the current study are freely available online: NKI2 dataset: https://fcon_1000.
projects.nitrc.org/indi/CoRR/html/nki_2.html. ICBM dataset: ICBM repository, https://fcon_1000.projects.nitrc.
org/fcpClassic/FcpTable.html.
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