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Abstract: In order to understand the molecular basis underlying the host immune response of koi
carp (Cyprinus carpio), lllumina HiSeq™ 2000 is used to analyze the muscle and spleen transcriptome
of koi carp infected with Aeromonas sobria (A. sobria). De novo assembly of paired-end reads yielded
69,480 unigenes, of which the total length, average length, N50, and GC content are 70,120,028 bp,
1037 bp, 1793 bp, and 45.77%, respectively. Annotation is performed by comparison against various
databases, yielding 42,229 (non-redundant protein sequence (NR): 60.78%), 59,255 (non-redundant
nucleotide (NT): 85.28%), 35,900 (Swiss-Prot: 51.67%), 11,772 (clusters of orthologous groups (COG):
16.94%), 33,057 (Kyoto Encyclopedia of Genes and Genomes (KEGG): 47.58%), 18,764 (Gene Ontology
(GO): 27.01%), and 32,085 (Interpro: 46.18%) unigenes. Comparative analysis of the expression profiles
between bacterial challenge fish and control fish identifies 7749 differentially expressed genes (DEGs)
from the muscle and 7846 DEGs from the spleen. These DEGs are further categorized with KEGG.
Enrichment analysis of the DEGs and unigenes reveals major immune-related functions, including
up-regulation of genes related with Toll-like receptor signaling, complement and coagulation cascades,
and antigen processing and presentation. The results from RNA-Seq data are also validated and
confirmed the consistency of the expression levels of seven immune-related genes after 24 h post
infection with qPCR. Microsatellites (11,534), including di-to hexa nucleotide repeat motifs, are also
identified. Altogether, this work provides valuable insights into the underlying immune mechanisms
elicited during bacterial infection in koi carp that may aid in the future development of disease
control measures in protection against A. sobria.

Keywords: Illumina paired-end sequencing; immune response; koi carp (Cyprinus carpio);
Aeromonas sobria; transcriptome

1. Introduction

Aeromonas (Aeromonadaceae) species are ubiquitous and can cause infections not only in humans
but also in fish. Aeromonas are isolated from various sources, such as fresh, estuarine, or surface waters,
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sewage, food products, healthy or diseased fish, or animal and human feces and are ubiquitous in
aquatic ecosystems [1-5]. Aeromonas diseases in fish are mainly caused by the release of two important
virulence factors, namely extracellular hemolysin and aerolysin [6-8]. At ambient temperature,
Aeromonas species are known as active spoilers of fish and meat [9,10]. They are opportunistic
pathogens of fish and can cause outbreak during stress conditions, such as poor water quality,
overcrowding, and rough handling [1,11,12].

Aeromonas spp. are gram-negative, straight, nonspore-forming rods, generally cytochrome oxidase
positive, facultatively anaerobic, and chemoorganotrophic and are characterized by their ability
to grow in 0% NaCl but not in 6% NaCl [1]. Aeromonas septicemia causes fatal infectious disease
in cold-blooded animals [13]; in humans [14-16], disease is often caused by the motile Aeromonas,
particularly Aeromonas hydrophila, Aeromonas sobria (A. sobria), and Aeromonas caviae.

In this study, we concentrated on A. sobria, which causes septicaemia in cultured marine and
freshwater fish in Taiwan. A. sobria infections frequently result in considerable economic loss to
fish farmers in Taiwan. There are several studies of transcriptome profile in fish upon exposure
to different pathogens, such as Aeromonas hydrophila infection in zebrafish (Danio rerio), grass carp
(Ctenopharyngodon idella), darkbarbel cat fish (Pelteobagrus vachellii) [17-19] and Vibrio anguillarum
infection in soles (Cynoglossus semilaevis) [20], indicating the activation of specific immune pathways
after bacterial infection. Other examples include orange-spotted grouper (Epinephelus coioides) [21],
the blunt snout bream (Megalobrama amblycephala) [22], the Chilean abalone Concholepas (Gastropoda,
Muricidae) [23], grass carp (Ctenopharyngodon idella) [24], blowfish or fugu (Takifugu rubripes) [25],
large yellow croaker (Larimichthys crocea) [26], and Nile tilapia (Oreochromis niloticus) [27,28],
demonstrating that the pathways and immune gene expression are dependent on individual host and
pathogen. In addition, other studies reported on response to immune stimuli, pathogenic infection,
or environmental stress [29-31]. However, to the best of our knowledge, there is no information
available on the differential gene expression profile for the entire fish transcriptome in response to
A. sobria challenge and infection in koi carp.

2. Results

2.1. Transcriptome Sequence Assembly and Functional Annotation

Of 69,480 unigenes, 60,593 (87.21%) were annotated using at least one database, including 42,229
(NR: 60.78%), 59,255 (NT: 85.28%), 35,900 (Swiss-Prot: 51.67%), 11,772 (COG: 16.94%), 33,057 (KEGG:
47.58%), 18,764 (GO: 27.01%), and 32,085 (Interpro: 46.18%) unigenes. (Supplementary Materials,
Table Slab). In total, 26,870 (63.08%) COG-annotated putative proteins were classified into
25 categories (Supplementary Materials, Figure S1). The largest functional cluster was determined to be
‘replication recombination and modification” (2486), followed by “transcription’ (2359) and ‘translation,
ribosomal structure, and biogenesis” (1949).

2.2. Number of Differentially Expressed Genes after Aeromonas Sobria Challenge

Comparison of gene expression levels between the fish, subjected to bacterial challenge and
control fish, identified a total of 7749 differentially expressed genes (DEGs) in the muscle and 7846
in the spleen (p < 0.05). This included 6300 up-regulated and 1449 down-regulated genes in the
muscle, and 5111 up-regulated and 2735 down-regulated genes in the spleen, revealing a total of 7192
and 7280 (Figure 1). The DEGs in the muscle and spleen were mainly annotated into the following
categories: ‘biological process’, ‘cellular component’, and ‘molecular function’ (Figures 2 and 3).
The most annotated unigenes belonged to the following categories: cellular process, single-organism
process and metabolic process (from the ‘biological process’ category); cell, cell part and organelle
(from the ‘cellular component’ category); and binding, catalytic activity and molecular transducer
activity (from the ‘molecular function” category).
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Figure 1. Up-regulation and down-regulation of differential expressed genes (DEGs) in muscle and

spleen after challenge with Aeromonas sobria (A. sobria) in koi carp.
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Figure 2. KEGG (Kyoto Encyclopedia of Genes and Genomes) classifications of DEGs (differentially
expressed genes) in muscle. (A) Cellular processes; (B) environmental information processing

organismal systems; (C) genetic information processing metabolism; (D) human diseases;

(E) metabolism and (F) organismal systems.
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Figure 3. KEGG (Kyoto Encyclopedia of Genes and Genomes) classifications of DEGs (differentially
expressed genes) in spleen. (A) Cellular processes; (B) environmental information processing
organismal systems; (C) genetic information processing metabolism; (D) human diseases;
(E) metabolism and (F) organismal systems.

Overall, from DEGs in muscle and spleen, KEGG analysis annotated the genes into 286 pathways,
which were classified into 6 main categories (Figures 2 and 3), namely cellular processes, environmental
information processing organismal systems, genetic information processing metabolism, human
diseases, metabolism, and organismal systems.

A total of 1325 DEGs in the muscle were annotated into signal transduction pathway terms with
26 sub-pathways (Supplementary Materials, Table S2a), including the PI3K Akt signaling pathway
(317 genes), Rap1 signaling pathway (242 genes), MAPK signaling pathway (218 genes), Ras signaling
pathway (199 genes), TNF signaling pathway (169 genes), cGMP-PKG signaling pathway (172 genes),
JAK-Stat signaling pathway (142 genes), and cAMP signaling pathway (154 genes).

A total of 1184 DEGs in the spleen were annotated into 26 sub-pathways (Supplementary Materials,
Table S2b), including the Rap1 signaling pathway (327 genes), PI3K Akt signaling pathway (326 genes),
MAPK signaling pathway (174 genes), Ras signaling pathway (170 genes), TNF signaling pathway
(145 genes), Phospholipase D signaling pathway (146 genes), Hippo signaling pathway (145 genes),
phosphatidylinositol signaling pathway (146 genes), cAMP signaling pathway (136 genes), and NF-«
B signaling pathway (132 genes).

The DEGs of the immune system were annotated in 16 sub-categories in the spleen
(S T3b), including leukocyte transendothelial migration (267 genes), platelet activation (239 genes),
hematopoietic cell lineage (205 genes), T cell receptor signaling pathway (143 genes), natural killer
cell-mediated cytotoxicity (171 genes), NOD-like receptor signaling pathway (80 genes), chemokine
signaling pathway (164 genes), intestinal immune network for IgA production (86 genes), Fc gamma
R-mediated phagocytosis (107 genes), B cell receptor signaling pathway (87 genes), antigen processing
and presentation (99 genes), Toll-like receptor signaling pathway (Figure 4) (85 genes), Fc epsilon
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RI signaling pathway (56 genes), cytosolic DNA-sensing pathway (30 genes) and RIG-I-like receptor
signaling pathway (43 genes), complement and coagulation cascades (Figure 5) (163 genes).

The immune system showed the highest number of DEGs in the muscle (817 genes); these
were divided into 16 sub-categories (Supplementary Materials, Table S3a,b), including leukocyte
transendothelial migration (203 genes), platelet activation (184 genes), hematopoietic cell lineage
(127 genes), T cell receptor signaling pathway (147 genes), natural killer cell-mediated cytotoxicity
(119 genes), NOD-like receptor signaling pathway (98 genes), Fc gamma R-mediated phagocytosis
(145 genes), B cell receptor signaling pathway (107 genes), intestinal immune network for IgA
production (55 genes), antigen processing and presentation (75 genes), Toll-like receptor signaling
pathway (Figure 6) (114 genes), complement and coagulation cascades (Figure 7) (43 genes), Fc epsilon
RI signaling pathway (76 genes), cytosolic DNA-sensing pathway (36 genes), and RIG-I-like receptor
signaling pathway (65 genes).
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DEGs with an absolute value of fold change >1 were selected from the immune-related category

from the muscle and spleen and are presented in Table 1. Although most of the selected genes could
be found in other categories, the genes were related to the complement system, antigen processing and

presentation, and the Toll-like receptor signaling pathway.
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Table 1. Inmune-related DEGs regulated after infection in muscle and spleen of koi carp.

7 of 15

Gene log2 Fold Change Up/Down-Regulation Gene log2 Fold Change Up/Down-Regulation
(Treat_muscle/PBS_muscle) (Treat_muscle/PBS_muscle) (Treat_spleen/PBS_spleen) (Treat_spleen/PBS_spleen)
Innate Immunity Innate Immunity

tir5 4.360256 Up tirs 3.787257 Up
myd88 2.619664 Up myd88 3.701566 Up

traf6 1.726865 Up tlr7 —3.67177 Down
takl 4.95002 Up tbk1 1.701046 Up
tbk1 2.392317 Up tabl 3.308268 Up

nfkb 2.415037 Up statl —1.15676 Down

tnf-a 9.337622 Up tnf —9.17742 Down
il-18 11.21396 Up il-18 6.588696 Up
il-12 2.374396 Up il-12 2.670009 Up
il-8 13.58918 Up il-8 12.19013 Up

cd40 8.438792 Up cd40 —1.38904 Down

Antigen Processing Antigen Processing

ter 2.235073 Up ter —4.78398 Down
mhc-i 7.857981 Up mhc-i 11.54978 Up
mhc-ii 3.933396 Up mhc-ii 1.144123 Up
cd8 7.857981 Up cd8 11.54978 Up
cd4 3.933396 Up cd4 1.144123 Up
hsp70 4.422052 Up hsp70 2.483444 Up

Complement Cascade Complement Cascade
c3 6.954196 Up c3 6.722808 Up
c4 1.81526 Up c4 2.656724 Up
manngn-bmdmg lectin 1.599362 Up manngn-bmdmg lectin 4143954 Up
serine protease 1 serine protease 1

c6 4.712957 Up c6 1.467602 Up
alpha-2-macroglobulin 5.612605 Up alpha-2-macroglobulin 11.84314 Up
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2.3. Simple Sequence Repeat and Single Nucleotide Polymorphism Discovery

Among 47,881 unigene, 11,534 SSRs (Simple sequence repeat) were identified. The most abundant
type of repeat motif was dinucleotide (44.39%), followed by trinucleotide (21.56%), quadra-nucleotide
(2.05%), penta-nucleotide (0.6%), and hexa-nucleotide (0.6%) repeats (Table 2). The highest tandem
repeat number was six, constituting 17.26% (Table 3).

Table 2. Simple sequence repeat (SSR) marker discovery.

Parameter Number
Total number of sequences examined: 47,881
Total size of examined sequences (bp): 49,734,288
Total number of identified SSRs: 11,534
Number of SSRs containing sequences: 8638
Number of sequences containing more than 1 SSR: 2103
Number of SSRs present in compound formation: 943

Table 3. Number of Single nucleotide polymorphism detection with the repeat number.

Repeat Motif Length Total %
Number Mono- Di- Tri- Quad- Penta- Hexa-
4 0 0 0 0 58 52 110 0.9
5 0 0 1214 112 5 5 1336 11.58
6 0 1358 542 78 5 8 1991 17.26
7 0 705 324 14 1 2 1046 9.06
8 0 496 242 13 0 0 751 6.51
9 0 345 31 7 0 1 384 3.32
10 0 292 34 3 0 2 331 2.86
11 0 373 33 1 0 0 407 3.52
12 802 279 27 1 1 0 1110 9.62
13 575 69 15 2 0 0 661 5.73
14 385 87 6 0 0 0 478 4.14
15 239 104 6 2 0 0 351 3.04
>15 1787 1117 19 6 0 0 2929 25.39
Total 3549 5121 2487 237 70 70 11,534 100
% 30.76 44.39 21.56 2.05 0.6 0.6 99.96

A total of 21,098 candidate SNPs were identified, transitions (13,161, 62.38%) were the most
common type, and SNPs were typically located at the first and third codon positions (Figure 8).

2.4. RT-qPCR Analysis of Immune Related Genes Following Aeromonas sorbia Infection

To validate the DEGs identified by RNA-Seq analysis, we performed RT-qPCR. Seven genes (C3,
IL1B, IL8, MyD88, NF-xB, TLR5, TNFu) associated with the complement system, antigen processing,
and toll-like receptors were detected in the spleen and muscle by RT-qPCR (Table 4). In the spleen of
the infected fish, at 1 dpi, the expression levels of IL1p, IL8, and MyD88 were significantly up-regulated.
In the muscle at 1 dpi, the expression levels of C3, IL15, and IL-8 showed an upward trend, but these
was not significant.
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Figure 8. Statistics of Single nucleotide polymorphism (SNP) type in cDNA library from control and
bacterial infection.

Table 4. Validation of relative expression levels of immune-related genes after A. sorbia infection from
RNA-Seq and real-time polymerase chain reaction.

Spleen Muscle
Gene
RNA-Seq qPCR RNA-Seq qPCR

C3 6.722808 2.99 £1.90 6.954196 2.68 +1.84
IL-1B 6.588696 *2473 £5.75 11.21396 1.23 £ 045
IL-8 12.19013 *140.77 £77.4 13.58918 579 £3.82
MyD88 3.701566 292 £0.85 2.619664 0.76 £ 0.24
NF-xb —1.15676 1.50 + 0.58 2.415037 0.56 £0.16
TLR5 3.787257 9.14 £ 4.53 4.360256 1.08 + 0.69
TNFu« —9.17742 5.33 £2.89 9.337622 0.25 £ 0.03

* Key gene molecules showing difference in expression level between RNA-seq and gPCR in spleen.

3. Discussion

This study used the spleen and muscle of koi carp at 24 h after infection with A. sobria as
experimental samples to determine immune-related genes and signaling pathways activated during
the early stage of infection. As expected, the results showed that many immune-related genes
in the koi carp were up-regulated significantly after A. sobria infection. The most significantly
up-regulated genes associated with immunity were the pro-inflammatory cytokine-related and the
signal transduction related genes, such as IL-18, TNF receptor, CXC chemokine, TGF-pB, NF-xB, and some
other immune-related genes; pathogen recognition related genes were also significantly up-regulated.

After assembly, 69,480 unigenes were generated, with an average length of 578 bp, which was
longer than those achieved in previous studies, using the Roche GS FLX 454 system with MIRA
assembler (a length range of 118-2065 bp and an average length of 495 bp) [32] or Illumina/Hiseq-2000
with the assembling program-SOAP (a length range of 200-5245 bp and an average length of
412 bp) [33]. This difference in sequence quality is possibly owing to the difference in sampling
tissue and the different de novo assemblers. Trinity assemblies, which were used in this study, have
a consistently better performance than the other tools used in transcriptome assembling, even in
the absence of a reference genome [34,35]. In contrast to Trinity, the SOAP or MIRA assemblies
adopted in previous reports [32,33] were more fragmented under high values of sequencing errors
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and polymorphism levels [34]. Additionally, compared with the merged 69,480 unigenes in this
transcriptome, previous studies provided relatively smaller gene sets (29,682 unigenes from Roche
454 system and 2139 unigenes from a SMART cDNA library) [36], and this result further emphasizes
that [llumina/Hiseq-2000 RN A-Seq is a more ideal method for transcriptome analysis and it has high
efficiency and massive data output.

In this study, only 60,593 unigenes were annotated with at least one database and the same
problem has also been reported for the transcriptomes of other groups of marine organisms [37].
The possible reason for less annotation may be due to the availability of limited genome sequence
database and research on aquaculture fish species [38—40]. Nonetheless, the functional annotations of
unigenes according to GO, COG, and KEGG databases provided ample numbers of candidate genes
and valuable information about biological features of koi carp challenged with A. sobria in this study.
For example, as per the KEGG analysis, 33,057 sequences were assigned to 244 KEGG pathways,
and among them, genetic information processing accounted for the largest number of pathways related
to pathogen infection (Figures 2 and 3).

In the present study, identification of SSR might be useful in genetic, evolutionary, and breeding
studies [41] in koi carp studies. These data on SRR will be useful in future studies on gene expression,
which can be manipulated by SRR variations in the 5 UTR regions as they affect the transcription and
translation. As it is evident that SRR are ubiquitous in transcriptomes and specific, this unigene could
be used for molecular marker development, comparative genetic mapping and genotyping.

4. Materials and Methods

4.1. Animal Maintenance

Prior to the conduct of experiments, all the fish were kept in a recirculatory system for 2 weeks
and allowed them to acclimatize to the laboratory conditions. Throughout the experiment, fish were
handled with 2-phenoxyethanol as an anesthetic. Approval for animal studies was obtained from the
Center for Research Animal Care and Use Committee of the National Pingtung University of Science
and Technology under protocol no #101-027 dated 19 March 2012.

4.2. Isolation, Cultivation, and Challenge with Aeromonas Sobria

The bacterium A. sobria was isolated from diseased koi carp with severe skin ulcer. The species
was identified by API 20NE and 16S rDNA sequencing, cultured in brain heart infusion (BHI) broth
for 18 h at 25 °C and enumerated prior to the challenge test.

A total of 15 fish (body weight 325 £ 23 g) were anaesthetized and used for intraperitoneal
injection with 1 x 10 cfu per fish. Individual fish received 1 x 107 cfu in 200 uL phosphate buffered
saline (PBS, pH 7.2). The other tank with 15 fish was injected with 200 puL of PBS (pH 7.2) only and used
as a control. Three fish each from the challenge (treatment) and control groups (1 = 3), respectively,
were examined at post 24 h infection. Muscle and spleen tissues were dissected hygienically and total
RNA was isolated.

4.3. Total RNA Isolation

TRIzol® reagent (Invitrogen Corp., Carlsbad, CA, USA) was used to isolate total RNA from the
tissues according to the manufacturer’s instructions. RNA integrity was assessed using the RNA Nano
6000 Assay Kit on the Bioanalyzer 2100 system (Agilent Technologies, Santa Clara, CA, USA).

4.4. cDNA Library Preparation and Sequencing

Genomics Bioscience Technology Co. Ltd. (Taipei, Taiwan) synthesized cDNA using 40 pg
total RNA along with poly-T oligo-attached magnetic beads. First- and second-strand cDNA was
synthesized using random oligonucleotides and SuperScript II reverse transcriptase. lllumina HiSeq™
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2000 (lumina, Inc., San Diego, CA, USA) platform was used to sequence the RNA-Seq library as
paired-end reads to 100 bp.

4.5. Assembly of De Novo Transcriptome

Adaptors and unknown bases (N) and low-quality reads were filtered using internal software
and stored in FASTQ format [42]. Using the default parameter in Trinity (https://github.com/
trinityrnaseq/trinityrnaseq/wiki) assembly was performed for paired reads and clustered to unigenes
via TIGR gene indices.

4.6. Functional Unigene Annotation and Classification

NCBI Nr (http://www.ncbi.nlm.nih.gov /), the COG (http://www.ncbi.nlm.nih.gov/COG/),
and the KEGG (http://www.genome.jp/kegg/), BlastP (Version 2.2.25) for unigenes containing open
reading frames (ORFs), and BlastX for unigenes without an ORF [43] were used for annotation.
The Blast2GO program was used to obtain GO annotation of the unigenes based on BLASTx hits
against the NCBI Nr database [44] and aligned, and the non-aligned unigenes were predicted by
ESTscan [45].

4.7. Identification of SSRs and SNP

SSRs were identified using MISA software package [46] (http:/ /pgrc.ipk-gatersleben.de/misa)
and di-, tri-, tetra-, penta-, and hexa-nucleotide motifs with a minimum of 8, 5, 5, 5, and 5 repeats
were also identified with default parameters, respectively. SNPs were identified in the unigene of koi
carp using HISAT [47] (http://ccb.jhu.edu/software/hisat/index.shtml), and then were called using
GATK [48].

4.8. Differentially Expressed Genes and Enrichment Analysis

Bowtie2 software (http://bowtie-bio.sourceforge.net) [49] was used to determine the expression
form treatment and control library. In order to obtain the DEGs in muscle and spleen tissues between
the control and the infected groups, fragments per kilobase of transcripts per million fragments
mapped (FPKM) values were analyzed further using the RESM [50] and the false discovery rate (FDR)
was used when it is <0.05.

4.9. Real-Time Reverse Transcription Polymerase Chain Reaction

Once the infected fish were prepared, we performed another set of experiments for the validation
of RNA-Seq data. DNase I-treated total RNA from the spleen and muscle was subjected to cDNA
synthesis using iScript™ cDNA synthesis kits (Bio-Rad, Hercules, CA, USA). Reverse transcriptase
real-time PCR (RT-qPCR) was performed using iQ™ SYBR® Green Supermix (Bio-Rad). The list
of primer sequences is shown in Table 5. Gene expression levels were normalized to that of EFla.
To enable comparisons between the two groups, statistical analysis was performed using Student’s
t-test. Values of p < 0.05 were considered statistically significant.
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Table 5. Primer name and sequence used in the present study.

Gene Sequence (5'-3')
EF1 Forward 5-CCGTTGAGATGCACCATGAGT-3/
x Reverse 5-TTGACAGACACGTTCTTCACGTT-3’
1L-1p Forward 5 -GTAACGTGTGCCGGTTTCTT-3'
Reverse 5-GCAACACAAAAGGAAGCACA-3
TNE Forward 5 -GCTTGTAGCTGCCGTAGGAC-3/
x Reverse 5 -GGTGGCTTGGAATTAGTG-3’
TLRS5 Forward 5-ATACACTCCGCTGCTGCTTT-3
Reverse 5-CAAGCTGAAGGTTTCCAAGC-3
IL-8 Forward 5-GATGCAAATGCCCTCAAATACA-3/
- Reverse 5-GGCTCTTGACGTTCCTTTTG-3’
NE-xb Forward 5 - TGGCTGGAGAGGATCCATAC-3/
o Reverse 5-AAAGCCCCTCTGTTTTGGTTG-3/
MuD88 Forward 5-CAGTTCTGTGTTGCGACGTT-3/
Y Reverse 5-CGGTAAGAACTTGGCACGAT-3’
c3 Forward 5-GGCTGGTCTTAGGCAGACAG-3’
Reverse 5-CAGCATAGGACCCGTCACTT-3’

5. Conclusions

This is the first study to provide information on host defense gene activities based on differential
transcriptomic profiling in koi carp against A. sobria. The large number of differential expression of
immune-related genes from innate immunity, antigen processing and complement cascade in this
study indicated the activation of koi carp host immune response towards A. sorbria infection and its
effect. However, further studies should be directed towards understanding of these different expressed
immune genes as potential functional markers in koi carp against A. sobria infection. Understanding
the protein levels of these functional markers in the infected koi carp would be of vital importance,
as such approach may lead to a profound understanding of the regulation and responses that occur
during the infection, and thus lead to the development of very specific and efficient novel vaccines
and chemotherapies.

Supplementary Materials: Supplementary materials can be found at http:/ /www.mdpi.com/1422-0067/19/7/
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