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Purpose: The extra-articular proximal tibial fractures continue to have high malunion rates
despite development in intramedullary nailing (IMN) technology. Combined plate and IMN
fixation can increase mechanical stability. The purpose of this study was to investigate
combined plate and IMN for the treatment of extra-articular proximal tibial fracture using a
biomechanical model.

Methods: A 10-mm defective osteotomy was created in the fourth-generation composite
tibia to simulate extra-articular proximal tibial fractures (AO/OTA 41A2). The fractures were
stabilized with IMN alone (IMN group), IMN with supplementary medial plate (M-IMN
group), and IMN with supplementary lateral plate (L-IMN group). The biomechanical
properties of each specimen were tested under axial compression loading, bending
stress, and cyclic loading. The maximum displacement of the fragments and implant-
bone construct failure was recorded.

Results: Themaximum displacement of theM-IMN group was significantly less than either
the L-IMN or IMN group in both axial compression loading and bending stress (p < 0.05 for
both comparisons). All specimens in the three groups survived in 10,000 cyclic loading
without hardware deformation. The maximum stiffness of failure was similar between the
M-IMN and L-IMN groups, but the IMN group was statistically lower than either the L-IMN
or the IMN group (p < 0.05).

Conclusion: The results indicated that combined medial plate and IMN fixation could
effectively increase the mechanical stability of proximal tibial fractures.
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INTRODUCTION

Extra-articular proximal tibial fractures are common tibial fractures, accounting for 5%–11% of tibial
fractures, which are often caused by high energy damage and accompanied by varying degrees of soft
tissue damage (Court-Brown and McBirnie, 1995; Vestergaard et al., 2020). Patients always suffer
from wound infection, osteomyelitis, delayed fracture union, nonunion and malunion during the
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long term follow ups even were treated by most sophisticated
trauma surgeon (Cheng et al., 2021). Plating, external fixation, and
intramedullary nailing (IMN) are common fixation methods to treat
proximal tibial fractures (Tejwani et al., 2015a; Thompson et al.,
2021). Open reduction and internal fixation with plates can easily
cause secondary damage to soft tissues, so it has often resulted in
complications such as delayed unions or nonunions, infections, and
implant failures (Thompson et al., 2021). To reduce irritation and
damage to soft tissue, minimally invasive plate osteosynthesis was

developed and reported to have several advantages in union,
alignment, and low infection rates (Gupta et al., 2016; Kim et al.,
2012). The external fixation cannot achieve higher repositioning and
force line maintenance requirements, and postoperative care is
complex and prone to complications such as nail tract infection
and deformative healing (Pairon et al., 2015). In recent years, as
orthopedic surgeons have become more aware of the importance of
the soft tissues and the bone blood, IMN has become a more
common fixation method for proximal tibia fractures (Baker et al.,

FIGURE 1 |Models of the specimen. (A1) Photographs demonstrating IMN fixation specimens, and (A2,3) Fluoroscopy images. (B1) Photographs demonstrating
IMN with medial plate fixation specimens, and (B2,3) fluoroscopy images. (C1) Photographs demonstrating IMN with lateral plate fixation specimens, and (C2,3)
fluoroscopy images.
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2021). Our previous meta-analysis on ten studies involving 667
patients revealed that IMN for proximal tibia fractures is
associated with a shorter time of union, full weight-bearing, a low
risk of infection, and fewer total complications than those for plating
fixation (Ren et al., 2021). Due to the particularity of the proximal
tibial anatomy, the problems of poor reduction and malunion can
easily occur when fixed with the IMN (Nork et al., 2006). Currently,
the additional small plate is a good solution. This study aimed to
assess the biomechanical performance of combined medial plate and
IMN fixation in treating proximal tibial fractures.

MATERIALS AND METHODS

Specimens and Groups
Fifteen fourth-generation Sawbones composite tibias (left tibia,
Sawbones 3401, Pacific Research Laboratories, Inc. Vashon, WA,
United States), tibial nail (length 345mm; diameter 9mm, IRENE,
Tianjin, China), and reconstruction plate (IRENE, Tianjin, China)
were used for the biomechanics test. The tibial nail and plate aremade
of titanium alloy which have been applied clinically for fracture
fixation for decades. Previous studies have demonstrated that
composite tibia is similar to the tibia of a healthy adult in
mechanical properties, such as axial compression, bending, and
torsion stiffness (Gardner et al., 2010). Additionally, these
composite models have the advantage of a lower variability for
biomechanical testing (Gardner et al., 2010). The composite
models were divided into three groups: group IMN, IMN fixation

alone; groupM-IMN, IMNwith medial plate fixation; group L-IMN,
IMN with lateral plate fixation.

Fracture Model
The tibial IMN was inserted under a standard technique in all
sawbones (Lu et al., 2020). An unstable extra-articular proximal
tibial fractures (OTA/AO 41A2) were created in all sawbones. All
sawbones were marked at a distance of 10 mm below the second
locking screw of the proximal tibia. Then, a handsaw was used to
cut a 10 mm transverse defect-osteotomy (Figure1A). Five
specimens received a medial 3.5 mm reconstruction plate and
intramedullary nailing fixation which simulated posteromedial
augmented plate fixation for extra-articular proximal tibial
fractures (Figure 1B), while another five received a lateral
3.5 mm reconstruction plate and intramedullary nailing
fixation which simulated anterolateral augmented plate fixation
for extra-articular proximal tibial fractures (Figure 1C). Three
non-locking bicortical screws were applied distally and
proximally to ensure plate bone apposition, respectively.
Radiographs of the three groups’ constructs are shown in
Figure 1.

Mechanical Testing
Mechanical testing was performed using a servohydraulic test
system (MTS Model 810, Eden Prairie, MN, United States)
(Figure 2). The test protocol of axial compression, cyclical
Loading, and 3 point bending followed previous studies
(Gardner et al., 2010; Zhang et al., 2021).

FIGURE 2 | Diagrammatic sketch of axial and bending load test.
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In the axial compression test, each specimen was performed
with loading at the mechanical axis which the loading center at
knee (point B) was 15mmoffset medially (Figure 2), the lower end
(point A) of the specimen was fully constrained. The loads and
rates in this study was based on the normal loads and rates of adults
who experienced the healing stages after surgery (Hansen et al.,
2007; Filardi, 2015). Each specimenwas tested by initial quasi-static
compression loading from 10 to 200 N at a rate of 10 N/s. Then,
each specimen was tested by axial compression loading from 10 to
800 N at a rate of 10 N/s. The displacement was recorded at the
fracture end corresponding to the 800 N loading force.We used the
maximum displacement to evaluate the stiffness of the implants.
Greater stiffness occurs with a smaller maximum displacement
under the same loading (Zhang et al., 2021).

In the bending stress test, both the distal and proximal part of the
specimen were fixed horizontally, the distal part (point A) was fully
constrained and bending load was performed at the proximal part
(point C) of the specimen, a preload of 50 N was tested at the first
setting (Figure 2). Therefore, the axial compression loading (from
10 to 700 N at a rate of 10 N/s) was fixed on the medial and lateral
sides at 10mm from the proximal fracture line, respectively. The
maximum lateral displacement data of the specimen was recorded.

Specimens were tested to 10,000 cycles of cyclic loading from
10 to 800 N at 2 Hz. The displacement of the fracture site between
the first cycle and the last cycle was recorded. The fixed and
loading methods in the cyclical loading and failure test were the
same as the axial compression test. The specimens that tolerated

cyclical testing were finally loaded compression loading at a rate
of 10 N/s until failure. The failure of the specimen was defined as
our previous study: loosened nail or bending, a bone fracture, or
other heavy hardware breakages (Supplementary Figure S1);
(Zhang et al., 2021).

Statistical Analysis
Statistical analyses were computed using GraphPad 8.0 Software
(La Jolla, CA, United States). The Shapiro-Wilk test was used to
determine whether the continuous variables were normally
distributed. Data satisfying normality were reported as means
and standard deviations. A non-parametric test or Student’s t-test
was used to compare the differences between two groups. One-
way ANOVA was used to compare independent measurements.
p-values < 0.05 indicated a statistically significant difference.

RESULTS

In the axial compression stiffness test at 800 N, the maximum
displacement was summarized as follows: 1.72 ± 0.43 mm, 0.78 ±
0.19 mm, and 1.16 ± 0.13 mm, for group IMN, group M-IMN,
and group L-IMN, respectively. Compared with the IMN group,
the mean maximum displacement of M-IMN and L-IMN groups
decreased by 54.65%, 32.56%, respectively. The 3-level (group
IMN, group M-IMN, and group L-IMN) one-way ANOVA
revealed that the maximum displacement was significantly

FIGURE 3 | Biomechanical performance in different models. The maximum displacement of IMN, M-IMN, and L-IMN group under axial compression (A), medial
side (B), and lateral side (C) bending stress, respectively (D) The maximum loading of failure was in three groups. * <0.05; ** <0.01; *** <0.001.
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different for the groups (p < 0.05 for both comparisons)
(Figure 3A).

In the 3-point bending stress test on the medial side at 700 N,
the maximum displacement was summarized as follows: 8.72 ±
2.06mm, 4.15 ± 0.59mm, and 5.88 ± 1.09mm, for group IMN,
group M-IMN, and group L-IMN, respectively (Figure 3B).
Compared with the IMN group, the mean maximum
displacement of M-IMN and L-IMN groups decreased by
52.41% and 32.57%, respectively. The maximum displacement
was summarized as follows: 10.19 ± 1.75mm, 5.04 ± 0.61 mm,
and 8.18 ± 0.82 mm, for group IMN, group M-IMN, and group
L-IMN, respectively on the lateral side (Figure 3C). Compared
with the IMN group, the mean maximum displacement ofM-IMN
and L-IMN groups decreased by 50.54% and 19.73%, respectively.
The 3-level (group IMN, group M-IMN, and group L-IMN) one-
way ANOVA revealed that the maximum displacement was
significantly different for the groups at medial side and lateral
side bending stress (p < 0.05 for both comparisons) (Figures 3B,C).

All specimens in the three groups survived in cyclic loading. The
mean maximum loading failure was 2943 ± 225.5 N, 3940 ±
170.9 N, and 3538 ± 275.3 N for IMN, M-IMN, and L-IMN,
respectively. The maximum loading failure was similar between
group M-IMN and L-IMN, but group IMN was the lowest (p <
0.05) (Figure 3D). The loading curves of three groups were shown
in Figure 4.

DISCUSSION

Both plate and IMN can be successfully used to treat extra-
articular proximal tibial fractures. Although typing of fractures
can guide decision-making, implant selection is often based on
the preferences of orthopedic surgeons. Our previous study
revealed that IMN for proximal tibia fractures is associated
with a shorter time of union, full weight-bearing, a low risk of
infection, and fewer total complications than plating fixation
(Ren et al., 2021). Moreover, some authors reported an alternative

fixation option for intramedullary fracture fixation by elastic
nailing recently, according to previous study when synthesis
devices are too stiff the bone is not properly stimulated and
healing is delayed, therefore the numerical elastic self-locking nail
maybe another better fixation option (Putame et al., 2020).
However, when dealing with the extra-articular proximal tibial
fractures, even titanium alloy nailing resulted in delayed union
and nonunion due to lack of fixation stability of the tibial
proximal fragment, trauma surgeons had to choose augmented
options such as poller screws or plates to maintain the stability of
the fracture. Although the incidence of proximal tibial fractures is
only 11% of all tibial fractures, the incidence of malunion is up to
16.7%–84% and is accompanied by a loss of proximal fracture
fixation (Krieg, 2003; Padubidri et al., 2021). To reduce or avoid
the malunion of proximal tibial fractures after IMN, Dunbar et al.
(2005) first proposed that the 3.5 mm system plate was used to fix
proximal tibial fractures, and then IMNwas used for fixation. The
33 patients all achieved the effect of anatomical reduction.
However, biomechanical studies of an additional plate with
IMN are currently lacking. Here, we evaluated the stability of
combining IMN and additional plate fixation in treating proximal
tibial fractures in this composite tibia gap osteotomy model.

The biomechanical properties of healthy adult human bones
depend on different factors. Consistent structural properties of
the bones are important. Evaluation of the structural properties
outcomes of fourth-generation composite tibia models and the
healthy adult human bones in a previous biomechanical study
showed that composite specimens had significantly lower
variability than cadaveric models for all loading regimens
(Gardner et al., 2010). Another previous biomechanical
investigation also reported that the variability of the fourth-
generation composite specimens was less than 6% for all cases,
which was much less than that of the natural human bones (28%)
(Heiner, 2008). The fourth-generation composite tibia specimens
were applied in our investigation, and the different groups were
compared.

There is great interest in identifying alternative implants with
more excellent biomechanical stability to treat proximal tibial
fractures. Medial locking plate, lateral locking plate, double plate
(Medial-lateral plate), suprapatellar and infrapatellar approaches
of IMN, and supplementation of the plate with IMN are feasible
techniques for proximal tibial fractures (Tejwani et al., 2015b;
Jindal et al., 2021; Thompson et al., 2021). Lee et al. (2014) used a
biomechanical study to compare the mechanical properties of
different internal fixation methods in treating proximal tibial
fractures. They found that IMN was significantly higher than the
single or double plates in terms of ultimate strength. In a
biomechanical test, Matthias et al. (Hansen et al., 2007)
investigated five devices (IMN, conventional double-plate
osteosynthesis, external fixator, unreamed tibial nail with a
T-stabilization-plate, and the less invasive stabilization system)
for the treatment of extra-articular proximal tibial fractures. They
found that the IMN could theoretically provide similar
mechanical stability to the double-plate in axial loading.

Additionally, IMN could provide higher stability in axial loading
than external fixator or the less invasive stabilization system.
Similarly, a biomechanical study comparing the fatigue strength of

FIGURE 4 | Axial compression loading curves in different models.
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the IMN construct with a double-plate construct in comminuted
extra-articular proximal tibial fractures in fresh frozen cadaveric tibias
indicated that IMN could provide the same fatigue performance as
the double-locked plates (Kandemir et al., 2017). In the current study,
the mean maximum displacement in the M-IMN group is less than
that in IMN or L-IMN group in axial loading. In other words,
M-IMN can provide higher mechanical stability in axial loading than
IMN or L-IMN.

With the development of IMN technology, the incidence of
malunion remains high in the treatment of proximal tibial fractures.
Padubidri et al. (2021) reported that the rate of malunion was 16.7%
(5/30) with extra-articular proximal tibial fractures after IMN. A
recent meta-analysis and systematic review indicated that the rate of
malunion was 28.1% (18/64) with proximal tibial fractures after
IMN (Jindal et al., 2021). Mild varus and valgus malunion can lead
to poor alignment of joint, increase the rate of reoperation and the
treatment cost, and eventually cause the occurrence of traumatic
arthritis, affecting the prognostic function and social function of
patients (Saragaglia et al., 2020). Several studies reported that
supplementary plate fixation adds stability to tibial fractures and
reduces the rate of malunion (Dunbar et al., 2005; Yoon et al., 2015).
So, we evaluated the lateral displacement of three fixation methods
(IMN, L-IMN. and M-IMN) for proximal tibial fractures by a 3-
point bending stress test. Our results showed that the mean
maximum displacement in the M-IMN group is less than that in
IMN or L-IMN group on both medial and lateral side loading.

Immediate weight-bearing is one of the advantages of IMN for
tibial shaft fractures (Gross et al., 2016). If extra-articular proximal
tibial fractures or distal tibial fractures are shown to have the same
safety as tibial shaft fractures, the choice of implants, operative and
postoperative protocols may be changed. Hadeed et al. (2021) used a
biomechanical model to evaluate immediate post-fixation stability of
the distal tibial fractures with IMN. They reported that immediate
weight-bearing is safe for well-reduced simple fractures. Our previous
study found that combining the plate with IMN for proximal tibial
fractures allows patients to be weight-bearing early (Guo et al., 2020).
The present study showed that all specimens in the three groups
survived in cyclic loading, the L-IMN group provided stronger
ultimate strength than the IMN group, and the M-IMN group
proved to be the strongest. This biomechanical data supply a
better understanding of safety evidence for full weight-bearing on
proximal tibial fractures after supplementing the plate with IMN.

There are several limitations in the present biomechanical study.
1) The experimental model used in this study is the four-generation
composite tibia. Although it can simulate the mechanical properties
of normal human bone, there is still a certain gap compared with the
specific mechanical environment containing soft tissue in vivo. Fresh
or frozen cadaveric tibia is much closer to normal human bone in
biomechanical properties. 2) Torsional stress experiment was not
performed in this study due to defects in the test machinery. 3)
Medial and lateral bending stress were tested for this study. There is a
lack of front and posterior bending stress tests. 4) The fracture model
used in this experiment is artificial. The fractured end is neat and
simple, which can not truly reflect the actual situation of clinical
fracture. The type of fracture is relatively homogeneous and does not
reflect well the type of implant suitable. The data obtained from the
study have limitations for clinical application. 5) The cyclic loading of

10,000 cycles are not enough to establish fatigue strength. In our
further work wemay be try to accomplishmore than 5million cycles.
Moreover, the loading set up has two full constrain at both ends. The
results seems to be in un-physiologic loads. During our future work of
the further study on the biomechanical properties of the fixation
options above, the finite element models could be established to
overcome the foresaid limitations and the relevant analysis results
may prove the validity of the mechanical test.

CONCLUSION

The proximal tibial fractures continue to have high malunion
rates despite development in IMN technology. In a composite
model of proximal tibial fractures, combined medial plate and
IMN fixation significantly increase stability. Whether these small
biomechanical advantages can be transferred into clinical practice
has to be evaluated in further clinical studies.
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