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Abstract: A nested structure is a structural feature that is conducive to system stability formed by the
coevolution of biological species in mutualistic ecosystems The coopetition relationship and value
flow between industrial sectors in the global value chain are similar to the mutualistic ecosystem in
nature. That is, the global economic system is always changing to form one dynamic equilibrium
after another. In this paper, a nestedness-based analytical framework is used to define the generalist
and specialist sectors for the purpose of analyzing the changes in the global supply pattern. We
study why the global economic system can reach a stable equilibrium, what the role of different
sectors play in the steady status, and how to enhance the stability of the global economic system. In
detail, the domestic trade network, export trade network and import trade network of each country
are extracted. Then, an econometric model is designed to analyze how the microstructure of the
production system affects a country’s macroeconomic performance.

Keywords: global value chain; global economic integration; nestedness; evolutionarily stable equilibrium

1. Introduction

Being relatively independent for a long period of time, the production systems of coun-
tries and regions in the world have gradually formed a global economic system through
flourishing trade. Numerous industrial value chains (IVCs) scattered among countries or
regions constitute the global value chain (GVC) network, which is an interconnected and
organic whole with specific functions. In such a network, the industrial sectors of each
country form an interdependent and competitive community of shared destiny through
the flow of capital, material and information.

In theoretical ecology and evolutionary biology, “nestedness” refers to a structural
measure of the overall stability in the ecosystems [1–3]. The structure is an optimal system
state conducive to both sides, which is the result of a mutual benefit mechanism estab-
lished between species and between species and the environment through evolutionary
games [4,5]. Mutualistic species strengthen cooperation through network reciprocity and
weaken competition by reducing niche overlap, so as to promote the system to an evolution-
ary equilibrium. This concept has, in recent years, also begun to be applied by sociologists
and economists to analyze various phenomena related to human society. In the same way
as the ecosystem, the economic system seeks an evolutionary equilibrium in the process
of dynamic evolution. In today’s highly developed globalization, cooperation among
economies has reached an unprecedented level. Through dynamic games to allocating
scarce resources, economies in the global value chain can maximize their relative interests.
The role of network reciprocity in emerging cooperation is an important mechanism for the
global economic system to achieve dynamic balance [6]. As the leading link in the global
value chain, the flow of intermediate products depends on the cooperation between various
industrial sectors. Considering that the industrial sector in the GVC has a dual identity, the
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provider and consumer of intermediate products, it can be represented by a bipartite graph
to separate the two attributes of a node, and, thus, the mutualistic relationship between
upstream and downstream industries can be clearly depicted. In fact, the ecosystem and
the global production system have some common ground. For instance, both the flow of
energy between species and the flow of intermediate goods between industrial sectors
reflect the mutually beneficial symbiosis relationship produced through the competition
and cooperation game, as shown in Figure 1. With the nested structure being identified
among industrial sectors in the GVC network, nestedness can be applied to measure the
topological stability of both the whole and local parts of the global industrial ecosystem.

Figure 1. Comparison between Mutualistic System and Global Production System. (a) There exists a
mutually beneficial symbiosis relationship between plants and pollinators. In simple terms, pollina-
tors pollinate plants to promote the formation of their fruits and take in the nutrients they need at
the same time. Among pollinators, there is not only competition for plants but also collaboration
to complete the process of collecting pollination, which will be beneficial to both sides as their
population grows. (b) Refers to the global production system where the orange circles represent
the upstream sectors and the blue circles the downstream sectors. The numerous upstream and
downstream sectors on the GVC cooperate to complete the industrial division of labor, while the
upstream sectors not only compete for the same buyers but also collaborate to make sure these buyers
can get what they need in the production process.

The ecological metaphor is not ecological reductionism or ecological imperialism, and
it is not to simply reduce the phenomenon of macroeconomic evolution (industrial transfer
between countries and adjustment of industrial structure within countries) to ecological
evolution [7]. Moreover, Chase and Leibold’s research on the ecological niche is only an
abstract milieu interne adjustment mechanism, and does not describe the specific evolution
process. The complex system theory must be embedded in it to accurately explain the law
of the evolution of an economic system [8]. Therefore, the evolutionary game theory of
biological populations in ecology has a certain enlightening significance to the theory of
economic evolution.

2. Literature Review

Nestedness, derived from theoretical ecology and evolutionary biology, is an impor-
tant structural feature of complex networks. In 1957, Darlington mentioned this concept
in his book Zoogeography, in which he noticed that the spatial distribution of species dis-
played the nested feature [9]. Building on Darlington’s discovery, in 1986, Patterson and
Atmar formulated the precise conce pt of nestedness, i.e., in a fully nested network, the
neighborhood of a node with lower node degree is a subset of the neighborhood of a
node with higher node degree [10]. In 2003, Bascompte et al. analyzed 25 plant–pollinator
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networks and 27 plant–frugivore networks and found that most of the networks exhibited
nested features [11]. The nested structure reflects the mutualistic relationship between
species. In a mutualistic network, specialist species tend to relate to generalist species
who have higher adaptability to the environment, thus mitigating the risk of extinction.
Niche overlap decreasing in the nested structure helps weaken competition and improve
species diversity [12], and the greater the nestedness, the stronger the recovery ability of
the system after external shocks and the stabler the network structure [13–15].

Inspired by this discovery in ecological networks, scholars in socioeconomic networks
began to devote themselves to the study of nestedness. As early as 1965, when studying
the U.S. economic structure using intra-country input–output data, Leontief identified
the obvious nestedness of the U.S. industrial network [16]. Subsequently, a large number
of theoretical and empirical studies have emerged, which has greatly enriched the inter-
disciplinary research in the field of economics. The world trade network [17], the arms
trading network [18], the interbank capital flow network [19], the manufacturer–supplier
network [20] and the product export network [21–23] also show nested features. The
network heterogeneity caused by the dynamic evolution of a social economic system is the
main reason for its nested structure. Taking the world trade network as an example, the
coexistence of competition and cooperation among countries leads to unbalanced economic
development, which makes the world trade network show a center–periphery structure.
That is, the generalist sectors are connected with the most counterparts and form the core of
the network, and specialist sectors are at the periphery and are dependent on the center [24,25].
This highly connected center makes the links of the network replaceable. Even if the supply or
demand of some sectors disappears, the existence of other replaceable sectors can make the
products flow normally. At the same time, these studies reflect that the nested structure is of
great significance for maintaining the stability of the economic system [26,27]. For example, in
the 2008 global financial crisis, the reason for the decrease in interbank transactions was that
the core banks reduced the number of externally active sides [28].

This paper is organized as follows. In Section 1, the application and development of
nested structure theory in the field of ecology and economics are systematically introduced.
In Section 2, we sort out the literature on nested structure in economic system and ecosys-
tem. In Section 3, a GVC network is built based on the Multi-Region Input–Output (MRIO)
database to embody the flow of intermediate goods between industrial sectors. In Section 4,
the nested structure is embodied by sorting algorithm and measured by NODF method.
In Section 5, analyses of the divergence, trend and stability are conducted to explain the
complex relations between industrial sectors and the global production system, and then
the economically evolutionary mechanism is proposed. In Section 6, the econometric
models are used to analyze the relations between the nestedness-based indicators and
the level of economic development. Finally, some countermeasures are put forward for
economies to achieve a much more stable and healthy state.

3. Data and Model

In order to represent the nested structure of the global production system, we build a
GVC network that can reflect the coopetition relationships of industrial sectors in each country.

3.1. Data Sources and Structure

Among the mainstream databases, the Eora Multi-Region Input–Output (MRIO)
database of the University of Sydney covers the largest number of economies (189 coun-
tries/regions) and the longest period (1990–2015) and is suitable to be taken as modeling
data. To make the nested structure more explicit and hierarchical, a simplified version
of this database, named Eora26, is chosen in this paper, i.e., to sort the industrial sectors
in 189 countries/regions into 26 sectors. For the sake of effectively visualizing the data
element, we further group these sectors into four sectoral categories, namely agriculture
(sectors 1 and 2), mining (sector 3), manufacturing (sectors 4 to 14), and services (sectors 15
and 16) (For detailed dividing criteria, refer to Appendix A).
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3.2. Network Modeling

As an emerging yet important research area, GVC accounting is mainly represented by
teams of Timmer M.P., Koopman R. and Wang Z., who have made important breakthroughs
in economic theories and statistical techniques [29–31]. The important quantitative results
they obtained have enriched the original GVC studies and cemented a theoretical basis
for both the upcoming analysis and the formulation of relevant policies. They have also
enabled the theoretical expansion to other GVC-related fields. Among all the achievements
in GVC accounting, a set of preliminary accounting systems has been formed around
value-added exports, which reflects industrial sectors’ competitiveness and participation
in the GVC.

The global economic system, however, is a complex nonlinear emergence system,
and the multiple emergences as its essential feature cannot simply be obtained by the
linear addition of individualities. That is to say, the whole picture will be shadowed if
only the individuals are analyzed. We should focus on the interrelationship and influence
mechanism between individuals and the whole, under the perspective of systems science.

The fact that industrial sectors in the GVC function as both upstream and downstream
sectors can be displayed in a bipartite graph, as in Figure 2d. Based on the data of interme-
diate use in the MRIO table, a Global Industrial Value Chain (Bipartite Graph) Network
(GIVCNBG) is constructed in the form of a bipartite graph G = (O, P, E, W). In the G, all
upstream industrial sectors form the set of object nodes O, and all downstream industrial
sectors form the set of participant nodes P; edges pointing from upstream to downstream
form the set of edges E in competition with other N-1 sectors as a consumption sector,
downstream industry sector i obtains from its upstream industry sector j intermediate
goods input, the amount of which is wji (j = i indicates that the upstream and downstream
are the same sector), constituting the weight set W.

While the GIVCNBG model applies the weight set W to substitute the adjacency
matrix, each row refers to the distribution of intermediate goods output of an upstream
sector and each column the intermediate goods input of a downstream sector. In spite
of this being the same mechanism as the one-mode GIVCN model, a two-mode network
is able to identify the underlying cooperative relationships between industrial sectors.
That is, there is cooperation between upstream sectors to promote the production of their
common downstream sectors [32]. The authors believe that the flow of intermediate goods
in production systems (expressed in the IO table as value or currency flow) is similar to
the flow of energy in ecosystems, and that both systems converge to a steady state after
a complex game. As mentioned above, ecological studies have found that ecosystems
in a steady state are characterized by nested structures and a more stable mutualistic
relationship between species. Therefore, we believe such features can also be found in the
topology of production systems due to them having the same evolutionary mechanism.
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Figure 2. Relationship between MRIO Table and Network. Typical MRIO table includes three
different areas, namely value-added, intermediate use and final demand. It is possible that the whole
global economic system can be abstracted to a multilayer network as shown in Figure 2b, which
includes three layers: the value-added layer, the intermediate use layer, and the final demand layer.
The intermediate use layer can be further treated as a puzzle that is made of many single-layer
networks out of a multilayer network, in which the nodes are the countries/regions, the layers are
the industrial sectors, and links can be established from sellers to buyers within and across industrial
sectors. If necessary, we can change the one-mode MRIO network into a two-mode network to
separate the inner identity of each sector and prepare for the projection. In Figure 2d, the same sector
distributes on the two sides of the dotted line, which means it belongs to both the upper stream and
the lower stream. In other words, the upper stream sector in the MRIO table could be referred to as
the object nodes in the bipartite graph, while the lower stream sector could be the participant nodes.
Now, the self-loop is transformed into an edge between the two identities of this sector.

3.3. Network Pruning

The GIVCNBG model is an extremely dense weighted network with highly hetero-
geneous material flows between each upstream sector and downstream sector. Thus, it
needs to be pruned in search of the backbone part before nested structure analysis. In
this paper, a new heuristic algorithm—XIFA [33,34]—is proposed, with the integration of
the features of H-index [35], Pareto Principle and Disparity Filter [36]. Through XIFA, a
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special subgraph Ǵ =
(
O, P, É, Ẃ

)
is extracted from the GIVCNBG model, named as the

GIVCNBG-FE model (FE as in “Filtering Edges”).
The GIVCNBG-FE model compresses the size of the edge set E to a large extent, For

example, after pruning the GIVCNBG-Eora26SC4-2015 model by XIFA,
∣∣É∣∣ = 8.95%× |E|,

while ∑ ẃij = 99.15%×∑ wij, which means more than 90% of the deleted edges carry less
than 1% of the network information, leaving less than 10% of the edges carrying more than
99%. In sum, the bipartite graph Ǵ =

(
O, P, É

)
, with the weight information removed and

all edges left as important, is sufficient to portray the nested structure of the network (For
detailed algorithm information, refer to Appendix B).

4. Measurement

A nested structure is determined by the distribution of edges in the network and can
be influenced by the network connectivity. The higher the connectivity of the network, the
more likely it is to exhibit nested characteristics. In ecosystems, nested structure is estab-
lished when ecological niches of different species adapt to each other and, thus, achieve
dynamic equilibrium. It is a network structure characteristic formed by species adapting to
the natural environment in pursuit of homeostasis. Nestedness in an ecological network is
therefore a measure of the stability and sustainability of an ecological environment. From
the perspective of bionomics, there are many similarities between a GVC network and an
ecological network in terms of topological characteristics. In the same way as biological
species, the industrial sectors in the GVC form a complex association of mutual benefit,
and the trade and economic cycles between them make the GVC an organic whole. Higher
nestedness of the GVC network indicates a more mature industrial trade mechanism,
a more regular and orderly industrial trade network and a deeper integration between
industries. Hence, research on the nested structure of the GVC network has fundamental
implications for the economic development of countries, regions and even the world [37].

Prior to the analysis, the adjacency matrix needed to be reordered to maximize the
degree of network nestedness. Several classical sorting algorithms are introduced in
Appendix C, and the SBD (sorted by degree) algorithm was finally selected through
comparing their NODF. The NODF metric proposed by Almeida-Neto et al. is widely used
to calculate the nestedness of networks, which is based on two basic properties: Decreasing
Fill (DF) and Paired Overlap (PO) [38].

Given that a matrix has m rows and n columns, and MT is the number of elements
valued at 1 in any row or column. For any pair of rows (i, j)(i < j), if MTi > MTj,
then DFij = 100, otherwise DFij = 0; similarly, for any pair of columns (k, l)(k < l), if
MTk > MTl , then DFkl = 100, otherwise DFkl = 0.

For any pair of rows (i, j)(i < j), POij refers to the percentage of 1′s in a given row j
that is located at identical column positions to the 1′s observed in a row i. Similarly, for any
pair of columns (k, l)(k < l), POkl refers to the percentage of 1′s in a given column l that
is located at identical row positions to those in column k. Therefore, for any up-to-down
row pair, or any left-to-right column pair, the degree of paired nestedness (Npaired) can be
expressed as follows

Npaired =

{
0, i f DFpaired = 0

PO, i f DFpaired = 100
(1)

There are m(m− 1)/2 row pairs in row m, and n(n− 1)/2 column pairs in column n.
Thus, the nestedness of the entire network can be calculated by “averaging all paired values
of rows and columns”

NODF =
∑ Npaired[

m(m−1)
2

]
+
[

n(n−1)
2

] (2)

where the NODF value ranges from 0 to 100, with NODF = 0 indicating a non-nested
network structure and NODF = 100 indicating a fully nested network structure.
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5. Results

Globalization is both an opportunity and a threat for the economic development of
each country. On the one hand, the industrial sectors of each country have their comparative
advantages, thus forming a relatively stable international industrial division of labor. On
the other hand, they also fiercely compete in the global market, seeking a place on the
GVC. It is under the impetus of both cooperation and competition that the global economic
system evolves and shows nested structural characteristics in the process of convergence
to homeostasis.

5.1. Divergence Analysis

If the economic system is compared to an ecosystem, the generalist feature of an in-
dustrial sector can be measured by the number of important IO relationships they establish
with other sectors. In this paper, the larger-degree industrial sectors are defined as General-
ist Sector, featuring higher involvement in the GVC, widely distributed outputs/inputs
and a broader industrial ecological niche. On the opposite side are the Specialist Sector.
Viewed by rows, the nodes in the upper part of the nested area have higher outdegree and
stronger supply-side generalist degree, while those in the lower part have lower outdegree
and weaker supply-side generalist degree. Viewed by columns, the nodes on the left side
have higher indegree and stronger demand-side generalist degree, while those on the right
side have lower indegree and weaker demand-side generalist degree.

Due to the vertical specialization, product manufacturing, and its related services,
exists through all stages of the global production process. Each country takes advantage of
its own and others’ comparative advantages in technology, capital and/or labor, jointly
shaping the main structure of the GVC. As a result, the manufacturing and services sectors
own a higher degree of external dependence, i.e., a higher generalist degree. In contrast,
the agriculture and mining sectors only affect a limited number of sectors. They mainly
trade with the domestic sectors for self-sufficiency and seldom establish international trade
channels with the manufacturing sectors of a few developed economies. In short, most of
them have low involvement in the GVC, resulting in lower generalist degree.

To further analyze the features of the nested structure of the GVC, this paper selected
four representative areas consisting of the top twenty and bottom twenty sectors on the
supply and demand sides, respectively, as shown in Figure 3. The comparison reveals
significant differences in the generalist degree of industrial sectors in developed and
developing countries.

Region A on the top left shows the IO relationship between the upstream and down-
stream generalist sectors. This value network, consisting of manufacturing and services
sectors in advanced economies, is very dense, indicating that intense competition occurs
because of overlapping ecological niches. The NODF value of Region A is 76.165, due
to the empty elements of the upper triangle and the non-empty elements of the lower
triangle, which indicate the insufficient collaboration and excessive competition among
these generalist sectors; hence, negatively affecting the stability of the industrial structure.

Region B in the top right shows the IO relationship between the upstream generalist
sectors and the downstream specialist sectors. It is found that Japan’s services belong to
the generalist sector in the upstream, whose trade in services exports to most countries
around the world, while they have very low generalist degree in the downstream. On
the one hand, Japan’s services sectors are highly developed and are mainly in the form
of outsourcing. Along with the progress of economic globalization and division of labor,
they penetrate every aspect of the global market. On the other hand, Japan’s market
remains relatively closed. Since World War II, the industrial structure of Japan has been
continuously upgraded, and various industries, especially the services sectors, have entered
into a relative mature stage and become the dominant industry. As for other countries, it is
difficult to compete with Japanese companies because of the high trade barriers.
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Figure 3. Topology of Different Regions after Sorting the Adjacency Matrix of GVC Network Based on SBD Algorithm. (A)
The IO relationship between the upstream and downstream generalist sectors; (B) The IO relationship between the upstream
generalist sectors and the downstream specialist sectors; (C) The IO relationship between the upstream specialist sectors
and the downstream generalist sectors; (D) The IO relationship between the upstream and downstream specialist sectors.

From the bottom two regions, the agriculture and mining sectors in underdeveloped
countries/regions have lower generalist degree; except for achieving self-sufficiency (Re-
gion D), they only open international trade channels with the manufacturing sectors of a
few developed economies (Region C). On the one hand, as the multilateral trading system
is frequently challenged by unilateralism, agriculture sectors often passively become an im-
portant bargaining chip for balancing bilateral economic and trade relations, together with
the presence of invisible barriers to agricultural trade, posing obstacles to the globalization
process of the agricultural sector. On the other hand, since the globalization of the mining
sectors depend on resource endowment and geographical factors, only a few countries are
able to achieve significant exports of mineral resources, upon which most other countries
have to rely.

5.2. Trend Analysis

To observe the dynamic trend, this paper put together the top twenty industrial
sectors in terms of generalist degree on both sides, as shown in Figure 4. Overall, the major
generalist sectors did not change significantly between 1990 and 2015, with the absolute
generalist value fluctuating on a small scale. In particular, the manufacturing and services
sectors of the U.S. and Germany in the export sectors, and their manufacturing sectors in
the import sectors, have always maintained a high generalist degree, which means these
sectors are deeply integrated into all parts of the global economic cycle. In addition, some
variation trends also deserve more attention.
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Figure 4. Generalist Degree Variation Trends of the Upstream and Downstream Industrial Sectors.

First, on the matter of the export trade reflected by the upstream sector’s generalist de-
gree or the import trade reflected by the downstream sector’s generalist degree, these tend
to wax and wane. It is clear that, with the scaling-up influence exerted by China’s manufac-
turing export trade, the generalist degree distribution of the upstream manufacturing sector
has evolved from a “U.S.–Germany–Japan” tripolar pattern to a “China–U.S.–Germany”
pattern [39]. Meanwhile, Chinese exports of trade in services have begun to narrow the
gap with developed countries and have surpassed Japan.

Second, the rise of manufacturing sectors on the Chinese mainland and India have
brought an impact on Taiwan. As one of the once “Four Asian Dragons”, Taiwan used to be
a supply chain hub in Asia, except for Germany and Japan, for western countries. However,
with the advent of the dividends of Chinese reform and their opening up, productive
enterprises in Taiwan began to move to the Chinese mainland and overseas, leading to
the significant decrease in influence of Taiwan’s manufacturing industry. Besides, in order
to accelerate the development of the manufacturing industry, the Indian government has
introduced a batch of relevant measures to stimulate investment and ease market access
for foreign investment. Due to the blockade and restrictions imposed by the European
and American markets on the Chinese market, a huge market such as India is taken as the
preferred place for partial industrial transfer, which provides favorable conditions for the
development of manufacturing industry in India [40].

Third, Serbia has become a new “European Factory” by virtue of its unique location
and has started to play an important role in the import and export trade of manufacturing
industry in recent years. Located at the junction of the East and the West, Serbia is an
important hub connecting the major corridors of Europe and Asia and boasts strong con-
nectivity. Besides, it has signed free trade agreements with the European Union and Central
and Eastern Europe, and enjoys the most-favored-nation treatment from the U.S. With
the progress of the Belt and Road Initiative, Chinese enterprise also brings infrastructure
construction, creating a favorable environment for the development of the Serbian man-
ufacturing industry. All of these positive factors make Serbia an important intermediate
goods processing link in the GVC.
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5.3. Stability Analysis

It is necessary to quantify the influence of generalist and specialist sectors on the
nestedness of the GVC network, two control tests were designed to examine the influence
of a certain sector and the cumulative influence of multiple sectors, respectively. The results
are shown in Figures 5 and 6.

Figure 5. The NODF of Removing a Certain Industrial Sector of GVC Network. The horizontal gray
lines represent the NODF of the nested network sorted by the SBD algorithm, and the red scatter
points represent the correspondence between the generalist degree after removing a certain industrial
sector (the size of the outdegree or indegree) and the new NODF of the nested network.

Figure 6. The NODF of Proportionally Removing Industry Sectors of GVC Network. The gray
lines represent the variation in the value of network nestedness after randomly removing a certain
proportion of industrial sectors from the aligned adjacency matrix; the blue lines represent the
variation in the value of network nestedness after removing industrial sectors from the aligned
adjacency matrix in the descending order of generalist degree; the green lines represent the variation
in the value of network nestedness after removing industrial sectors from the aligned adjacency
matrix in the descending order of specialist.

After removing a generalist sector (see Figure 5), the NODF of the nested network
significantly decreases, indicating that the higher the industry sector’s generalist degree,
the more positive its effect on maintaining the stability of the GVC network. In contrast,
after removing a specialist sector, the NODF slightly increases, which means that an
industrial sector with a lower degree of generalist would weaken it. With the deepening of
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globalization, these industrial sectors risk being marginalized or even eliminated if they do
not actively participate in international competition and cooperation.

Figure 6 further confirms the above findings. After removing a small proportion of
industrial sectors with the highest generalist degree, the NODF of the nested network falls
drastically, i.e., the stability of the GVC network deteriorates rapidly, indicating that a few
generalist sectors are important hubs to maintain the functioning of the GVC. In contrast,
when the industrial sectors with the lowest generalist degree are removed, NODF displays
an increasing trend that does not start to decline until only 10% of the industry sectors are
left. This reinforces the importance of the generalist sectors to stability.

By comparison of Figure 6a,b, we further find that there is a difference between
generalist and specialist sectors in their terms of impact. Given the same proportion of
removed generalist sectors (e.g., 10%), the removal of upstream sectors would exert a
greater negative impact on the nestedness of the GVC network than that of downstream
sectors. In other words, the global demand network of intermediate goods (consisting of
downstream sectors) is sturdier than the supply network (consisting of upstream sectors).
Considering this, when the global economy faces systematic risks, in order to cope with
the resulting pressure or even disruptions of supply chains and reduced economic depen-
dence on external resources, many countries have explored alternatives for supply chain
management and import dependency. For example, they usually move their supply chains
to countries less affected by the pandemic, pull some of the production capacity back from
overseas or accelerate the industrialization process.

5.4. Evolutionary Mechanism

Dependency Theory, also known as Core-Periphery Theory, is established on the
world trade pattern and the resulting unequal international division of labor. It is powerful
as it explains the differences between developed and developing economies. The simple
explanation is that developed countries gather at the center of the world economic system,
while developing countries scatter at the periphery. Functionally, the countries at the
center transfer the production of primary products to peripheral countries through capital
import and transnational corporations, exploiting the peripheral countries’ cheap labor
resources to develop labor-intensive industries and, thus, optimizing their own industrial
structure. Being subject to the external constraints of the central countries, peripheral
countries form dependence on the central countries and the surplus value keeps flowing
from the periphery to the center, thus leading to the rich countries getting richer and the
poor countries getting poorer [41–44]. For example, after World War II, the Asian, African
and, especially, Latin American countries did not embark on the road to affluence after
their attainment of independence but, instead, became even more dependent on, and
formed the neo-colonialist industrial affiliation with, the economies of capitalist countries
in Europe and North America. Given that, advocates of the dependency theory call for
trade protection and import substitution in the peripheral countries and, with a strong
nationalist tendency, encourage them to develop their own industries. However, this theory
puts the peripheral countries in a passive position and attributes their economic distress
on external factors, taking no consideration of the drawbacks in their domestic economic
structures, which is to some extent pessimistic and biased.

Despite the similar nested structures of the mutual benefit ecosystem and the global
economic system at the topological level, their formation mechanisms are not identical.
Species in the mutual benefit ecosystem enhance their ecological benefits by continuously
adjusting their interactions with other species, and the nested structure evolves through
species’ dynamic game play and active adaptation to the environment. On the other hand,
the driving force behind the formation of the core-periphery model of the global economic
system lies in the international division of labor based on the countries’ comparative
advantages and, therefore, features historical inevitability. However, from the perspective
of dynamic development, peripheral countries are not always stuck in a position of being
exploited and unable to develop their economies. On the contrary, the industrial transfer of
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the center countries creates opportunities for the peripheral countries to make full use of the
capital and technology of developed countries to promote their own industrial development
and technological innovation, thereby achieving so-called “Corner Overtaking”. With the
increased depth and breadth of the GVC, by transferring many industrial production
processes to developing countries, developed countries have completed the transition
from a production-based society to a consumption-based society and need to rely on the
supply of goods from developing countries. This has inevitably led to the emergence
of industrial hollowing-out in some developed countries, increasing their dependency
on developing countries as the world factories. Figure 7 briefly shows the movement of
peripheral countries to the center of the industrial landscape, which is also the formation
process of the nested structure of the global production network. From the perspective of
evolutionarily economics, the continuously flattened world is derived by the evolutionarily
stable equilibrium of the global production system.

Figure 7. The Formation Process of Nested Structure of GVC Network. The orange circle 1 in
(a) represents the developed countries initially at the center of the world economic system, while
the yellow circles are the developing countries at the periphery, and the size of the circles reflects
the degree of centrality of the countries; (b,c) indicate the gradual migration process of peripheral
country 4 and peripheral country 6 to the central position, respectively. Besides, the ratio of outdegree
of upstream sectors to indegree of downstream ones is designed to reflect the heterogeneity of
development level of economies. Accordingly, the absolute value of slope of linear fitting increasing
in (d,e) means our world is flattened by the economic integration.

Of course, the heterogeneity of economic development is still prevalent, and even
increasingly serious. Even if the peripheral countries in the global industrial pattern achieve
their economic growth targets, they are still at the end of high-tech diffusion, lacking core
technologies and high value-added products, and are often subject to economic sanctions
and technological blockade by central countries. In other words, the dependence of
peripheral countries on the center countries is much stronger than that in the reverse.
Developing countries therefore need to face up to the gap with developed countries in
various aspects, transforming their economic growth mode so as to become the beneficiaries
of economic globalization rather than just the contributors.
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6. Econometric Analysis

Based on the above analysis, it is found that the generalist degree of a country’s
industrial sectors is closely related to its economic status and productive capacity. There-
fore, the focus of the following section is on whether a country’s economic condition is
affected by the nested structure of the GVC network or, in other words, how a country’s
macroeconomic performance is related to the microstructure of trade networks.

6.1. Correlation between Variables

Considering that a country’s macroeconomic performance is affected by both domestic
and international trade cycles, this paper designs three NODF-based indicators to measure
the nestedness of the local network in terms of economies. Firstly, DTN-NODF measures
the nestedness of the home trade network, which consists of trade activities of intermediate
products between industrial sectors within a country. Secondly, ETN-NODF measures
the nestedness of the export trade network, which is formed when industrial sectors
of a country, as upstream sectors (supply side), trades intermediate products with other
countries. Thirdly, ITN-NODF measures the nestedness of the import trade network formed
when a country’s industry, as a downstream sector (demand side), trades intermediate
goods with other countries. In terms of macroeconomic performance, this paper uses Gross
Domestic Product (GDP) data provided by the World Bank. The correlation diagrams of
these are plotted at intervals of five years, as shown in Figure 8.

Figure 8. Correlation of DTN-NODF, ETN-NODF, ITN-NODF and GDP. Three countries with large differences in GDP
are selected, with red representing China, blue the United States and green Sierra Leone. Data source: World Bank—
https://data.worldbank.org.cn/indicator, accessed on 14 January 2021.

First, in all countries, the values of DTN-NODF are larger (mostly between 50 and 80),
and those of ETN-NODF and ITN-NODF are smaller (mostly between 0 and 20). This
is because, compared with international trade networks, most countries have relatively
mature domestic trade networks, in which domestic industrial sectors can also form synergy.
Hence, it is much less difficult and risky to form a domestic trade cycle of industrial chains,
moving the original country-to-country trade to a province-to-province and city-to-city
economic cycle. Certainly, the premise is that the country’s domestic market is sufficiently
huge and the industrial system complete.

Second, no matter whether a domestic trade network or an international trade network,
economies with better macroeconomic performance usually have higher nestedness. We
believe that it is the relatively mature trade mechanisms that bring with them economic
benefits and avoided risks. Hence, both domestic and international markets are equally
important for a country’s economic development. How to better connect and utilize them is
the key for countries to gain new advantages in international cooperation and competition.

Third, the ETN-NODF and ITN-NODF of the U. S. show a negative correlation with
its GDP. In recent years, the U.S. has integrated a large amount of capital into the highly
lucrative consumption side and shifted low-end manufacturing to countries with cheap

https://data.worldbank.org.cn/indicator
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labor costs, thus leading to the advent of manufacturing hollowing-out. Combined with
industrial shocks from many developed (e.g., Germany and Japan) and developing coun-
tries (e.g., China), the international trade cycle does not seem to be contributing to the
macroeconomic performance of the U.S. as expected. Such an industrial layout of the
U.S. undermines its stability when encountering the rare but severe systematic risk. For
instance, it is impressive that the White House could not obtain enough prevention and
control supplies at the beginning of the COVID-19 pandemic.

6.2. Regression Model

To describe the quantitative relationship between GDP and the NODF-based indicators
accurately, this paper applies regression analysis on these variables. First, a mixed effect
regression model was established by taking the GDP of each country as the dependent
variable and DTN-NODF, ETN-NODF and ITN-NODF as the independent variables, as
shown in Table 1.

Table 1. Results of the Mixed Effect Regression Model.

Variables Coef. Robust Std. Err t p 95% Confidence Interval

DTN-NODF −9.49 2.64 −3.60 0.000 [−14.67, −4.32]
ETN-NODF 44.27 3.88 11.40 0.000 [36.65, 51.90]
ITN-NODF 21.03 6.88 3.06 0.002 [7.54, 34.52]

Intercept Term 71.97 180.36 0.40 0.690 [−281.95, 425.89]
R2 (adjusted) 0.411 Root MSE 867.68

The correlation coefficients between the three independent variables were examined
to check the existence of multicollinearity problems in the above model, so as to avoid
spurious regression and ensure the validity of the model. The results show that the
two variables, ETN-NODF and ITN-NODF, are significantly correlated, with correlation
coefficients as high as 0.8608 (0.2631 for DTN-NODF and ETN-NODF, and 0.3289 for
DTN-NODF and ITN-NODF).

To avoid multicollinearity problems in the following regression, Principal Component
Analysis (PCA) was performed between ETN-NODF and ITN-NODF to investigate the
components that constitute their covariance and ensure the orthogonality of the inde-
pendent variables [45]. The ranked components with their loadings are listed in Table 2,
revealing that both the KMO and the SMC confirm the correctness of PCA. The first prin-
cipal components of PCA results are retained in this paper. Meanwhile, as shown in
Appendix A, Table A5, we used a Ridge Regression to find the penalization term and found
that the coefficients and conclusions are robust. We also provided the results of Fixed
Effects model (FE), Random Effects model (RE) and Least Square Dummy Variable model
(LSDV). As shown in Appendix A, Tables A6–A8, we concluded that the pooled regression,
i.e., Mixed Effect Regression model with PCA is the optimal solution (Appendix D).

Table 2. Principal Component Analysis of ETN-NODF and ITN-NODF.

Component Eigenvalue Difference Proportion Cumulative KMO SMC

ETN-NODF 233.326 220.745 0.9488 0.9488 0.9999 0.7410
ITN-NODF 12.581 - 0.0512 1.0000 0.9999 0.7410

As shown in Table 3, the model exhibits a relatively good fit with a large R2 and all
the independent variables (DTN-NODF and component variables) pass the p-value test at
the significance level of 0.01.
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Table 3. Results of Mixed Effect Regression Model after PCA.

Variables Coef. Robust Std. Err t p 95% Confidence Interval

DTN-NODF −9.63 2.60 −3.71 0.000 [−14.72, −4.54]
Comp. 48.99 1.83 26.74 0.000 [45.39, 52.58]

Intercept Term 74.09 180.14 0.41 0.681 [−279.40, 427.57]
R2 (adjusted) 0.411 Root MSE 867.3

Notes: Comp. = 0.8824ETN-NODF + 0.4705ITN-NODF.

From the above results, DTN-NODF displays a weak negative correlation with GDP.
It is believed that an excessively nested domestic trade network may hinder a country’s
economic development. Although a highly nested industrial layout can enhance the sta-
bility of the production system, it can also bring about problems such as lack of effective
competition, path dependence in innovation and blocked channels for international coop-
eration, thereby hampering the country’s macroeconomic performance. On the other hand,
ETN-NODF and ITN-NODF show a significant positive correlation with GDP. This can be
attributed to the fact that for those who actively participates in the international trade cycle,
they can complement each other by their own advantages and efficiently leverage resources
in the international market, which leads to domestic socioeconomic development.

Besides, the regression model indicates that the positive effect of ETN-NODF on GDP
is about two times greater than that of ITN-NODF. This is also a self-evident phenomenon.
Larger ETN-NODF means a higher degree of nestedness in the export trade network
structure, more orderly export mechanisms and more stable relevant channels, which
together help to increase the trade surplus and boost domestic economic growth. At the
same time, export growth drives import growth and secures the source of raw materials
for the normal functioning of a country’s production system. As a result, this promotes the
healthy development of the import trade network in turn, along with the increase of ITN-
NODF. However, compared to the export trade network that can be unstoppably expanded,
the expansion of the import trade network is limited by the relatively homogenous source
of raw materials. That is why ETN-NODF is higher in value than ITN-NODF.

7. Conclusions

The vertical international division of labor and the continuous development of the
global production network have played an unprecedented role in promoting the economy
and trade of all countries in the world. The dynamic exchange of resources across the world
is also an important guarantee for the stable and orderly progress of the GVC network.
Through static and dynamic analysis of the generalist degree of the industrial sectors,
the phenomenon is found that most of the generalist sectors come from more developed
economies, which are in the most closely nested areas, and their internal competition is
fierce. Due to the rapid increase in the generalist degree of China’s manufacturing industry,
the manufacturing and services sectors in Japan and Taiwan have shown a downward
trend, which has paved the way for changes in the global supply chain pattern. These
advanced economies, as well as their industrial sectors, have also played a decisive role in
maintaining the stability of the GVC network and promoting the process of global economic
integration. In addition, there is still a lot of room for optimization of the industrial layout
in the GVC. Encouraging specialist sectors to actively integrate into a global trade system
is an effective way to realize this.
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Appendix A. Basic Information about Eora26

Table A1. Countries’ Names and Their Abbreviations of Eora26.

No. Abbr. Country No. Abbr. Country

1 AFG Afghanistan 96 LSO Lesotho
2 ALB Albania 97 LBR Liberia
3 DZA Algeria 98 LBY Libya
4 AND Andorra 99 LIE Liechtenstein
5 AGO Angola 100 LTU Lithuania
6 ATG Antigua 101 LUX Luxembourg
7 ARG Argentina 102 MAC Macao SAR
8 ARM Armenia 103 MDG Madagascar
9 ABW Aruba 104 MWI Malawi
10 AUS Australia 105 MYS Malaysia
11 AUT Austria 106 MDV Maldives
12 AZE Azerbaijan 107 MLI Mali
13 BHS Bahamas 108 MLT Malta
14 BHR Bahrain 109 MRT Mauritania
15 BGD Bangladesh 110 MUS Mauritius
16 BRB Barbados 111 MEX Mexico
17 BLR Belarus 112 MCO Monaco
18 BEL Belgium 113 MNG Mongolia
19 BLZ Belize 114 MNE Montenegro
20 BEN Benin 115 MAR Morocco
21 BMU Bermuda 116 MOZ Mozambique
22 BTN Bhutan 117 MMR Myanmar
23 BOL Bolivia 118 NAM Namibia
24 BIH Bosnia and Herzegovina 119 NPL Nepal
25 BWA Botswana 120 NLD Netherlands
26 BRA Brazil 121 ANT Netherlands Antilles
27 VGB British Virgin Islands 122 NCL New Caledonia
28 BRN Brunei 123 NZL New Zealand
29 BGR Bulgaria 124 NIC Nicaragua
30 BFA Burkina Faso 125 NER Niger
31 BDI Burundi 126 NGA Nigeria
32 KHM Cambodia 127 NOR Norway
33 CMR Cameroon 128 PSE Gaza Strip
34 CAN Canada 129 OMN Oman
35 CPV Cape Verde 130 PAK Pakistan
36 CYM Cayman Islands 131 PAN Panama
37 CAF Central African Republic 132 PNG Papua New Guinea
38 TCD Chad 133 PRY Paraguay
39 CHL Chile 134 PER Peru
40 CHN China 135 PHL Philippines
41 COL Colombia 136 POL Poland
42 COG Congo 137 PRT Portugal
43 CRI Costa Rica 138 QAT Qatar
44 HRV Croatia 139 KOR South Korea
45 CUB Cuba 140 MDA Moldova
46 CYP Cyprus 141 ROU Romania
47 CZE Czech Republic 142 RUS Russia
48 CIV Cote d’Ivoire 143 RWA Rwanda
49 PRK North Korea 144 WSM Samoa
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Table A1. Cont.

No. Abbr. Country No. Abbr. Country

50 COD DR Congo 145 SMR San Marino
51 DNK Denmark 146 STP Sao Tome and Principe
52 DJI Djibouti 147 SAU Saudi Arabia
53 DOM Dominican Republic 148 SEN Senegal
54 ECU Ecuador 149 SRB Serbia
55 EGY Egypt 150 SYC Seychelles
56 SLV El Salvador 151 SLE Sierra Leone
57 ERI Eritrea 152 SGP Singapore
58 EST Estonia 153 SVK Slovakia
59 ETH Ethiopia 154 SVN Slovenia
60 FJI Fiji 155 SOM Somalia
61 FIN Finland 156 ZAF South Africa
62 FRA France 157 SDS South Sudan
63 PYF French Polynesia 158 ESP Spain
64 GAB Gabon 159 LKA Sri Lanka
65 GMB Gambia 160 SUD Sudan
66 GEO Georgia 161 SUR Suriname
67 DEU Germany 162 SWZ Swaziland
68 GHA Ghana 163 SWE Sweden
69 GRC Greece 164 CHE Switzerland
70 GRL Greenland 165 SYR Syria
71 GTM Guatemala 166 TWN Taiwan
72 GIN Guinea 167 TJK Tajikistan
73 GUY Guyana 168 THA Thailand
74 HTI Haiti 169 MKD TFYR Macedonia
75 HND Honduras 170 TGO Togo
76 HKG Hong Kong 171 TTO Trinidad and Tobago
77 HUN Hungary 172 TUN Tunisia
78 ISL Iceland 173 TUR Turkey
79 IND India 174 TKM Turkmenistan
80 IDN Indonesia 175 USR Former USSR
81 IRN Iran 176 UGA Uganda
82 IRQ Iraq 177 UKR Ukraine
83 IRL Ireland 178 ARE United Arab Emirates
84 ISR Israel 179 GBR United Kingdom
85 ITA Italy 180 TZA Tanzania
86 JAM Jamaica 181 USA United States
87 JPN Japan 182 URY Uruguay
88 JOR Jordan 183 UZB Uzbekistan
89 KAZ Kazakhstan 184 VUT Vanuatu
90 KEN Kenya 185 VEN Venezuela
91 KWT Kuwait 186 VNM Viet Nam
92 KGZ Kyrgyzstan 187 YEM Yemen
93 LAO Laos 188 ZMB Zambia
94 LVA Latvia 189 ZWE Zimbabwe
95 LBN Lebanon
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Table A2. Eora26 Industry Code Description.

No. Abbr. Industrial Sector

1 S1 Agriculture
2 S2 Fishing
3 S3 Mining and Quarrying
4 S4 Food & Beverages
5 S5 Textiles and Wearing Apparel
6 S6 Wood and Paper
7 S7 Petroleum, Chemical and Non-Metallic Mineral Products
8 S8 Metal Products
9 S9 Electrical and Machinery

10 S10 Transport Equipment
11 S11 Other Manufacturing
12 S12 Recycling
13 S13 Electricity, Gas and Water
14 S14 Construction
15 S15 Maintenance and Repair
16 S16 Wholesale Trade
17 S17 Retail Trade
18 S18 Hotels and Restaurants
19 S19 Transport
20 S20 Post and Telecommunications
21 S21 Financial Intermediation and Business Activities
22 S22 Public Administration
23 S23 Education, Health and Other Services
24 S24 Private Households
25 S25 Others
26 S26 Re-export & Re-import

Table A3. Four-Sector Categories in Eora26.

Category Sectors

Agriculture
(SC1) Agriculture; Fishing

Mining
(SC2) Mining and Quarrying

Manufacturing
(SC3)

Food & Beverages; Textiles and Wearing Apparel; Wood and Paper; Petroleum,
Chemical and Non-Metallic Mineral Products; Metal Products; Electrical and

Machinery; Transport Equipment; Other Manufacturing; Recycling; Electricity,
Gas and Water; Construction

Services
(SC4)

Maintenance and Repair; Wholesale Trade; Retail Trade; Hotels and Restaurants;
Transport; Post and Telecommunications; Financial Intermediation and Business
Activities; Public Administration; Education, Health and Other Services; Private

Households; Others; Re-export & Re-import

Appendix B. Network Pruning

The GIVCNBG model is a very dense weighted network, and there is a more or
less value flow between each upstream sector and downstream sector. Therefore, before
analyzing the nested structure, the network needs to be pruned to extract the backbone. In
order to find an effectual way to extract the backbone of weighted network, two questions
are proposed. The first question is that the information content of network should be
retained as much as possible with the decline of number of edges (Q1). In other words,
the nature of network pruning is a trade-off between the number of retained edges and
the gross of the retained weights. The second question is that only the truly important
edges linking nodes are worthy to be retained during downsizing of the network (Q2).
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Sometimes, a weighted edge is numerically insignificant but functionally significant, and
reckless deletion will result in a useless broken structure.

It is common in the weighted networks that, even at the local level defined by edges
linking to a given node, only a few of those edges carry a disproportionate fraction of its
strength, and the remaining edges take a very small percentage that is left. Enlightened by
H-Index, the Pareto Principle and the idea of the Disparity Filter proposed by Vespignani,
we present a novel heuristic algorithm to effectively prune the dense and weighted GIVCN
model, which is named X-Index Filtering Algorithm (XIFA).

As we all know, Hirsch proposed that a scientist has index h if h of his or her Np
paper have at least h citations each and the other

(
Np − h

)
papers have ≤ h citations each.

Obviously, this mixed quantitative index takes both the quantity and quality of papers
into account, which can be used as an algorithm framework to solve Q1 of this paper by
weighing the pros and cons, namely the number and weights of edges. According to the
Pareto principle, it makes sense that 80% of consequences come from 20% of the causes,
asserting an unequal relationship between inputs and outputs. We hence assume that a
minority of edges hold the most weight in the network, which are regarded as the so-called
important edges as mentioned in Q2.

Therefore, the core idea of XIFA is as follows: An industrial sector has backward index
x (XIB)/forward index x (XIF) if top x percent of its relations to all upstream/downstream
sectors occupy at least (1− x%) of its total input/output amount of intermediate goods.
The formula deduction and practical calculation process is shown in Figure A1. According
to the induction hypothesis, the X-index of a node is measured by the number of crucial
edges with big to small weights, and a smaller X-index value indicates that the edge weight
distribution of this node is more heterogeneous. In the directed networks, the XIFA is
initiated by removing all indegree edges of each node that are insufficient to show the local
influence, and the pruning process is then repeated for the outdegree edges. It should be
noted that the existence of some edges tended to be overlooked, for instance, certain edges
are important in terms of indegree but unimportant in terms of outdegree and vice versa,
and one more rule is hence set, that is, the weighted edges that are worthy to be reserved
in either direction will stay.

A special subgraph Ǵ =
(
O, P, É, Ẃ

)
is extracted from the GIVCNBG model based on

XIFA, which is named the GIVCNBG-FE model (FE refers to filtering edges). The remaining
MRIO relations are different from those deleted depending on how heterogeneous the
industrial sectors’ inputs or outputs are all over the world. We can assume that around 20%
of the most important input or output relations of a given sector are supposed to cover 80%
of its input or output amount of intermediate goods, which addresses Q1 favorably.

The XIFA algorithm is a mixed quantitative indicator, which takes into account the
scope and intensity of the influence of the industrial sector, extracting the main topology
of the industrial network according to the heterogeneity of input and output among the
industrial sectors. From the perspective of complex networks, for nodes with strong edge
weight heterogeneity, only a small number of connections with extremely large weights are
needed to be kept, while for nodes with weak edge weight heterogeneity, the number of
connections needed to be kept is greater but not more than 50%.

From the perspective of industrial economics, the integrity of the GVC must be
considered. In consequence, a method of pruning separately from the aspect of output and
input, then integrating, was finally adopted. This prevents certain industrial sectors from
being too marginalized from the GVC.

Moreover, overlapping two subnetworks via the input relations (columns) and output
relations (rows) pruning process is only a partial solution to Q2 because this pruning method
is still based on the relations with adjacent nodes rather than global information. Therefore, to
solve Q1 and Q2 at the same time a hybrid strategy needs to be adopted, a specific part in our
other paper “Extracting the Backbone of Global Value Chain from High-Dimensional Multi-Region
Input–Output Network”. For the nested structure to be studied in this article, the GIVCNBG-FE
model has extracted enough GVC network topology information.
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Table A4. The Procedure of Pruning GIVCN Model Based on XIFA.

Procedure Column Deletion of Input Relations Row Deletion of Output Relations

Network W =
(

wij

)
N×N
· i, j ∈ [1, N]

Refactoring

↼
w1 = desecend(w11, w21, · · · , wN1)

T

↼
w2 = descend(w12, w22, · · · , wN2)

T

· · ·
↼
wN = descend(w1N , w2N, · · · , wNN)T

↼
W =

(
↼
w1,

↼
w2, · · · ,

↼
wN

)
=
(
↼
wsj

)
N×N

s, j ∈ [1, N]

⇀
w1 = desecend(w11, w12, · · · , w1N)
⇀
w2 = descend(w21, w22, · · · , w2N)

· · ·
⇀
wN = descend(wN1, wN2, · · · , wNN)

⇀
W =


⇀
w1
⇀
w2
· · ·
⇀
wN

 =
(
⇀
wit

)
N×N

i, t ∈ [1, N]

Conditions

∀a1, a2, · · · , aj ∈ [1, N]
∑

aj
s=1

↼
wsj

∑N
s=1

↼
wsj
≥ 1− aj

N

∑
aj−1

s=1
↼
wsj

∑N
s=1

↼
wsj

< 1− aj−1
N

∀b1, b2, · · · , bi ∈ [1, N]
∑

bi
t=1

⇀
wit

∑N
t=1

⇀
wit
≥ 1− bi

N

∑
bi−1
t=1

⇀
wit

∑N
t=1

⇀
wit

< 1− bi−1
N

Definition
XIB

j =
aj
N

XIB =
(

XIB
j

)
N×1

XIF
i = bi

N
XIF =

(
XIF

i
)

N×1

Pruning ←
wij =

{
wij , wij =

↼
wsj and s ≤ aj

0 , otherwise
→
wij =

{
wij , wij =

⇀
wit and t ≤ bi

0 , otherwise

Merging ↔
wij =

{
wij ,

←
wij 6= 0 or

→
wij 6= 0

0 , otherwise

Result
↔
W =

(↔
wij

)
N×N

Figure A1. Three possible situations in the application of XIFA algorithm. (a) The source node has
only one weighted edge connected to it, and 100% of its strength is allocated on it; (b) Top 20% of
weighted edges carry 80% of the strength of source node. (c) Any 50% of weighted edges carry 50%
of the strength of source node.

Appendix C. Sorting Algorithms

1. SBD Algorithm

Sorted by Degree, or the SBD Algorithm, based on the concept of nestedness, sorts
the adjacency matrix according to the degree of the network node (see Figure A2). It is
prescribed in the nested structure that the neighborhood of lower-degree nodes is a subset
of the neighborhood of higher degree nodes. Accordingly, the SBD algorithm basically
rearranges the adjacency matrix’s rows and columns in the descending order of the node’s
degree from top to bottom and from left to right respectively. In the rearranged network
adjacency matrix, the topmost upstream sector boasts the largest number of downstream
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sectors, while the leftmost downstream sector boasts the largest number of the most
upstream sectors.

2. NTC Algorithm

The Nestedness Temperature Calculator (NTC Algorithm) is a thermodynamics-based
algorithm proposed by Atmar, focusing on the degree of disorder of the measurement
matrix [46]. The nested structure features ordered arrangement of nodes, therefore, the
more disordered the adjacency matrix, the higher its temperature, and the lower the level
of nestedness. The NTC Algorithm lines out a perfect nested region at the top left of
the adjacency matrix, and the unexpected absence of any element above the line and
the unexpected appearance of any element below the line results in an increase in the
temperature of the adjacency matrix.

Figure A2. Sorting Adjacency Matrix Based on SBD Algorithm. This is a schematic diagram of the
process of ordering nodes by degree. The solid blue circles represent each industrial sector, the rows
represent the upstream industrial sectors, the columns represent the downstream industry sectors,
the blue squares represent the existence of interdependence between upstream and downstream
industries, and the size of the solid circles is proportional to the node’s degree.

3. BIN Algorithm

BINMATNEST Algorithm (the BIN Algorithm) was proposed by Rodrı’guez-Girone´s
et al., which compensates for the shortcomings of the NTC, e.g., the non-uniqueness of the
perfect order line and the inadequacy of null model selection [47]. In design, the BIN Algo-
rithm is a genetic algorithm that minimizes the matrix temperature by rearranging the rows
and columns. It first generates some alternative solutions and then lets the well-performing
matrix generate “Offspring”, thus, iteratively filtering out the best-performing solution.
Unlike the NTC algorithm, the BIN algorithm is capable of screening out the optimal
matrix with lower temperature. The matrix reaches the lowest temperature after reordering
and is therefore more well-organized, with stabler connections between industrial sectors
concentrated at the upper left corner. Under the circumstances, the NTC algorithm is not
worth discussing anymore.

4. FCA Algorithm

The Fitness-Complexity Algorithm (FCA Algorithm) applies a nonlinear iterative
method originally designed to measure economic complexity [48]. The mechanism is that
the higher the fitness of a country, the higher its productive capacity or competitiveness; the
higher the complexity of a certain product, then, the higher the productive capacity required
from other countries producing that product. In the adjacency matrix of the country-
product network, the rows represent countries and the columns the export products.
After reordering the matrix in the descending order of fitness from top to bottom and
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product complexity from left to right, the new matrix exhibits distinct nestedness. The FCA
therefore can be used to explore the maximum nestedness of a network.

We apply the GIVCNBG-FE-Eora26SC4 model to calculate the nestedness of the GVC
network at intervals of five years, and compare the sorting results of the SBD, BIN and
FCA algorithms and their NODF metrics, as shown in Figure A3.

Figure A3. Sorting Adjacency Matrix of GVC Network Based on Three Algorithms and Its Corre-
sponding NODF Variation Trend. (a–c) are the adjacency matrix ranking results obtained according
to the SBD, BIN, and FCA algorithms, respectively. Where the vertical axis represents the upstream
sector and the horizontal axis represents the downstream sector, and each non-empty position reflects
the transfer of intermediate products from the upstream sector to the downstream sector. This input–
output relationship between industrial sectors resembles predation in an ecosystem: the upstream
sector, as the provider of energy (products and services), can be regarded as the prey; the downstream
sector, as the consumer of energy (products and services), can be regarded as the predator, and each
industry sector plays dual role in the industrial ecosystem.

The SBD algorithm sorts the adjacency matrix in a way that most of the non-zero
elements are clustered at the upper left corner. The results obtained by the BIN algorithm
resemble that of the SBD algorithm, with the upper left corner being sparser. The results
obtained by the FCA algorithm are computationally weaker than the other two algorithms.
Given the above analysis (see Figure A3d), the SBD algorithm is thus used in this paper
to sort the nested structure of the adjacency matrix. The overall smooth NODF values
indicate temporal stability of the nested structure, which means the topology of the GVC
network does not change drastically during a normal economic cycle.
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Appendix D. Complementary Econometric Analysis

Table A5. Results of the Ridge Regression Model.

Variables Coef. Robust Std. Err t p 95% Confidence Interval

DTN-NODF −9.49 2.64 −3.60 0.000 *** [−14.67, −4.32]
ETN-NODF 44.27 3.88 11.40 0.000 *** [36.65, 51.90]
ITN-NODF 21.03 6.88 3.06 0.002 ** [7.54, 34.52]

Intercept Term 71.97 180.36 0.40 0.690 [−281.95, 425.89]
R2 (adjusted) 0.411 Root MSE 867.68

Notes: “***” represents p < 0.001, “**” represents p < 0.01, and “*” represents p < 0.05. There is basically no
difference between the coefficient of ridge regression and the mixed regression with PCA. For example, the
coefficients of DTN-NODF and ETN-NODF in ridge regression are −9.49 and 44.27, and the mixed regression are
−9.63, 48.99 × 0.8824 = 43.23. Thus, the regression coefficients and related conclusions of the mixed regression
model used in this paper are robust.

Table A6. Results of the FE Model.

Variables Coef. Robust Std. Err t p 95% Confidence Interval

DTN-NODF 0.40 1.99 0.20 0.840 [−3.52, 4.33]
Comp. 43.27 45.56 0.95 0.343 [−46.62, 133.17]

Intercept Term −538.56 712.27 −0.76 0.451 [−1943.92, 866.80]
Notes: All coefficients in the fixed effects model failed the test.

Table A7. Results of the LSDV Model.

Variables Coef. Robust Std. Err t p 95% Confidence Interval

DTN-NODF 0.40 2.19 0.18 0.854 [−3.91, 4.72]
Comp. 43.27 50.14 0.86 0.389 [−55.65, 142.20]
country

AFG 346.87 353.84 0.98 0.328 [−351.2987, 1045.033]
AGO 281.05 257.66 1.09 0.277 [−227.3288, 789.4262]
ALB 216.71 218.33 0.99 0.322 [−214.0759, 647.4973]
AND 236.70 238.52 0.99 0.322 [−233.9195, 707.3123]
ARE 422.05 276.65 1.53 0.129 [−123.7993, 967.9091]
ARG −346.32 749.44 −0.46 0.645 [−1825.031, 1132.375]
ARM 214.61 231.28 0.93 0.355 [−241.7304, 670.9555]
ATG 202.95 188.93 1.07 0.284 [−169.8275, 575.7282]
AUS −477.86 1384.80 −0.35 0.73 [−3210.196, 2254.469]
AUT −134.15 501.67 −0.27 0.789 [−1123.986, 855.6903]
AZE 211.72 206.19 1.03 0.306 [−195.0985, 618.5441]
BDI 197.72 179.91 1.1 0.273 [−157.2522, 552.6847]
BEL −1179.98 1749.33 −0.67 0.501 [−4631.553, 2271.592]
BEN 266.94 276.91 0.96 0.336 [−279.4249, 813.3128]
BFA 197.92 209.44 0.94 0.346 [−215.324, 611.1616]
BGD 463.47 441.16 1.05 0.295 [−406.9706, 1333.907]
BGR 322.55 330.76 0.98 0.331 [−330.0761, 975.1704]
BHR 321.21 341.12 0.94 0.348 [−351.8472, 994.2654]
BHS 263.53 275.51 0.96 0.34 [−280.0784, 807.1395]
BIH 303.62 310.98 0.98 0.33 [−309.9727, 917.2204]
BLR 109.25 102.04 1.07 0.286 [−92.07386, 310.582]
BLZ 142.7 156.80 0.91 0.364 [−166.6857, 452.0805]
BMU 163.46 161.68 1.01 0.313 [−155.5533, 482.4662]
BOL 80.53 84.62 0.95 0.343 [−86.4349, 247.4872]
BRA 527.65 715.03 0.74 0.462 [−883.1721, 1938.471]
BRB 282.83 291.34 0.97 0.333 [−292.0029, 857.6546]
BRN 334.04 351.24 0.95 0.343 [−358.9823, 1027.066]
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Table A7. Cont.

Variables Coef. Robust Std. Err t p 95% Confidence Interval

BTN 79.27 88.60 0.89 0.372 [−95.53579, 254.075]
BWA 285.04 305.34 0.93 0.352 [−317.4236, 887.4988]
CAF 265.57 260.87 1.02 0.31 [−249.161, 780.2916]
CAN 770.19 341.90 2.25 0.025 * [95.58298, 1444.791]
CHE −909.9 1534.75 −0.59 0.554 [−3938.092, 2118.301]
CHL −60.5 228.66 −0.26 0.792 [−511.6715, 390.6751]
CHN 1503.19 2459.50 0.61 0.542 [−3349.617, 6355.998]
CIV 346.24 367.63 0.94 0.348 [−379.13, 1071.614]

CMR 360.41 378.99 0.95 0.343 [−387.3771, 1108.196]
COD 265.26 265.10 1 0.318 [−257.8036, 788.316]
COG 290.82 307.71 0.95 0.346 [−316.319, 897.9642]
COL 81.02 76.04 1.07 0.288 [−69.00603, 231.0458]
CPV 219 208.95 1.05 0.296 [−193.2711, 631.2752]
CRI 390.24 414.36 0.94 0.348 [−427.3227, 1207.812]
CUB 381.23 369.91 1.03 0.304 [−348.6375, 1111.096]
CYP 342.62 366.80 0.93 0.352 [−381.1153, 1066.35]
CZE −172.23 317.34 −0.54 0.588 [−798.369, 453.9041]
DEU 198.25 2855.59 0.07 0.945 [−5436.072, 5832.577]
DJI 163.01 138.96 1.17 0.242 [−111.1765, 437.1888]

DNK −703.72 1088.11 −0.65 0.519 [−2850.657, 1443.218]
DOM 416.84 427.58 0.97 0.331 [−426.8171, 1260.502]
DZA 408.18 350.16 1.17 0.245 [−282.7166, 1099.085]
ECU −118.3 175.10 −0.68 0.5 [−463.7915, 227.1998]
EGY 511.76 410.13 1.25 0.214 [−297.4581, 1320.971]
ERI 235.58 222.08 1.06 0.29 [−202.6103, 673.7649]
ESP −609.87 1790.20 −0.34 0.734 [−4142.082, 2922.346]
EST −48.19 69.35 −0.69 0.488 [−185.0211, 88.64208]
ETH −107.18 134.83 −0.79 0.428 [−373.2024, 158.8407]
FIN −20.37 245.53 −0.08 0.934 [−504.8219, 464.0865]
FJI 276.83 299.98 0.92 0.357 [−315.0676, 868.72]

FRA −1.51 2245.24 0 0.999 [−4431.562, 4428.534]
GAB 314.42 332.34 0.95 0.345 [−341.3062, 970.1512]
GBR −1022.55 3512.17 −0.29 0.771 [−7952.356, 5907.252]
GEO −178.73 200.24 −0.89 0.373 [−573.8264, 216.3583]
GHA 323.03 336.75 0.96 0.339 [−341.3976, 987.4673]
GIN 264.45 280.28 0.94 0.347 [−288.5671, 817.4742]
GMB 203.94 205.10 0.99 0.321 [−200.7466, 608.6262]
GRC 100.46 91.75 1.09 0.275 [−80.57459, 281.495]
GRL 375.57 432.99 0.87 0.387 [−478.7589, 1229.897]
GTM 400.99 420.56 0.95 0.342 [−428.8063, 1230.781]
GUY 403.69 444.55 0.91 0.365 [−473.4424, 1280.816]
HKG −172.88 417.98 −0.41 0.68 [−997.5889, 651.824]
HND 351.7 384.12 0.92 0.361 [−406.2073, 1109.612]
HRV 393.84 411.64 0.96 0.34 [−418.3654, 1206.055]
HTI 322.38 338.26 0.95 0.342 [−345.0331, 989.8003]

HUN −39.7 165.92 −0.24 0.811 [−367.0765, 287.6826]
IDN −204.47 695.67 −0.29 0.769 [−1577.078, 1168.141]
IND −405.95 1554.43 −0.26 0.794 [−3472.961, 2661.06]
IRL 61.82 107.64 0.57 0.566 [−150.5622, 274.2033]
IRN −367.70 704.14 −0.52 0.602 [−1757.034, 1021.625]
IRQ 287.09 163.82 1.75 0.081 [−36.13326, 610.32]
ISL 336.34 362.54 0.93 0.355 [−378.9751, 1051.662]
ISR −403.11 647.93 −0.62 0.535 [−1681.534, 875.3045]
ITA −358.7 2247.07 −0.16 0.873 [−4792.36, 4074.952]
JAM 351.8 378.13 0.93 0.353 [−394.2818, 1097.891]
JOR 325.8 359.43 0.91 0.366 [−383.3841, 1034.987]
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Table A7. Cont.

Variables Coef. Robust Std. Err t p 95% Confidence Interval

JPN 2047.56 3094.29 0.66 0.509 [−4057.734, 8152.856]
KAZ −244.62 362.13 −0.68 0.5 [−959.1294, 469.8803]
KEN −197.97 244.35 −0.81 0.419 [−680.0901, 284.1591]
KGZ −455.86 512.61 −0.89 0.375 [−1467.283, 555.5592]
KHM 289.57 316.28 0.92 0.361 [−334.4798, 913.6205]
KOR −313.24 1286.85 −0.24 0.808 [−2852.31, 2225.822]
KWT −154.41 235.90 −0.65 0.514 [−619.8692, 311.0498]
LAO 270.07 289.50 0.93 0.352 [−301.147, 841.2839]
LBN 323.88 326.75 0.99 0.323 [−320.815, 968.5826]
LBR 184.38 192.94 0.96 0.341 [−196.318, 565.0694]
LBY 365.12 357.11 1.02 0.308 [−339.4948, 1069.737]
LIE 302.74 309.76 0.98 0.33 [−308.4337, 913.9225]

LKA 355.78 375.62 0.95 0.345 [−385.3557, 1096.923]
LSO 134.13 131.54 1.02 0.309 [−125.4121, 393.6786]
LTU −77.57 124.47 −0.62 0.534 [−323.162, 168.0136]
LUX 3.05 33.70 0.09 0.928 [−63.45578, 69.54905]
LVA −70.4 97.66 −0.72 0.472 [−263.0863, 122.2896]

MAC 235.37 247.68 0.95 0.343 [−253.3254, 724.0649]
MAR 426.86 415.58 1.03 0.306 [−393.1085, 1246.832]
MCO 228.67 228.95 1 0.319 [−223.0632, 680.4089]
MDA 26.78 37.72 0.71 0.479 [−47.63299, 101.1987]
MDG 293.64 318.76 0.92 0.358 [−335.2989, 922.5689]
MDV 88.83 87.04 1.02 0.309 [−82.90518, 260.5718]
MEX 374.19 398.69 0.94 0.349 [−412.467, 1160.84]
MKD −157.69 179.44 −0.88 0.381 [−511.7428, 196.361]
MLI 275.04 271.87 1.01 0.313 [−261.3773, 811.4663]
MLT −125.21 149.46 −0.84 0.403 [−420.1182, 169.6895]
MMR 456.09 479.59 0.95 0.343 [−490.168, 1402.357]
MNE 32.86 22.77 1.44 0.151 [−12.06697, 77.78323]
MNG 209.38 216.84 0.97 0.336 [−218.4693, 637.2248]
MOZ 277.65 287.27 0.97 0.335 [−289.1506, 844.4498]
MRT 136.57 144.52 0.94 0.346 [−148.5807, 421.7112]
MUS −221.78 246.34 −0.9 0.369 [−707.8259, 264.269]
MWI 265.54 286.68 0.93 0.356 [−300.1154, 831.1903]
MYS −432.16 665.46 −0.65 0.517 [−1745.172, 880.8547]
NAM 282.94 314.23 0.9 0.369 [−337.0612, 902.9311]
NCL 285.79 312.88 0.91 0.362 [−331.5583, 903.1301]
NER 211.67 211.31 1 0.318 [−205.2679, 628.5985]
NGA 462.42 328.72 1.41 0.161 [−186.1661, 1111.009]
NIC 298.84 323.29 0.92 0.357 [−339.0496, 936.7254]
NLD −1257.85 2128.45 −0.59 0.555 [−5457.455, 2941.764]
NOR 171.77 144.10 1.19 0.235 [−112.5632, 456.0975]
NPL 322.12 342.61 0.94 0.348 [−353.8727, 998.1114]
NZL −324.92 491.89 −0.66 0.51 [−1295.46, 645.6192]
OMN 306.8 306.43 1 0.318 [−297.7998, 911.4071]
PAK 493.49 426.25 1.16 0.248 [−347.5393, 1334.529]
PAN 366.84 392.24 0.94 0.351 [−407.0808, 1140.766]
PER 271.73 222.84 1.22 0.224 [−167.9554, 711.4218]
PHL −104.64 262.64 −0.4 0.691 [−622.8616, 413.5793]
PNG 297.34 316.28 0.94 0.348 [−326.6992, 921.381]
POL 297.22 20.63 14.4 0 *** [256.5053, 337.9304]
PRT −41.92 222.84 −0.19 0.851 [−481.6021, 397.7661]
PRY −60.38 68.79 −0.88 0.381 [−196.1178, 75.3495]
PSE 250.98 256.15 0.98 0.328 [−254.4312, 756.3853]
PYF 300.49 308.45 0.97 0.331 [−308.1146, 909.092]
QAT 207.47 166.47 1.25 0.214 [−120.9961, 535.9267]
ROU −172.6 299.78 −0.58 0.565 [−764.0896, 418.8857]
RUS 55.24 861.24 0.06 0.949 [−1644.06, 1754.53]



Entropy 2021, 23, 1077 26 of 28

Table A7. Cont.

Variables Coef. Robust Std. Err t p 95% Confidence Interval

RWA 205.69 207.25 0.99 0.322 [−203.2454, 614.611]
SAU 678.99 400.19 1.7 0.091 [−110.6093, 1468.596]
SDN 678.37 630.08 1.08 0.283 [−564.8316, 1921.575]
SEN 213.10 229.29 0.93 0.354 [−239.313, 665.5046]
SGP −1055.88 1389.32 −0.76 0.448 [−3797.131, 1685.373]
SLE 236.47 236.93 1 0.32 [−231.0028, 703.9444]
SLV 371.88 399.40 0.93 0.353 [−416.1667, 1159.925]
SMR 211.90 195.89 1.08 0.281 [−174.6041, 598.398]
SOM 300.16 297.33 1.01 0.314 [−286.5072, 886.8234]
SRB 94.44 55.08 1.71 0.088 [−14.23795, 203.1249]
SSD 400.82 407.84 0.98 0.327 [−403.8719, 1205.521]
STP 193.51 198.63 0.97 0.331 [−198.4036, 585.4259]
SUR 243.73 262.98 0.93 0.355 [−275.149, 762.6014]
SVK −247.02 326.19 −0.76 0.45 [−890.6272, 396.5884]
SVN 19.56 13.68 1.43 0.155 [−7.434995, 46.55195]
SWE −393.60 866.62 −0.45 0.65 [−2103.527, 1316.32]
SWZ 242.6 251.98 0.96 0.337 [−254.5818, 739.7901]
SYC 132.13 125.70 1.05 0.295 [−115.8824, 380.1409]
SYR 359.9 377.63 0.95 0.342 [−385.2012, 1104.996]
TCD 188.54 157.18 1.2 0.232 [−121.5861, 498.6678]
TGO 238.09 240.84 0.99 0.324 [−237.107, 713.2928]
THA −888.23 1271.91 −0.7 0.486 [−3397.813, 1621.363]
TJK 244.53 256.35 0.95 0.341 [−261.2624, 750.32]

TKM 241.53 249.09 0.97 0.334 [−249.9408, 732.9929]
TTO 233.84 258.47 0.9 0.367 [−276.1362, 743.8105]
TUN 390.26 415.38 0.94 0.349 [−429.3194, 1209.847]
TUR 151.52 355.53 0.43 0.67 [−549.9788, 853.0178]
TZA 363.15 384.23 0.95 0.346 [−394.9798, 1121.274]
UGA 338.52 352.60 0.96 0.338 [−357.1915, 1034.23]
UKR −625.16 818.54 −0.76 0.446 [−2240.213, 989.8846]
URY −251.19 310.16 −0.81 0.419 [−863.1708, 360.7852]
USA 8620.85 3545.36 2.43 0.016 * [1625.561, 15616.13]
UZB −500.93 603.00 −0.83 0.407 [−1690.688, 688.8321]
VEN −229.32 437.64 −0.52 0.601 [−1092.822, 634.1773]
VNM −357.61 489.28 −0.73 0.466 [−1323.01, 607.7872]
VUT 180.37 171.08 1.05 0.293 [−157.189, 517.9312]
WSM 146.34 140.63 1.04 0.299 [−131.1335, 423.8183]
YEM 343.20 357.33 0.96 0.338 [−361.8306, 1048.234]
ZAF −490.76 832.22 −0.59 0.556 [−2132.81, 1151.288]
ZMB 194.33 185.64 1.05 0.297 [−171.9579, 560.6236]
ZWE 272.31 291.27 0.93 0.351 [−302.3891, 847.0155]

_cons −701.87 663.58 −1.06 0.292 [−2011.17, 607.42]
Notes: “***” represents p < 0.001, “**” represents p < 0.01, and “*” represents p < 0.05. The intercept term of each
country basically fails the test, which further shows that the individual effect between countries is not significant,
and the mixed regression model is, thus, better.

Table A8. Results of the RE Model.

Variables Coef. Robust Std. Err Z p 95% Confidence Interval

DTN-NODF −1.89 1.33 −1.42 0.156 [−4.50, 0.72]

Comp. 46.55 13.81 3.37 0.001 ** [19.49, 73.61]

Intercept Term −430.93 188.57 −2.29 0.022 * [−800.53, −61.33]
Notes: “***” represents p < 0.001, “**” represents p < 0.01, and “*” represents p < 0.05. DTN-NODF fails the test,
indicating that the fitting effect of random effects is not good.
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