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Once thought to be exclusively a storage hub for glucose, glycogen is now known

to be essential in a range of physiological processes and pathological conditions.

Glycogen lies at the nexus of diverse processes that promote malignancy, including

proliferation, migration, invasion, and chemoresistance of cancer cells. It is also

implicated in processes associated with the tumor microenvironment such as immune

cell effector function and crosstalk with cancer-associated fibroblasts to promote

metastasis. The enzymes of glycogen metabolism are dysregulated in a wide variety

of malignancies, including cancers of the kidney, ovary, lung, bladder, liver, blood,

and breast. Understanding and targeting glycogen metabolism in cancer presents a

promising but under-explored therapeutic avenue. In this review, we summarize the

current literature on the role of glycogen in cancer progression and discuss its potential

as a therapeutic target for cancer treatment.

Keywords: glycogen, cancer metabolism, cancer therapy, metabolic reprogramming, chemoresistance,

immunometabolism

INTRODUCTION

Glycogen is a highly branched polymer of glucose that is used for the efficient storage and release of
energy (1). This function is highlighted by the importance of glycogen in organs such as the brain,
liver, heart, and muscle (2–5). With critical roles as a feedstock for respiration and biomolecule
biosynthesis, it is unsurprising that glycogen also plays an active role in human pathology, driving
certain epilepsies in the brain, and contributing to diabetes-induced kidney damage and severe
muscle wasting disorders (2, 6, 7). Glycogen is also implicated in malignancy, and glycogen-based
metabolic reprogramming has recently received renewed attention as a targetable phenotype in the
tumor microenvironment (8, 9).

Figure 1 summarizes key aspects of glycogen metabolism and overlays inhibitors
that have been employed to disrupt it in disease processes. The first step of glycogen
synthesis involves glucose entry into cells via glucose transporters. Upon entry, glucose
is phosphorylated to glucose-6-phosphate (G-6-P) by hexokinase (HK), followed by
transfer of this phosphate group to carbon 1 by phosphoglucomutase (PGM). The
resultant glucose-1-phosphate (G-1-P) is converted to uridine diphosphate glucose
(UDP)-glucose by UDP-glucose pyrophosphorylase (UPP). Then, dimeric glycogenin
(GYG), a specialized primer of glycogen synthesis, auto-glucosylates UDP-glucose to
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FIGURE 1 | A Summary of the glycogen metabolism axis, including agents that pharmacologically modulate the axis. Glucose enters cells via glucose transporters

(GLUTs), where it is phosphorylated to glucose-6-phosphate (G-6-P) by hexokinase (HK), followed by a transfer of the phosphate group from carbon 6 to 1 by

phosphoglucomutase (PGM) to yieldglucose-1-phosphate (G-1-P). The resultant G-1-P is converted to UDP-glucose (UDP-G) by UDP-glucose pyrophosphorylase

(UPP). This is then used by glycogenin (GYG; in dimerized form), a specialized primer of glycogen synthesis, to auto-glucosylate and extend its chain. After

auto-glucosylation, glycogen synthase (GS) elongates these initial chains and creates further α-1,4-glycosidic linkages. Branchpoints of α-1,6-glycosidic linkages are

mediated by the glycogen branching enzyme (GBE). GS is heavily regulated allosterically and by a network of kinases. Phosphorylation of GS decreases its activity

and hence the rate of glycogen synthesis. GS has phosphorylation sites for Glycogen Synthase Kinase 3 (GSK3), protein kinase A (PKA), protein kinase C (PKC),

calmodulin-dependent protein kinase II (CaMKII), AMP-activated protein kinase (AMPK), casein kinase 1 (CK1), and casein kinase 2 (CK2). GS is also positively

regulated: allosterically by glucose-6-phosphate, and via dephosphorylation by protein phosphatase 1, regulatory subunit 3 (PPP1R3C). Phosphorylation can also

mediate activity with phosphorylase kinase (PhK) activating the enzyme and driving glycogenolysis. A proportion of glycogen is also degraded via the lysosomal

autophagy route by the enzyme acid maltase (AM). Enzymes of the pathway implicated in tumorigenesis are highlighted by black squares, those implicated in tumor

suppressive roles (PhK and AGL) are italicized. Red boxes indicate means of pharmacologically modulating the axis, highlighting glycogen-targeted drugs that have

already been used for clear cell cancers. Glucose entry and processing can be inhibited by 2-deoxy-D-glucose (2DG), 3-bromopyruvate (3BP), and lonidamine. AKT

and GSK which inactivate GS by phosphorylation can be targeted with GSK3B inhibitors (e.g., AR-A014418 and SB-2216763), as well as PI3K (Perifosine), AKT

(MK2202) and mTOR (Everolimus) inhibitors. AMPK can be activated to promote glycogen synthesis, as has been performed with metformin and resveratrol. PYG has

been targeted using inhibitors such as CP91149, CP320626, and flavoperidol, to prevent glycogen mobilization. Furthermore, the downstream effects of AGL on

hyaluronic acid synthesis can be disrupted using 4-methylumbelliferone (4MU).

generate an initial chain of (1→4)-α linked glucose units on
each of the two glycogenin monomers. After auto-glucosylation,
glycogen synthase (GS) elongates these initial chains and creates
further (1→4)-α glyosidic linkages, recruiting more UDP-
glucose as the substrate (9, 10). The creation of branchpoints
[(1→6)-α glycosidic linkages] is catalyzed by glycogen branching
enzyme (GBE).

Glycogen can be degraded to release glucose via two
distinct pathways. The first occurs in the cytoplasm and
involves the enzymes glycogen phosphorylase (PYG) and
glycogen debranching enzyme (AGL). The second is an
autophagic lysosomal route via the enzyme acid maltase that
recycles ∼10% of glycogen, the dysfunction of which gives

rise to glycogen storage disease type II, known as Pompe’s
disease (9, 10).

The enzymes that mediate the rate-limiting steps of glycogen
metabolism are GS, for synthesis, and PYG, for degradation
(9, 10). GS is negatively regulated by an extensive network
of kinases including GS kinase 3 (GSK3), protein kinase A
(PKA), protein kinase C (PKC), calmodulin-dependent protein
kinase II (CaMKII), AMP-activated protein kinase (AMPK),
casein kinase 1 (CK1), and casein kinase 2 (CK2) (2, 9).
Conversely, GS is positively regulated by allosteric mechanisms
including by the allosteric stimulator G-6-P and via its
dephosphorylation by protein phosphatase 1 regulatory subunit
3C (2, 9).
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PYGs catalyse the first step of glycogen degradation,
glycogenolysis, converting glycogen to G-1-P, which is
transformed to G-6-P for energy production. There are
three PYG isoforms, that display restricted expression patterns:
PYGL (liver), PYGM (muscle) and PYGB (brain). PYG exists
as a heterodimer with multiple activity states, and activity can
be regulated by both negative and positive allosteric effectors
at regulatory sites on each monomer. Phosphorylation can also
modulate activity with phosphorylase kinase (PhK) activating
the enzyme and driving glycogenolysis (9, 10).

The present work details the mechanisms by which
glycogen metabolism is hijacked during cancer progression
and summarizes the latest data on visualizing, quantifying, and
targeting aberrant glycogen metabolism in cancer.

REPROGRAMMED GLYCOGEN
METABOLISM IN CANCER

The contributions of glycogen metabolism to cancer progression
are summarized in Figure 2. The importance of glycogen in
carcinogenesis was suggested by a 1981 study demonstrating
that it accumulates in a range of carcinomas at levels higher
than in surrounding tissues (11). PYG, the key enzyme in
glycogenolysis, and upstream and downstream mediators of
glycogen degradation, are associated with poor prognosis and
diverse malignant phenotypes in a range of cancers (9, 12–
17). Interestingly, other enzymes involved in glycogenolysis
are thought to have tumor-suppressive roles. This includes the
glycogen debranching enzyme AGL which had a suppressing
function in models of bladder and lung cancers, and the
kinase PhK β-subunit (PHKB) which suppressed models of
hepatocellular carcinoma (18–21). Interestingly, these tumor
suppressive roles are potentially independent of glycogen
metabolism (19, 21). In the case of AGL, this involves the
maintenance of amino acid homeostasis and the nucleotide
precursor pool, whilst PHKB negatively regulates AKT and
STAT3 signaling (18, 19).

The following paragraphs detail examples of the causes
and phenotypic consequences of altered glycogen metabolism
in cancer.

Common Mediators of Tumor
Glycogenesis
Even before molecular studies on the roles of glycogen in cancer,
it was apparent from histological analysis that a sub-set of
carcinomas are enriched in glycogen. The malignant cells of
these glycogen-enriched tumors display clear cytoplasm that
is vacuolated due to the loss of glycogen that results from
histological processing (10, 22). These “clear cell” malignancies
include cancers of the kidney, ovary, breast, endometrium, and
colorectum (23–26). The two most common clear cell cancers—
renal and ovarian—have been well-characterizedmolecularly and
histologically and provide useful systems to interrogate the roles
of glycogen in tumorigenesis (26–28).

Glycogenesis occurs in response to diverse physiological and
pathological stimuli including oxygen and nutrient deprivation

(1, 3, 6, 29, 30). In the normal brain, both glial and neuronal
glycogen are protective against hypoxia-induced death (29–
31). In cancer, the enzymes of both glycogen synthesis and
catabolism rise sharply in response to oxygen and nutrient
deficiency, suggesting that both glycogenesis and glycogenolysis
are important as tumors evolve in response to local and
systemic challenges (32, 33). Key mediators of these responses
are hypoxia-inducible factors (HIFs) which regulate tumor
survival, metastasis, and therapy resistance (34, 35). For clear
cell renal cell carcinoma aberrant hypoxic signaling is initiated
by loss of the Von Hippel Lindau (VHL) gene, a negative
regulator of HIFs. For ovarian clear cell carcinoma, which
arises in the hypoxic environment of endometriotic cysts, the
molecular aberrations initiating the hypoxic response remain to
be elucidated (22, 36–38). Interestingly, oncogene amplification
can also be an important mediator in altered tumor glycogenesis.
An example is amplification of the RAB25 gene, which occurs
in subtypes of ovarian, renal, prostate, liver, and breast cancer
(39, 40). The RAB25 protein is a small GTPase involved
in endosomal recycling which interacts with AKT to drive
glycogenesis, generating tumor glycogen that can be mobilized
in settings of nutrient stress (39). At least in ovarian cancer,
RAB25 regulates HIF-1α activity in an oxygen-independent
manner, suggesting that RAB25 lies upstream to hypoxia-based
induction of glycogen metabolism (41). Despite differences in
the molecular initiators and drivers of HIF activity, clear cell
cancers employ common mediators of the glycogenesis pathway
during malignant transformation, including RAB25, GLUT1,
AKT, GSK3, and AMPK, that represent a “glycogen addicted”
signature (22, 38, 42, 43).

Glycogen Driving Carcinogenesis
Several recent molecular studies have contributed to elucidating
the functions of glycogen in cancer. A seminal loss of function
genetic study targeting PYG in models of glioblastoma, breast,
and colon cancer demonstrated that glycogen catabolism is a
key driver of cancer cell proliferation, survival, and protection
from hypoxia-induced free radicals (12). Depletion of the PYG
liver isoform PYGL induced premature cell senescence via a
ROS-dependent mechanism, and reduced glucose input into the
pentose phosphate pathway (PPP) (10, 12). Cell accumulation of
glycogen granules is a hallmark of several physiological processes
associated with senescence, including the replicative senescence
of primary human fibroblasts and neuronal and hepatic aging
(12, 44, 45). In the context of cancer, senescence is often viewed
as a double-edged sword, on one hand driving tumor stasis,
but on the other providing a means of therapy resistance, and
fostering a microenvironment favoring inflammation, invasion,
and angiogenesis (44–48). Further understanding the role of
glycogen in cancer senescence may provide a window into
modulating this fine balance (49, 50).

Interestingly, PYG via a mechanism involving the E3
ubiquitin ligase malin, can also translocate to the nucleus to
drive nuclear glycogenolysis non-small cell in lung cancer,
fueling compartmentalized pyruvate production and histone
acetylation (51). Aberrant histone acetylation resulting in an
altered epigenetic landscape is a hallmark of multiple cancers
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FIGURE 2 | (A) Impacts of glycogen on cells of the tumor microenvironment. In macrophages, physiologically acute inflammation causes glycogen mobilization as a

feedstock for the pentose phosphate pathway and NADPH production. Glycogen also drives the early stages of dendritic cell activation via glycolytic reprogramming.

These physiological processes are also thought to contribute to cancer progression. In cancer cells, glycogen fuels glycolysis, the pentose phosphate pathway, and

NADPH production to support cell proliferation, survival, metastasis, free radical protection, cell senescence protection, histone acetylation, and chemoresistance.

Tumor glycogen metabolism increases in a variety of scenarios, including in hypoxic conditions and via the induction of the RAB25 oncogene. Tumor glycogen

metabolism is also ubiquitously high in clear cell cancers. In cancer associated fibroblasts, bi-directional signaling between fibroblasts, and neighboring cancer cells

drives tumor glycogen mobilization to fuel metastasis. For T cells, glycogen stores consumed via the pentose phosphate pathway for NADPH production are essential

for CD8+ memory T cell survival. (B) Glycogen in tumor progression. Glycogen mobilization is implicated in metastasis including as fuel for: (1) migration and invasion

of cancer cells in the early stages of metastasis with crosstalk between fibroblasts and malignant cells also eliciting glycogenolysis to fuel migration and invasion; (2)

the pentose phosphate pathway in circulating malignant cells facilitating detoxification of reactive oxygen species and promotion of survival; and (3) colonization of

distant sites including in the survival of brain metastases.

including non-small cell lung cancer (52, 53). Depletion of malin
impairs nuclear glycogenolysis by blocking nuclear translocation
of PYG. The resulting accumulation of nuclear glycogen is
reversed by re-introduction of malin in lung cancer cells
which restores nuclear catabolism of glycogen, increases histone
acetylation, and decreases growth of non-small-cell lung cancer
xenografts in mice (51). This highlights the importance of
glycogen beyond a cytoplasmic glucose reservoir, revealing
this macromolecule as a key driver of compartmentalized
tumor metabolism.

Glycogen and the Immune Compartment:
Potential Pro-tumoral and Anti-tumoral
Roles?
Aberrant immune system responses, including those mediated
by metabolic reprogramming, are integral to cancer progression
(54, 55). As summarized in Figure 2A, dendritic cells (DCs),
macrophages, and T cells have been implicated in metabolic
reprogramming in cancer. Mobilization of cell-intrinsic
glycogen fuels glycolytic reprogramming and subsequent
immune activation of DCs (56–58). For macrophages, glycogen
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metabolism regulates M1-mediated acute inflammatory
responses by fueling the pentose phosphate pathway to generate
NADPH for survival and also potentially facilitating the
breakdown of immunological tolerance in cancer settings
(59). Similarly, maintenance of CD8+ memory T (Tm) cells
requires glycogenolysis to fuel the pentose phosphate pathway,
generate NADPH, and promote oxidative homeostasis (60).
Consistent with this role of glycogen metabolism in immune
system responses, disruption of glycogenolysis in the Tm
cell compartment caused growth of subcutaneous melanoma
cell xenografts and reduced survival of tumor-bearing mice
(60). Disruption of the glycogen axis is thought to impair
nascent anti-tumor immunity to drive cancer progression
and also inhibit immunotherapeutic responses mediated by
T-cells (61, 62). Here, it is important to note that immune
system responses can elicit both pro- and anti-tumoral actions,
and metabolic reprogramming underlies this fine balance
(54, 63, 64). Thus, it is possible that global disruption of
glycogen metabolism as a therapeutic approach will have adverse
consequences for cancer patients because of unwanted effects
on the immune compartment. However, it appears that this
is not an unassailable problem because metabolic targeting
has progressed in the past despite effects on both malignant
cells and the immune system. For example, inhibitors of
the monocarboxylate transporter MCT1 have progressed to
clinical trials despite early concern about deleterious effects
on the T cell division that is essential for effective immune
response (65, 66). In fact, MCT1 inhibitors have since been
shown to improve the infiltration of anti-tumor immune
cells (67). Similar progress with glycogen-directed therapies
will require a greater understanding of the distinguishing
metabolic features of immune and malignant cells, with
the key perhaps lying in developing rational combinations
of therapeutic agents that selectively synergize in cancer
cells (54).

Glycogen as a Metastatic Fuel
Death from cancer is due largely to metastatic rather than
primary tumor burden (68, 69). As summarized in Figure 2B,
the multistep processes required for metastasis are facilitated to
varying degrees by cancer-induced reprogramming of glycogen
metabolism. Vascular and lymphatic metastasis involve release
of malignant cells from the primary tumor, intravasation,
dissemination via the vasculature or lymph, extravasation
at secondary sites, establishment of a blood supply, and
evasion of internal and external cues to undergo cell death,
then thriving in the foreign environment (68–70). The early
stages of this metastatic cascade, involving degradation of
extracellular matrix (ECM) and local invasion involves HIF-
mediated metabolic reprograming that drives acidification of
the extracellular space and glycolysis including from glycogen
stores (69). In models of breast cancer and osteosarcoma
mobilization of glycogen stores by brain glycogen phosphorylase
PYGB promotes migration and invasion (71, 72). Also, in pro-
metastatic hepatocellular carcinoma, metabolic reprogramming
toward glycogenesis, in particular involving UPP, is a key
mediator of metastasis (73).

Metastasis also requires the interaction of cancer cells with the
cells of the tumor microenvironment including fibroblasts (69).
Cancer-associated fibroblasts (CAFs) can mobilize cancer cell
glycogen to drive metastasis inmodels of ovarian cancer (74). It is
mediated by the p38α MAPK pathway in CAFs releasing soluble
factors to act on malignant cells. This reprogramming event is
particularly important in stages of metastasis involving growth
of cells in suspension. Cells exposed to death-inducing levels
of oxidative stress are protected by ROS-detoxifying metabolites
generated via glycogen catabolism feeding the pentose phosphate
and one-carbon metabolism pathways, which release NADH,
NADPH, and glutathione (74, 75). Glycogen is an important fuel
to overcome oxidative stress, allowing cancer cells to successfully
survive in suspension during this step of metastasis.

The final stage of metastasis, successful colonization of
other organs (68, 69), presents a considerable challenge to
malignant cells as the microenvironment at the distant site
can be hostile. As a result, metastasizing cancer cells display a
propensity to disseminate to particular organs, a relationship
called organotropism, that display favorable environments
including metabolic requirements (68, 69). There are indications
of such an organotrophic relationship between glycogen rich
cancers and brain metastases. Notably, glycogenesis sustains
glucose-independent growth and survival of breast cancer cells
metastasized to the brain (76). In this regard, it was interesting
to note that glycogen-rich clear cell carcinoma of the breast
displays a higher proportion of brain metastases than other
subtypes of breast cancer (23). These findings are perhaps
unsurprising, given the roles of glycogen in brain physiology,
including neuronal and glial growth, and pathology, including
certain epilepsies (31, 77, 78). However, based on the difficulty
associated with effective treatment of brain metastasis, targeting
of glycogen could perhaps provide a new treatment avenue.
There are also suggestions that glycogen mobilization facilitates
omental metastases of certain peritoneal tumors, such as ovarian,
endometrial serous, colon, gastric, and pancreatic lesions (74),
thus inhibition of glycogen catabolism could benefit these
patients (79).

Glycogen and Chemoresistance
The importance of glycogen to chemoresistance is highlighted
by the observation that glycogen-rich clear cell carcinomas
are distinguished by higher chemoresistance than non-clear
cell malignancies (43, 80, 81). Clear cell ovarian carcinomas
are generally more resistant to conventional platinum and
taxol-based chemotherapies compared to other ovarian cancer
histotypes, and clear cell renal cell carcinomas rapidly acquire
resistance to standard of care tyrosine kinase inhibitors as well
as other targeted therapies (43, 81–83). Consistent with this,
increased activity of key mediators of glycogen metabolism
(glucose, AKT, GSK, and AMPK) is strongly associated
with chemoresistance (84–86). Mechanistically, it appears
that glycogen-derived metabolites contribute to chemotherapy
resistance via a variety of mechanisms, including via ATP-based
drug efflux and ROS protection, however more work is required
to understand these processes (87).
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VISUALIZING AND QUANTIFYING TUMOR
GLYCOGEN

The size and abundance of glycogen facilitate its visualization
and use to delineate glycogen-dependent tumors. Hematoxylin
and eosin, and periodic acid-Schiff stains are used in routine
histopathology assessments to delineate clear cell tumors (9) and
antibodies are available to immunohistochemically distinguish
glycogen from lipids and glycoproteins (51, 88). Glycogen
granules can also be readily detected by electron microscopy, and
this technique has been used in studies to detect carcinogenesis-
associated changes in glycogen content (10, 12, 32, 60, 74).

The ability to label glycogen with glucose and glucose
analogs has facilitated labeling strategies to measure glycogenic
flux. Compounds such as 2-[N-(7-Nitrobenz-2-oxa-1,3-diazol-4-
yl)amino]-2-deoxy-D-glucose (2NBDG) that readily incorporate
into glycogen have provided a relatively cost-effective way
to determine broad cellular glycogen content (89). Similarly,
glycogen content can be assessed in cell and tissue homogenates
spectrophotometrically by taking advantage of degradation of
glycogen to glucose which is detected and quantified using
luminescent or fluorescent substrates (90, 91). Glycogen content
can also be quantified by incorporation of 13C-labeled glucose
(6, 8, 25, 51, 71). Similarly, radiolabeling with 18F-N-(methyl-
(2-fluoroethyl)-1H-[1,2,3]triazole-4-yl)glucosamine (18F-NFTG)
is being used to specifically detect oncogene-driven changes
in glycogenesis in in vivo preclinical models (92). 18F-NFTG
overcomes certain limitations of FDG PET imaging including
high cardiac uptake and low differentiation between neoplastic
and inflammatory tissue (92). Clinical use of this tracer could
be informative in defining distant metastases, although high
background signal associated with glycogen-rich organs such
as the kidney and liver presents a challenge that requires
mitigation. 18F-NFTG may also provide opportunities for a
theranostic-like approach to patient care involving delineation
of glycogen-containing tumor burden followed by treatment
with glycogen-targeted pharmacological agents. The marriage
of metabolic imaging and targeting is beginning to bear fruit
for glutamine-addicted (18F-FGln), fat-addicted (11C-acetate),
OxPhos-addicted (18F-BnTP), and glycolytic (18FDG) tumors,
although it is important to note that radiotracer uptake may not
consistently correlate with the activity of the targeted metabolic
process in all settings due to the interconnectedness of metabolic
pathways (68, 93–95).

PHARMACOLOGICAL DISRUPTION OF
GLYCOGEN METABOLISM IN CANCER

The importance of glycogen in a range of processes required for
cancer progression suggests that disrupting glycogen metabolism
is a means to therapeutically target cancer, in particular tumors
displaying glycogen dependence such as clear cell malignancies.
Figure 1 highlights several points at which the glycogen axis
has potential to be pharmacologically targeted, including the
entry of glucose into cells, and during various catalytic processes
required for glycogenesis and glycogenolysis. An example of a

pharmacological disruptor of glycogen metabolism is the glucose
analog 2-deoxy-D-glucose (2DG) which competes with glucose
for cell entry via GLUT transporters and as a phosphorylation
substrate for hexokinase (96–98). 2DG incorporation into
glycogen antagonizes glycogenolysis, and glycogen mediates
2DG resistance via the activity of brain glycogen phosphorylase
isoform PYGB (98–101). It has recently been shown that
2DG synergizes with carboplatin against patient-derived mouse
models of glycogen-rich ovarian clear cell carcinoma (95).
This strategy to increase the efficacy of a key standard-of-
care chemotherapy was achieved at a 2DG dose far lower
than employed in other studies against non-glycogen dependent
cancers (97). This raises the possibility that combining 2DG
and chemotherapy could be effective for clear cell cancers
generally, including the much more common clear cell renal cell
carcinoma (96, 102). The data justify further clinical trials to
evaluate the efficacy of these combinations in these glycogen-
dependent cancers.

Disruption of glycogen metabolism is also achieved by
targeting mediators of glycogen biosynthesis including the
PI3K/AKT/mTOR pathway. Modulators of this pathway, such
as perifosine, MK-2202, and evorolimus, have progressed into
clinical trials, however, it is not yet clear whether anti-
cancer effects are mediated by impacts on tumor glycogen
metabolism (103, 104). Hyperactivation of the pathway is a
prominent molecular feature of both clear cell ovarian and
renal cell carcinomas (37, 42, 43, 105). PI3K, AKT, and
mTOR inhibitors have shown promise in these malignancies as
standalone therapies and in combination with standard-of-care
chemotherapies, displaying synergistic anti-proliferative effects
in vitro and in vivo (17, 106–109). Furthermore, inhibitors of
GSK3β have been pursued as standalone treatments and in
combination with multi-kinase inhibition in clear cell renal cell
carcinoma, where it potentiates the effects of sorafenib both in
vitro and in vivo (110–113).

In certain cancer contexts, it also appears to be useful
to promote rapid glycogenolysis to exhaust glycogen stores.
For example, myeloid leukemia cells display pathological
glycogenesis via a mechanism involving suppression of AMPK
activity, with the accumulated glycogen available for mobilization
as a glycolytic fuel during times of stress (17). These processes
can be targeted with AMPK activators such as metformin
and resveratrol, anti-diabetic agents that are becoming more
widely studied in cancer (9, 114, 115). Metformin functions
by inducing glycogenolysis via insulin signaling, downstream
of GSK activity, as well as by AMPK activation (9, 17, 116–
118). Pharmacological disruption of processes downstream the
glycogen debranching enzyme AGL has also been attempted.
This involved via modulation of the hyaluronic acid synthesis
axis using drugs such as 4-methylumbelliferone (4MU) which
reduced progression of bladder and lung cancers in model
systems (19, 21, 119).

Inhibition of glycogenolysis has been most commonly
attempted in cancer settings via disruption of PYG (9, 120). PYG
inhibitors are often repurposed anti-diabetic therapies which
target different allosteric sites of PYG (9) and produce similar
phenotypes to genetic depletion of PYG, including impaired
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glycogenolysis resulting in cell cycle arrest, apoptosis, and ROS-
dependent cell senescence (12, 121, 122). CP-320626, an inhibitor
of AMP allosteric regulatory and catalytic sites of PYG induces
cell cycle arrest and apoptosis in cultured MIA pancreatic
cancer cells via MAPK/ERK and TNF-α/NF-κB pathways (123).
Interestingly, flavoperidol, a potent inhibitor of CDK activity
that progressed to clinical trials, has recently been shown to
produce similar effects to genetic disruption of PYG and to
be a bona-fide PYG inhibitor (21, 124, 125). The most widely
used indole carboxamide PYG inhibitor CP-91149 induces
growth inhibition in a range of tumors including hepatocellular
carcinoma and pancreatic and prostate cancer (121, 126, 127). It
acts synergistically with standard-of-care multi-kinase inhibitors
sorafenib and regorafenib in models of hepatocellular carcinoma
(121). It will be important to assess the efficacy of a similar
regime in models of clear cell renal cancer, for which multi-
kinase inhibitors are also standard-of-care. Despite promising in
vitro results, PYG inhibitors are yet to be evaluated in in vivo
tumor models.

Interestingly, disruption of enzymes involved in glycogen
metabolism induces cell death by apoptotic and non-apoptotic
processes including necroptosis and ferroptosis (128). PYGL
inhibition induces necroptosis by modulating ROS production
and aerobic respiration (129, 130). Similarly, an upstream
regulator of PYG, phosphorylase kinase G2, is critical to
the lipid peroxidation underlying ferroptosis (128, 131). To
optimize the efficacy of glycogen metabolism disruptors against
cancer, including reducing therapy resistance, further research is
required to better understand the mechanisms by which these
agents induce cell death. Additional research is also required
to minimize adverse events that can occur when targeting
metabolic processes which are important in both normal and
malignant cells. This is highlighted by toxicities that have been
reported from trials of 2DG against a range of advanced solid
tumors, where the clinically tolerable dose of this agent was
accompanied by significant adverse events including cardiac and

gastrointestinal toxicities and neutropenia (28, 29), with one
patient experiencing a fatal cardiac arrest (96, 102).

CONCLUSION

Despite the key role of glycogen in processes that underpin
malignant transformation, there are still many gaps in our
understanding of the molecular mechanisms that regulate
metabolism of this macromolecule in cancer. The importance
of glycogen metabolism to tumor cell senescence, metastasis,
both in driving the metastatic cascade and organotropism,
and in resistance to chemotherapies and targeted therapies,
are aspects that warrant particular attention. New information
in these areas is expected to lead to further attempts to
harness glycogen as an effective therapeutic target (8). It
seems likely that the repurposing of glycogen metabolism
targeting agents that are currently used for non-cancer
pathologies including diabetes, will benefit patients with
glycogen-dependent clear cell cancers and potentially other non-
clear cell malignancies.
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