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Abstract: Interstitial lung disease (ILD) refers to a heterogeneous group of diseases characterized by lung fibroblast proliferation,
interstitial inflammation, and fibrosis-induced lung damage. The Janus kinase/signal transducer and activator of transcription (JAK/
STAT) pathway is known to be activated by pro-fibrotic/pro-inflammatory cytokines such as IL-6 and IL-13, whose levels are
elevated in ILD. The overexpression of growth factors such as transforming growth factor β1 in ILD activates the JAK/STAT
pathway through classical or non-classical pathways, promotes macrophage activation, increases the release of pro-inflammatory and
pro-fibrosis factors, and facilitates fibroblast differentiation into myofibroblasts. These findings implicate that the JAK/STAT
pathway plays an important role in the course of ILD. Recent evidence also suggests that JAK inhibition alleviates excessive
inflammation and pulmonary fibrosis. Accordingly, the JAK inhibitors may serve as promising drugs for the treatment of JAK/STAT-
induced ILD.
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Introduction
Interstitial lung disease (ILD) is a group of diseases that originate from a variety of etiologies including infections, drugs,
radiation-induced lung diseases, and autoimmune diseases such as systemic sclerosis (SSc) and rheumatoid arthritis
(RA). These conditions cause damage to the alveolar epithelium and lung parenchyma, ultimately leading to inflamma-
tion and extensive fibrosis.1 ILD is characterized by varying degrees of inflammation or fibrosis in the pulmonary
parenchyma. For instance, in inflammatory diseases, the histology of the pulmonary parenchyma is characterized by
mechanical pneumonia or nonspecific interstitial pneumonia, while fibrotic diseases are characterized by common
interstitial pneumonia.2

Pro-fibrotic/pro-inflammatory cytokines including interleukin-6 (IL6), IL13, and interferon-γ (IFNγ); and growth
factors such as transforming growth factor β1 (TGFβ1) are overexpressed in different ILDs.3 Under these circumstances,
the Janus kinase/signal transducer and activator of transcription (JAK/STAT) pathway is known to be activated, which
further polarizes the macrophages into classic pro-inflammatory M1 macrophages. This phenomenon is characterized by
the upregulation of key polarization markers (CD86), and elevated secretion of key pro-inflammatory cytokines and
driving factors such as IL6, CXC motif chemokine 10 (CXCL10), and tumor necrosis factor (TNFα). These events, in
turn, lead to inflammatory changes in the lungs or pro-fibrotic M2a macrophages, which exhibit enhanced expression of
surface markers such as CD206.4 Furthermore, the amplified secretion of pro-fibrotic IL6 induces STAT3- mediated
fibroblast-to-mesenchymal transition (FMT),5 thereby resulting in de-differentiation of fibroblasts into myofibroblasts
with a mesenchymal phenotype, ultimately leading to ILD.6 In addition to JAK/STAT, JAK can activate other signaling
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pathways such as phosphoinositol 3-kinase/protein kinase B (PI3K/Akt) and Ras/Raf/MAPK/ERK, which are known to
cause bone marrow proliferative diseases.7

TGFβ is considered to be a key pro-fibrotic cytokine.8 After binding to its receptor, it has been reported to
phosphorylate SMAD2/3 in the cytoplasm through the classical pathway, which subsequently combines with SMAD4
to form a trimer complex. The trimeric complex then binds with DNA and regulates the expression of transcription
factors that promote the expression of fibrotic genes, collagen production, and proliferation of lung fibroblasts.9 In
addition to activating SMAD proteins, TGFβ enhances the binding of tumor necrosis factor receptor-associated factor 6
(TRAF6) to TGFβ receptor I and promotes its activation in a receptor kinase-independent manner. Furthermore, TRAF6
has been documented to ubiquitinate TGFβ-activated kinase 1 (TAK1), which is a member of the mitogen-activated
protein kinase kinase kinase (MAPKKK) family, thereby leading to its activation.10,11 TAK1 subsequently phosphor-
ylates and activates the MAP kinase kinases (MAPKKs), MAPKK3 and MAPKK6, which activate p38 MAP kinase
(MAPK).12 P38 is an important mediator of TGFβ-induced epithelial-mesenchymal transition (EMT).12 EMT has been
recognized as a source of pulmonary muscle fibroblasts during pulmonary fibrosis in various in vitro studies, animal
models, and patients.13 These findings thus indicate that TGFβ promotes the occurrence of pulmonary fibrosis through
both the classical and non-classical approaches. In addition, TGFβ receptors can activate non-SMAD signaling pathways,
including the extracellular signal-regulated kinase 1/2 (ERK1/2), c-Jun N-terminal kinase (JNK), PI3K/Akt, and Ras/Raf/
MAPK/ERK pathways.12 In this manner, the pulmonary cells affected by the ILDs display a cross-talk between the non-
classical TGFβ signaling and other pathways, such as the JAK pathway.

ILD is one of the most common and serious lung diseases. The study found that the overall incidence of ILD was
19.4/100,000 with the most common diagnoses being sarcoidosis (42.6%), ILD associated with connective tissue disease
(16%), and idiopathic pulmonary fibrosis (IPF) (11.6%).14 While the common ILD symptoms include dry cough,
shortness of breath, and fatigue, the management and treatment options for the same remain challenging for clinicians.
Currently, the common treatment strategies include glucocorticoids and immunosuppressants such as
cyclophosphamide.1 However, occasionally the disease is refractory, rapidly progressive, and resistant to hormonal and
immunosuppressive therapies.15 As a result, it is necessary to develop alternative drug therapies based on the current
understanding of ILD pathogenesis and the role of the JAK/STAT pathway in it. The existing knowledge and scientific
rationale on the efficacy of JAK inhibitors (JAKi) suggest that they may provide clinicians with a more precise treatment
strategy for reducing interstitial inflammation thereby preventing the progression of fibrosis and the continuous
deterioration of lung function.

The Distribution of JAK and STAT in Lung Tissues
JAK is a group of intracellular tyrosine kinases including JAK1, JAK2, JAK3, and TYK2, in mammals that are critical
for the signal transduction initiated by membrane receptors on the cell surface.16 JAKs are widely expressed in various
tissues and cells, which is the basis for their ubiquitous participation in diverse signal transduction pathways.17 Studies
on signal transduction of cytokines and growth factors suggest that multiple JAKs can be activated in a single cytokine
signaling pathway. Moreover, the JAKs have been documented to participate in the signal transduction of various
cytokines and growth factors. For instance, IL2, IL13, and IFNγ can activate JAK1 and JAK2, while IL6 can activate
JAK1, JAK2, and TYK2.17,18 In contrast, STATs such as STAT1, STAT2, STAT3, STAT4, STAT5, and STAT6, act as
transcription factors in various cell types.4 However, the STATs demonstrate a certain level of cytokine specificity as
compared with that of JAKs.3 For instance, IL31 and vascular endothelial growth factor (VEGF) activate STAT1; IL6,
IL11, TGFβ1, and epidermal growth factor activate STAT3; and IL4 and IL13 reportedly activate STAT6.3

Previous studies have shown that STAT activation results in the transcription and expression of signaling proteins
with diverse functions. For instance, STAT1 is involved in the expression of IL12-related proteins and promotes
inflammation.16 STAT2 is involved in the expression of CD40- and CD80-related proteins and increases the expression
of TNF receptor and CD80 ligand to promote apoptosis.16 STAT3 is involved in the expression of IL6-related proteins
and encourages cell proliferation.16 STAT4 is involved in the expression of IFNγ-related proteins and stimulates
immune regulation. STAT5 consists of two heterogeneous forms, STAT5a and STAT5b, whose protein structures are
more than 95% identical. STAT5 participates in the expression of the suppressor of cytokine signaling 1 (SOCS1) and
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promotes inflammation.16 STAT6 is involved in the expression of B-cell lymphoma-2-related proteins and plays an
anti-apoptotic role.16 In general, after cytokines and growth factors bind to their respective cell surface receptors, the
receptor-associated JAK is activated and phosphorylated to form p-JAK, which binds to the docking site of STAT and
phosphorylates it to form p-STAT.3

The JAK/STAT signaling pathway is reportedly responsible for the regulation of cell homeostasis; consequently, the
excessive activation of this signaling axis can lead to autoimmune diseases.5 Moreover, the JAK2/STAT3 is considered to
play a principal role in ILD development. In animal models, STAT3 has been shown to regulate IL6- and TGFβ 1- mediated
differentiation of lung fibroblasts into myofibroblasts.6 In humans, the STAT3 has been reported to regulate the secretion of
type I collagen in idiopathic pulmonary fibrosis (IPF) lung fibroblasts. Furthermore, the enhanced STAT3 expression in IPF
fibroblasts is also attributed to their characteristic fibrotic phenotype.19,20 Likewise, the same mechanism has been reported
in SSc patients, where TGFβ1 induces JAK2 phosphorylation that subsequently results in the phosphorylation of STAT3 to
induce a fibrotic response. Interestingly, JAK2 may not only be a downstream target of TGFβ1 in fibroblasts but may also
provide positive feedback, resulting in the amplification of the TGFβ1 signaling by stimulating TGFβ1 expression21 and
further aggravating the ILD.

In terms of tissue distribution, JAK1 has been reported to be overexpressed in lung tissues and localized in inflammatory
and epithelial cells in bleomycin (BLM)-induced fibrosis mouse models.22 In IPF patients, JAK2 is mainly distributed in the
hyperplasia of alveolar epithelial type II cells, fibroblasts, and intima, as well as in the middle layer of small pulmonary
artery,23 while the expression of p-JAK2 is augmented in the lung tissues and pulmonary arteries of IPF patients.

The expression and distribution of STAT1 have been mainly studied in animal models. Previous studies have shown
that STAT1 is localized in the inflammatory and epithelial cells of BLM-induced fibrosis mouse models24 and in alveolar
macrophages of rats.25 In addition, a recent study has reported that p-STAT1 is expressed in mouse lung tissues.26

STAT3 is highly distributed in alveolar macrophages, endothelial cells, and neutrophils in the BLM-induced fibrosis
mouse models. Its phosphorylated form is also known to exist in myofibroblasts and alveolar macrophages.23 Moreover,
STAT3 was detected in the inflammatory and epithelial cells of the same mouse model.27 Likewise, the p-STAT3 was
found to be expressed in dense fibrotic areas, alveolar macrophages, myofibroblasts, and alveolar epithelial cell nuclei in
IPF patients. Moreover, STAT3 is also present in the intima and media of small pulmonary arteries, hyperplastic alveolar
cells, and fibroblasts in IPF patients.20,23

JAK/STAT Signaling Stimulates the Progression of ILD
Activation of the JAK/STAT pathway commences with the binding of ligands to their receptors. These ligands can be
cytokines that promote fibrosis including IL2, IL4, IL6, IL11, and IL13; pro-inflammatory cytokines such as IL23 and IFNɣ;
or growth factors such as TGFβ and platelet-derived factor (PDGF). These ligands bind to their receptors and thereby induce
the dimerization of JAK. The receptor-associated JAK is then activated and phosphorylates the tyrosine residues in the tail of
its receptor to form p-JAK (Figure 1). Subsequently, these phosphorylated sites act as docking sites for STATs and bind to
them through their SH2 domain, resulting in tyrosine phosphorylation and activation of STAT to form p-STAT. The STATs
thus form dimers and translocate from the cytoplasm to the nucleus, where they act as transcription factors.16 Most STATs
form homodimers; however, heterodimers such as STAT1/2, STAT1/3, and STAT5a/b have also been reported.28 Thus,
STATs are activated by JAKs and translocate from the cytoplasm to the nucleus to regulate gene expression.

Various studies have reported that activation of the JAK/STAT pathway is associated with the induction of ILD.
Present evidence indicates that the JAK/STAT path is found to be active in alveolar epithelial cells, fibroblasts,
macrophages, and other cells.3 Furthermore, this pathway is reported to upregulate the expression of macrophage
polarization markers, such as CD86 and CD206. This results in the differentiation of macrophages into pro-
inflammatory M1 macrophages that release inflammatory factors such as IFNɣ, and into pro-fibrotic M2a macrophages
that release pro-fibrotic cytokines such as IL6. The released factors are further amplified via a positive feedback
mechanism, ultimately promoting lung inflammation and fibrosis.4 Furthermore, the lung fibroblasts have been reported
to instigate their own proliferation through this pathway or transform into mesenchymal cells. This transformation results
in the abnormal expression of α-smooth muscle actin and extracellular matrix components, which induce fibroblasts to
de-differentiate and acquire the mesenchymal phenotype of myofibroblasts, ultimately leading to the development of
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ILD.3 In summary, the existing findings suggest that JAK/STAT pathway activation plays an integral role in the
development and progression of ILD (Figure 1).

Application of JAK Inhibitors (JAKi) in ILD Treatment
Most of the evidence on the use of JAKi to treat ILD has been documented in autoimmune disease-related ILD,
particularly refractory and progressive ILD. For instance, Hornig et al29 had reported that the lung involvement in a 32-
year-old male dermatomyositis patient with ILD continued to progress under several immunosuppressive therapy
regimens, including high-dose steroids, cyclophosphamide, rituximab, immunoglobulin, plasmapheresis, cyclosporine,
and mitomycin ester (MMF). However, JAKi (tofacitinib) treatment, post discontinuation of MMF and cyclopho-
sphamide, significantly improved his clinical symptoms. The improved clinical prognosis was consistent with augmented
carbon monoxide diffusing capacity (DLCO) and forced vital capacity (FVC); in addition to significant improvements in
the fiber density and range, in a second high-resolution chest CT (HR-TCT) performed two months later. In addition, in
another accompanied by rapid progress of sex without myopathy patients with dermatomyositis-associated ILD, high-
dose glucocorticoids (GC), cyclophosphamide, and phosphatase inhibitor of calmodulin nerve triple therapy to treat the
effect not beautiful, in Canada with JAKi (for the occasional method) after treatment with rapid improvement in,30 ILD
show Overall, these findings indicate that JAKi therapy has a promising curative effect against ILD. Consequently, the

Figure 1 Binding of different cytokines and growth factors to corresponding receptors phosphorylates STATs and JAKs, activating STATs and transferring them to the
nucleus to regulate gene expression. The secretion of pro-inflammatory and pro-fibrosis factors increased, eventually leading to the formation of ILD.
Note: Adapted from Montero P, Milara J, Roger I, et al. Role of JAK/STAT in interstitial lung diseases; molecular and cellular mechanisms. Int J Mol Sci. 2021;22(12):6211.
Creative Commons license and disclaimer available from: http://creativecommons.org/licenses/by/4.0/legalcode.3

Abbreviations: IL, Interleukin; PDGF, platelet-derived growth factor; TGF-β, transforming growth factor β; IFN-γ, interferon-γ; P, phosphate; JAK, janus tyrosine kinase;
STAT, signal transducers and activators of transcription; ILD, interstitial lung disease; FMT, fibroblast to mesenchymal transition.
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JAKi have been considered as a viable option for the treatment of ILD caused by activation of the JAK/STAT pathway,
which mainly includes the drugs listed in Table 1; nevertheless, their clinical application requires comprehensive studies
to rule out the possibility of adverse reactions, if any.

Therapeutic Effect of JAKi on ILD in Animal Models
In autoimmune pulmonary fibrosis (eg, SSc-ILD), the M1 and M2 macrophages play key pathogenic roles. Lescoat et al4

had shown that treatment with JAKi (ruxolitinib 20 mg/kg, twice daily) prevented the upregulation of pro-inflammatory
markers in M1 macrophages (TNF α and CXCL10) and pro-fibrotic markers in M2 macrophages (Arg1), and improved
the lung inflammation and fibrotic lesions in SSc-ILD mouse model.21 In addition, another study had demonstrated that
intraperitoneal injection of tofacitinib (20 mg/kg) thrice per week for two months inhibited the progression of RA-ILD in
mice by promoting the expansion of myeloid suppressor cells in the lungs.36 In addition, intraperitoneal injection of
tofacitinib (30 mg/kg, twice daily) was found to ameliorate the IL6-induced skin fibroblasts in mice with BLM-induced
pulmonary fibrosis thereby playing an anti-fibrotic role. However, the study also reported no significant effect on the
regression of pulmonary fibrosis.37 Overall, these findings suggest that JAKi could serve as potential ILD drugs by
inhibiting the JAK/STAT pathway. Regrettably, the adverse effects caused by JAKi were not evaluated in these studies as
the mice were sacrificed in these studies.

Efficacy of JAKi Treatment in Human Patients with ILD
JAKi have been documented to not only improve the respiratory symptoms of ILD in animal models but also reduce the
levels of serological markers associated with ILD. As a result, we performed a literature search to understand the ILD
treatment efficacy of JAKi in humans. Accordingly, we came across a single-arm open-label trial that had evaluated the
efficacy of tofacitinib in patients with early anti-melanoma differentiation-associated gene 5 (MDA5) antibody-positive
amyopathic dermatomyositis (ADM) associated with ILD (ADM-ILD).38 This study prospectively treated 18 patients
with ADM-ILD, who were anti-MDA5 antibody-positive, with glucocorticoid and tofacitinib (10 mg/day). The trial
compared the survival rates of patients who received tofacitinib with those of patients who received conventional
treatment of glucocorticoids as a historical control. The results revealed that the six-month survival rate of the tofacitinib-
treated group (100%) was significantly higher than that of the historical control group (78%). Moreover, the DLCO and
HR-TCT results in the tofacitinib-treated group improved significantly over time as compared with that of the historical
control group. In addition, the adverse events in patients administered tofacitinib were mostly low-grade, such as mild
elevation in the levels of liver enzymes.38 This study thus suggests that tofacitinib can be considered as an effective and
safe drug for the treatment of ILD.

A retrospective study had evaluated the efficacy of tofacitinib (10 mg/day) in patients with anti-MDA5 antibody-
positive DM-ILD and resistant to triple therapy, which consisted of high-dose GC, cyclosporine A, and
cyclophosphamide.39 The results showed that 60% (3 out of 5) of the patients treated with tofacitinib responded
well and survived. In contrast, none of the six historical controls treated without tofacitinib survived, despite both
the groups presenting similar adverse prognostic factors including serum ferritin levels greater than 1000 ng/mL and

Table 1 Overview of JAKis for the Treatment of ILD

Medication Effect Targets Treated Diseases Adverse Effects

Tofacitinib Inhibits JAK1/JAK3 and,
to a lesser extent, JAK2/

TYK2.31

Psoriasis, psoriatic arthritis, and
inflammatory bowel disease,19 evaluated

for the treatment of ILDs.

Increased levels of creatinine, liver transaminases, and lipids, as
well as an initial decrease in the number of lymphocytes,

neutrophils, natural killer cells, and platelets. Increased risk of

thromboembolism events /infectious diseases including
tuberculosis and viral infections (particularly herpes zoster)35

Ruxolitinib Inhibit JAK1 and JAK2,
with moderate activity

against TYK2.32

Intermediate and high-risk
myelofibrosis, psoriasis and RA.33

Evaluated for the treatment of ILDs.

Baricitinib Inhibit JAK1 and JAK2.34 RA,34 not evaluated for the treatment of
ILDs.

Abbreviations: JAK, Janus kinase; TYK2, tyrosine kinase 2; ILD, interstitial lung disease; RA, rheumatoid arthritis.
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lung infiltration, prior to triple therapy. Furthermore, the lung infiltration was determined to be worse during triple
therapy as compared to those treated with tofacitinib,39 suggesting that tofacitinib is a potential treatment for
refractory DM-ILD candidates with anti-MDA5 antibodies. Remarkably, the main adverse event associated with
tofacitinib reported in this study was viral infection; 100% of patients treated with tofacitinib experienced cytome-
galovirus reactivation and 60% experienced herpes zoster infection as compared to that in patients belonging to the
historical control group.39 Interestingly, other studies have also reported the superiority and safety of tofacitinib in
the treatment of ILD.29,30

There are no large clinical trials of ruxolitinib, except for a few published case reports. For instance, ruxolitinib
was found to be effective in three ILD patients with acquired functional mutations in STAT. The three patients were
treated with two daily doses of 5 mg, 10 mg, and 20 mg ruxolitinib, respectively. The findings showed that the
ruxolitinib intervention improved the hypoxia symptoms of the patients, along with evident cystic changes and
ground-glass opacity improvements in stable chest CT scans. Moreover, the lung function was stabilized or
improved however, the patients did not report any improvement with the bead sheet resistance monotherapy that
they had received previously.40 In this case report, the patients did not report significant adverse events, which
suggests that ruxolitinib might be considered to be safe and effective in the treatment of ILD. Another case report
describes the treatment of patients with refractory ILD associated with systemic juvenile idiopathic arthritis using
ruxolitinib doses of 1 mg/kg/day. After 15 months, the patient’s fever symptoms were relieved, and the chest CT
scans indicated alleviated ILD, and the hormone use was reduced. The case report suggests that ruxolitinib was well
tolerated by the patients, implying that it may be an effective and safe drug for the treatment of ILD.41 However,
large clinical trials are needed to confirm the efficacy and safety of ruxolitinib through statistically supported
conclusions.

Baricitinib has been evaluated for the treatment of ILD in two studies. One is a case report of ILD associated with
STING vascular lesions. The patient did not respond to ruxolitinib (2.5 mg/day) and discontinued use owing to elevated
liver enzyme levels and severe rotavirus enteritis. However, when the patient received 2 mg/day of baricitinib, his clinical
presentation improved without adverse reactions.42 The second study was a retrospective analysis of four patients with
RA-ILD, who were administered 4 mg/day of baricitinib for six months. The study reported that as compared with the
previous treatment, baricitinib significantly increased the DLCO levels and significantly decreased the levels of pro-
inflammatory cytokines such as IL6, and serum marker salivation glycochain antigen, thus reflecting the stability of these
patients after lung interstitial involvement. Although alanine aminotransferase (ALT) and aspartate aminotransferase
(AST) levels were slightly elevated in these patients, the treatment with baricitinib was considered to be safe.43

The case reports previously discussed showed positive effects of treatments with JAKi. However, large-scale
prospective randomized controlled trials are still needed to confirm the effectiveness and safety of these inhibitors, as
well as probable adverse events (Table 1).

Outlook
The JAK/STAT pathway plays a significant role in the pathogenesis of ILD. Moreover, the JAK2/STAT3 is a major
pathway found to be activated in ILD patients and animal models. In ILD, this signaling pathway is activated by a variety
of upregulated cytokines and growth factors. While most of the relevant studies have focused on the autoimmune
disease-related ILDs, research on how this pathway is associated with other types of ILDs is still lacking. Recently,
preliminary findings have revealed the therapeutic potential of JAKi such as tofacitinib, ruxolitinib, and baricitinib;
however, larger prospective studies are essential to validate these findings and provide novel insights for the development
of innovative and effective treatment strategies for ILD patients.
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