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Quantum gates by periodic driving
Z. C. Shi1,2, W. Wang1 & X. X. Yi1

Topological quantum computation has been extensively studied in the past decades due to its 
robustness against decoherence. One way to realize the topological quantum computation is by 
adiabatic evolutions—it requires relatively long time to complete a gate, so the speed of quantum 
computation slows down. In this work, we present a method to realize single qubit quantum gates 
by periodic driving. Compared to adiabatic evolution, the single qubit gates can be realized at a fixed 
time much shorter than that by adiabatic evolution. The driving fields can be sinusoidal or square-
well field. With the sinusoidal driving field, we derive an expression for the total operation time in 
the high-frequency limit, and an exact analytical expression for the evolution operator without 
any approximations is given for the square well driving. This study suggests that the period driving 
could provide us with a new direction in regulations of the operation time in topological quantum 
computation.

As a promising avenue to deal with decoherence, topological quantum computations1–8 employ two-dimensional 
quasiparticles called anyons, whose world lines cross over one another to form braids in a three-dimensional 
spacetime. Information encoded in the anyons is robust against local perturbations, due to the topological nature 
of anyons, and braiding operation2 can be exploited to construct fault-tolerant quantum computation9. Majorana 
fermions, the simplest example of non-Abelian anyons, are predicted to exist in fractional quantum Hall sys-
tems10, topological insulators11,12, solid state systems13, and semiconductor-superconductor hybrid systems14–16. 
More recently, the signatures of Majorana fermions have also been observed in experiments17–21, which gives rise 
to an opportunity to encode a qubit by Majorana fermions in these materials.

The adiabatic evolution has been widely applied to preparation and manipulation of Majorana fermions22–25. 
In particular, it has been shown that topological quantum information processing becomes possible in the 
one-dimensional network25 by adiabatically controlling the locally tunable gates which affect the chemical poten-
tial over a finite length of the topological superconductor (TS) wire. The main idea of adiabatic computation is 
that, design a Hamiltonian H1 whose ground state is the target state ψT  while the ground state ψ0  of 
Hamiltonian H0 is easily to prepared. Assume that there exists a quantum system described by the following 
Hamiltonian,
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where f(t) is a slowly varying function of time t with f(0) =  0 and f(1) = 1. According to the adiabatic theorem, the 
quantum system evolves adiabatically from the initial (ground) state ψ0  to the target (ground) state ψT  at time 
t =  T, solving the problem associated with the target state ψT . The price one shall pay in adiabatic computation 
is the long evolution time required by adiabatic condition.

Since a quantum task is often accomplished by a sequence of quantum operations rather than a single quan-
tum operation23–29, the total operation time increases linearly with the number of quantum operations. On the 
other hand, with respect to the limit of the coherence time in quantum systems, long operation time is not favora-
ble for quantum computation, even for topological quantum computation which is robust against perturbations. 
Hence it is not suitable for implementing quantum operations by adiabatic evolution if the coherence time of 
quantum systems are short. This gives rise to a question that are there any other methods to achieve the goals 
better than adiabatic passage?

The time-periodic driving systems have been extensively studied in the past few years. Several work30–41 
have shown that topological properties of system can be changed by time-periodic driving (e.g., the existence 
of Floquet topological insulators or Floquet Majorana fermions). Recently, the Floquet Majorana fermions are 
realized by periodic driving fields in the system of coupled quantum dots proximity to a s-wave superconductor42. 
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More recently, it has been proposed to achieve the direct coupling between the topological and conventional 
qubits by periodic driving fields43. In this work we explore the possibility to regulate the total operation time by 
periodic driving. Of course, this method can also be extended to the other quantum systems.

Results
The physical model of interest consists of a quantum dot coupling to a TS nanowire, as shown in Fig. 1(a). In the 
magnetic field, by proximity coupling to a superconductor, one can prepare Majorana modes in the nanowire with 
strong spin-orbit interaction in the topological phase15,16,44,45. Then the effective Hamiltonian (in the low-energy 
limit) for the quantum dot coupling to the Majorana mode reads46

ε γ= + −ˆ ˆ ˆ ˆ ˆ† ⁎ †H t a a v a va( ) ( ) , (2)1

where a ( †a ) is the annihilation (creation) operator for electron in the quantum dot and the on-site energy ε t( ) of 
the quantum dot can be controlled by the gate voltage Vg. v denotes the tunnel coupling between the quantum dot 
and the Majorana mode γ̂1. Without loss of generality we assume v is an real number and take all physical param-
eters in units of v. Since the Majorana mode γ̂ i (i =  1, 2) is Hermitian (γ γ=ˆ ˆ†

i i and γ =ˆ 1i
2 ), we cannot use the 

number operator γ γˆ ˆ†
i i to count the population of Majorana mode. Nevertheless, two Majorana modes can be 

combined to generate one ordinary fermion, e.g., =
γ γ+ˆ ˆ ˆ

b
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2
1 2 . One can adopt the number operator ˆ ˆ†

b b of the 
ordinary fermion to count Majorana modes.

Due to the conservation of total parity, defined by the electron in quantum dot and the ordinary fermion 
formed by Majorana modes,  the Hamiltonian is  block diagonal in the basis  spanned by 
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We have used m nF D
 to describe system state, where m is the number of ordinary fermion formed by the 

Majorana modes and n is the number of electron in the quantum dot. It has been suggested46 that by adiabatically 
changing the values of the on-site energy ε t( ) from −∞ to +∞, one can realize the operation P1 which denotes 
the population inversion in the ordinary fermion formed by the Majorana modes, i.e.,

θ θ θ θ+ = + .P (sin 0 cos 1 ) sin 1 cos 0 (4)F F F F1

Actually, the operation P1 is equivalent to the action of operator γ̂1, i.e., γ= ˆP1 1.
We first present the results of realizing the operation P1 by adiabatic evolution. Figure 2 shows different 

dynamical behaviors with different changing rates of the on-site energy ε t( ). Note that we employ V t( ) defined by 
=
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 to quantify the adiabatic condition, where =E t i( ) ( 1, 2)i  is the instantaneous eigenstate 

(the corresponding eigenvalue is denoted by E t( )i ) of the Hamiltonian in the even (or odd) subspace. It can be 
observed in Fig. 2(a) that the operation P1 cannot be achieved perfectly since the changing rate of the on-site 
energy ε t( ) is too fast to satisfy the adiabatic condition very well, reflecting in the aspect that V t( ) 1 cannot be 
fulfilled all the time. In order to successfully realize the operation P1, the changing rate of on-site energy ε t( ) 
should be slow, which increase the operation time (cf. Fig. 2(c,d)). Considering that the operation P1 is necessary 
to implement single qubit rotations or non-Abelian operations, the total operation time would be proportional to 
the number of operation P1.

Besides, noting that the Majorana based qubits may be sensitive to the decoherence induced by electron tunnel 
coupling to an environment (e.g., leads)47–50, the adiabatic operation may have no use in minimizing the influence 

Figure 1. The schematic setup for realizing the operation P1. 
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of the decoherence. Recently, the adiabatic evolution can be speeded up by the short-cut scheme and it has been 
used in the non-Abelian braiding with Y-junction structure51, but it needs coupling between distinct Majorana 
modes which seems not very easy in experiment. We will demonstrate in the following that the operation time 
can be regulated by periodic driving.

Sinusoidal driving. We first consider a periodic modulation of the on-site energy for the quantum dot, 
where the on-site energy takes the sinusoidal form ε ε ω=t t( ) cos( )0 . The modulation can be generated by wave-
form generator experimentally and we would also call ε t( ) as driving field hereafter. For a periodic driving system, 
it is instructive to make definite on the time-scale during evolution. Since the Floquet state φ t( )  has the same 
period with the driving field (see Methods), it affects the system dynamics on short time-scale in the 
high-frequency limit. What really affects the long time-scale of the system dynamics is the gap of quasi-energies. 
Therefore, it is helpful to estimate the gap of quasi-energies in the periodic driving system. In order to obtain an 
approximate expression for quasi-energies, we solve the time-dependent Schrödinger equation by standard per-
turbation theory, where the tunnel term is regarded as a perturbation. After some algebra, the quasi-energies gap 
is given by ∆ = ε

ω( )v2 0
0  (see Methods). Figure 3(a,b) demonstrate the relation between the parameters of 

driving field and the quasi-energies gap, while Fig. 3(c–e) show the time evolution of the system with different 
quasi-energies gaps. Obviously, the time-scale of system dynamics gets short with the increasing of the 
quasi-energies gap. An inspection of Fig. 3(a) also shows that the operation time varies with the decreasing of the 
amplitude of driving field at a fixed high frequency. Therefore, we can control the operation time in the periodic 
driving system by properly regulating the frequency and amplitude of driving field. Interestingly, there exists a 
special case where the quasi-energies vanish at a designated amplitude and frequency of driving field (namely two 
quasi-energies are degenerate), which is known as the coherent destruction of tunneling52,53. As a consequence 
the state is highly localized, and it is not valid to achieve the operation P1, as shown in Fig. 3(d).

Taken ψ ε ε−(0) ( )1
2 1 2  as the initial state, where ε1  and ε2  are given in Methods, the time evolution 

of periodic driving system reads
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Figure 2. Fidelity and V as a function of time in the realization of the operation P1. Here the fidelity is 
defined as ψ ψt( ) T

2. The initial state is ψ θ θ= +(0) sin 0 cos 1F F
 and the target state is 

ψ θ θ= +sin 1 cos 0T F F
, θ = π

6
. We have set the on-site energy of the quantum dot to increase linearly 

with time, e.g., ε =t t( )
T
50 . The operation time is 2T and the final value of ε t( ) is 50 during the time evolution. 

All parameters are in units of the tunnel coupling v. (a) T =  10. (b) T =  30. (c) T =  50. (d) T =  80. Large T means 
small changing rate of the on-site energy ε t( ). One can find that the time to obtain the operation P1 is about 
2T =  100.
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We find that the total operation time for realizing the operation P1 approximately equals

T
J

π
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Figure 4 depicts the relation between the total operation time and the amplitude as well as the frequency of the 
driving field. It suggests that one should avoid the parameter regions where the coherent destruction of tunneling 
occurs, since it would take a long operation time to realize the operation P1 if the destruction happens. Outside 
these parameter regions, the total operation time can be regulated within a range. Besides, one can readily find in 
Eq. (5) that the fidelity to realize P1 is
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We plot the coefficients in the fidelity as a function of the quasi-energies gap by exact and perturbative calcu-
lations in Fig. 5. It demonstrates that the perturbation results work very well in the high-frequency limit.

In order to check the validity of perturbation theory, we plot the system dynamics with different driving fre-
quencies in Fig. 6. We observe that the dynamics is in excellent agreement with the results by perturbation theory 
when ω > 10 (in units of v), while it deviates seriously from the perturbation results when ω < 10 (see the pink 
dot-dash line in Fig. 6). This suggests that the perturbation theory can be safely used when the frequency of the 
driving field is at least an order of magnitude larger than the tunnel coupling.

Since the perturbation theory is invalid in the low-frequency limit, one might ask how the system behaves in 
this limit. If the driving frequency is sufficiently small, the adiabatic condition holds in that the on-site energy 

Figure 3. The quasi-energies gap versus (a) the amplitude ε0 when ω = 10, (b) the frequency ω when ε = 500 . 
The quasi-energies gap approaches 2 when the driving frequency tends to 60 in panel (b). After that the gap 
increases slowly with the driving frequency. The system dynamics by sinusoidal driving with (c) ω = 10, (d) 
ω = .20 8, and (e) ω = 50. All parameters are in units of the tunnel coupling v.
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changes slowly. We expect that system dynamics (e.g., the fidelity) would manifest periodically at long time-scale 
(the “period” = π

ω
T 2 ). Figure 7 demonstrates the evolution with different parameters of the driving field, where 

the periodic dash lines verifies our expectation. Besides, one can observe in Fig. 7(a) that high fidelity lasts long 
time within a period when the frequency of driving field is small, and the fidelity dramatically changes when the 

Figure 4. The total operation time   versus the amplitude ε0 and the frequency ω of the driving field.

Figure 5. The coefficients (a) a0, (b) a1, (c) b1, and (d) ω′ in the fidelity expression versus the quasi-energies gap. 
The fidelity expression by curve-fitting in MATLAB is given by ω ω′ = + ′ + ′F a a t b tcos sin0 1 1 . The lines 
represent the perturbation results given by Eq. (7), while the circles, squares, and stars represent exact results 
obtained by curve-fitting. Note that the curve-fitting has high degree of precision for the exact results since the 
values of R-square and Adjusted R-square approach 1 (≥ 99.37%) in MATLAB.
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frequency of driving field is large (i.e., the yellow lines and blue lines alter frequently). The system dynamics 
becomes considerably complicated when the amplitude of driving field is large, as shown in Fig. 7(b,c) illustrates 
how the offset energy of quantum dot affects the system dynamics. Interestingly, high fidelity lasts longer time 
(see the yellow region) when the offset energy of quantum dot is larger. Note that if the offset energy of quantum 
dot is sufficiently large, e.g., ξ ε> 0, the system dynamics would halt since the value of on-site energy ε t( ) is always 

Figure 6. The evolution of fidelity with different frequencies of driving field. We have set the quasi-energies 
gap ∆ = = .ε

ω( )v2 1 02360
0 , thus the “period” of the system dynamics is about = .π

∆
T 6 13832  in the 

high-frequency limit, which is confirmed by the green solid line and red dash line in this figure.

Figure 7. Fidelity as a function of time and different parameters of driving field. The form of driving field 
takes ε ε ω ξ= −t t( ) cos0 , where ξ is the offset energy of the driving field. (a) ε = 400 , ξ = 20. (b) ω = .0 05, 
ξ ε= .0 5 0. (c) ε = 400 , ω = .0 05, ξ δε= 0. (d) ε = 400 , ω = .0 04, ξ = 20. The dash lines are plotted at = π

ω
t n2 , 

where n is an integer running number.
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positive. Figure 7(d) shows the fidelity as a function of time, indicating that the operation time is about 40 and the 
time with high fidelity lasts about 80.

Square-well driving. The periodic square-well field is another waveform that can be easily achieved in prac-
tice. In fact these driving fields have already been studied extensively in time-periodic driving system. Recently, 
it has been shown in experiment54 that the Stückelberg interference occurs in a superconducting qubit driven by 
square-well field. The square-well driving for the on-site energy of the quantum dot can be expressed as,

ε
ε
ε

=





≤ < +
+ ≤ < +

t
nT t t nT

t nT t n T
( )

, ,
, ( 1) , (8)
1 1

2 1

where = …n N1, ,  and ∈t T[0, ]1 . T is the period of square-well driving and N is the number of evolution 
period. To realize the operation P1, the form of square-well field should satisfy (see Methods)
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According to Eq. (9) the number of evolution period N is not an integer in general. Nevertheless it does not 
affect the results much because we can take an integer nearest to N (the fidelity increases slowly when it 
approaches 1). In turn, if one designates the period T and the number of evolution period N of the driving system, 
the values of on-site energy ε1 and ε2 can be resolved by Eq. (9) as well.

Figure 8 show the dynamics of the system with different parameters, where Fig. 8 (a,b) are for different ε1 and 
ε2 while Fig. 8 (c,d) are for different T and N. As expected, P1 can also be realized in the system driven by a 
square-well field, and the operation time would be shorter if the difference between ε1 and ε2 gets larger.

δ-kick. When the on-site energy ε → +∞2 , one readily finds in Eq. (9) that →t 02 . Then the square-well field 
reduces to a periodic δ-kick, i.e.,
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Figure 8. The system dynamics with different forms of square-well driving. (a) ε = 401 , ε = 602 . (b) ε = 101 , 
ε = 902 . (c) = .T 0 3, =N 60. (d) = .T 0 2, =N 30. The other two parameters are calculated by Eqs (9) and (29).
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∑ε ε ε δ= + −
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where T is the period of δ-kick calculated via π

ε+


v4 2
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 . The total operation time for realizing the operation 

P1 becomes,
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Note that the dynamic behavior of system with the δ-kick is quite different from that without it. This can be 
confirmed by examining a case that the system is under a static driving field ε1, where the evolution operator U 
reads,

ε

ε ε =
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The fidelity to realize the operation P1 takes sinv
x

xt2
2

2
, yielding the maximum of fidelity v

x
2 2

. One easily 
observes that it cannot obtain the operation P1 when 

 0v
x
2 , i.e., the on-site energy ε  11 . However the situation 

changes in the presence of δ-kick, where the operation P1 can be achieved regardless of the value of the on-site 
energy ε1 (the value of ε1 determines the driving period and operation time). The advantage in this case is that the 
system is still in a stationary state when we remove the δ-kick after the operation P1 is completed.

Application to other systems. Not restricted to the above concrete system, the periodic driving method 
can be widely applied to the other structure of quantum systems. Here we apply it to a system described by the 
following Hamiltonian56, where two TS nanowires couple to a common quantum dot, as illustrated in Fig. 9,

ε γ γ= + + + − + − .↑ ↑ ↓ ↓ ↑ ↑ ↓ ↓ ↑ ↑ ↓ ↓ˆ ˆ ˆ ˆ ˆ ˆ ˆ ˆ ˆ ˆ ˆ ˆ ˆ ˆ† † † † ⁎ † ⁎ †H t a a a a Ua a a a v a v a v a v a( )( ) ( ) ( ) (13)1 1 1 2 2 2

ε t( ) is the on-site energy of the quantum dot. vi(i =  1, 2) denotes the tunnel coupling between the quantum dot 
and the Majorana mode γ̂ i. In particular, the spin-up (labeled as ↑) and spin-down (labeled as ↓) electrons can 
only tunnel into the Majorana mode γ̂1 and γ̂2, respectively. U represents the energy contributed by double occu-
pation on the same quantum dot. When U is sufficiently large, the quantum dot is in the Coulomb block regime 
where it can only hold one electron.

Since the total parity (the electrons in quantum dot and the ordinary fermions formed by Majorana modes) of 
the hybrid system is conserved, we restrict ourself in the even-parity subspace spanned by 

↑{ 0 0 0 , 1 1 0 , 0 1 1 , 0 1 1F F D F F D F F D F F D2 2 2 21 1 1 1
, 

↓ ↑ ↓0 1 1 , 1 0 1 , 1 0 1 }F F D F F D F F D2 2 21 1 1
, where the subscript Fi(i =  1, 2) represents the ordinary fermi-

ons formed by Majorana modes. The Hamiltonian then can be written as,
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Figure 9. The schematic setup to entangle a conventional qubit and topological qubit. 
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This quantum dot-Majorana system55,56 can be exploited to prepare entanglement between spin and topolog-
ical qubits or quantum information transfer between spin and topological qubits (even for quantum logic gates) 
by adiabatic evolution. We take the preparation of entanglement (denoting as the operation P2) between the 
electron spin and Majorana modes as an example to exemplify how to manipulate the operation time by periodic 
square-well driving given by Eq. (8). The operation P2 reads,

θ θ θ θ

θ θ

+ = +

= + +

.

↑

↓

P v
v

sin
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where = +v v v1
2

2
2 . As the Hamiltonian is a 6 ×  6 matrix, the analytical expression of evolution operator 

= − −U T e e( , 0) iH t iH t2 2 1 1 is involved. Here we only give the equations that determine the period of driving field 
and the total number of evolution periods, i.e.,

= +T t t ,1 2
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plots the fidelity to realize the operation P2 as a function of time by adiabatic evolution and periodic square-well 
driving, respectively. Again, the operation time for adiabatic evolution requires relatively long time since it must 
satisfy adiabatic condition while the operation time and the period can be regulated in square-well driving.

Discussions
Until now, we have studied how to implement the operation P1 by periodically modulating the on-site energy 
of the quantum dot. For a single operation P1, it is far from sufficient to permit quantum computation. We next 
briefly discuss how to realize an arbitrary rotation for a Majorana based qubit by successively executing the oper-
ation P1 twice. As shown in Fig. 1(b), the system Hamiltonian reads

ε γ γ= + − + −θ θ θ θ− −ˆ ˆ ˆ ˆ ˆ ˆ ˆ ˆ† † †H t a a v e a v e a v e a v e a( ) ( ) ( ) , (17)i i i i
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Figure 10. Realizing the operation P2 by (a) adiabatic evolution and (b) by periodic square-well driving. The 
on-site energy of quantum dot is ε = .t t( ) 1 25  in panel (a), and ε = 301 , ε = 502  in panel (b). θ = π

6
, 

= =v v1 2
1
2

. All parameters are in units of v.
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where we have introduced a phase θ1 (θ2) into the tunnel coupling v1 (v2). Defining the operator = θˆ ˆc aei 1, 
= +z v v1

2
2

2 , =z v
z1
1 , and =z v

z2
2 , the Hamiltonian (17) becomes,

ε γ γ= + − +ˆ ˆ ˆ ˆ ˆ ˆ† †H t c c z c c z z( ) ( )( ), (18)1 1 2 2

where the phase difference θ θ−1 2 (it can be modulated by the magnetic flux φ) equals πn2 , n =  1, 2… . The form 
of Eq. (18) is the same as Eq. (2) if we redefine a new Majorana mode γ γ γ= +ˆ ˆ ˆz z12 1 1 2 2, where the tunnel cou-
pling is denoted by z. Clearly, the operation γ= ˆP1 12 in this notation. For a two level system spanned by 
{ 0 , 1 }F F

, we can express the Majorana operators in terms of Pauli matrices σ σ σ{ , , }x y z , i.e., γ σ=ˆ x1 , γ σ=ˆ y2 , 
γ γ σ=ˆ ˆ i z1 2 . By successively executing the operation P1 twice with different relative tunnel strengthes, the total 
operation becomes γ γ γ γ γ γ σ= ′ = + ′ + ′ = ′ + ′ + ′ − ′ˆ ˆ ˆ ˆ ˆ ˆP z z z z z z z z i z z z z( )( ) ( ) ( ) z12 12 1 1 2 2 1 1 2 2 1 1 2 2 1 2 1 2 , which is 
exactly an arbitrary rotation around the z-axis.

Due to the conservation of total parity, a qubit shall be encoded by four Majorana modes57. The Majorana 
based qubit can be realized by the extended model in Fig. 1(b), where the system consists of three quantum dots 
coupling to four Majorana modes (γ̂1, γ̂2, γ̂3, γ̂4) in the TS nanowire with comb structure. In the even-parity sub-
space spanned by { 0 0 , 1 1 }F F F F1 2 1 2

, , the operation γ γ= ′ˆ ˆP 12 12 is in fact the rotation around the z-axis, and 
the operation γ γ= ′ˆ ˆP 23 23 is the rotation around the x-axis (γ γ γ= +ˆ ˆ ˆz z23 2 2 3 3), where the ordinary fermion F1 
(F2) is formed by the Majorana modes γ̂1 and γ̂2 (γ̂3 and γ̂4).

Finally, we give a brief discussion on the experimental feasibility of our proposal. In order to avoid 
quasi-particle excitations in the TS nanowire and two electrons occupying the same quantum dot, the supercon-
ducting gap and the Coulomb interaction U are required to be much larger than the tunnel strength λ. For most 
quantum dot setups the Coulomb interaction U can arrive at the order of meV. Recent experiments17,18,58,59 shows 
that it is sufficient to make the superconducting gap in the order of 0.1–1 meV and the tunnel strength in the 
order of 1− 10 μ eV. Considering electron tunnel from an external environment, the decoherence time of 
Majorana based qubit is in order of 10 ns–0.1 ms49. Besides, due to the electron-phonon interaction the lifetime of 
quantum dot is in order of 16 ns60,61. When we take the tunnel strength in the order of 1− 10 μ eV, the total opera-
tion time by periodic driving can reach less than 2 ns, which is much smaller than the system decoherence time. 
Note that the tunnel coupling between the quantum dot and the Majorana mode depends on both differences 
among the on-site energies and the tunnel barriers. By making use of periodic driving on the on-site energy of 
quantum dot, the tunnel coupling would change consequently. Noting that we can employ additional electrostatic 
gates to manipulate the tunnel barriers, the tunnel coupling can still maintain constant even the on-site energy of 
quantum dot changes. Indeed, the possibility of controlling the tunnel coupling in semiconductor nanowire has 
been shown experimentally62. So the voltage of electrostatic gates can be manipulated periodicity to make the 
tunnel rate remain unchanged in our system, especially for the periodic square-well case (since it has only two 
different values of on-site energy).

In summary, we have presented a scheme to realize quantum operation (quantum gates) by periodic driving. 
The operation time can be exactly controlled by modulating the amplitude or frequency of the driving field. By 
solving the time-dependent Schrödinger equation with perturbation expansion in the high-frequency limit, we 
have given an expression for the quasi-energies gap in the sinusoidal driving and found that the total operation 
time can be manipulated by designing the amplitude and frequency of the driving field. In the low-frequency 
limit, due to the invalidity of perturbation theory, we study the system dynamics by numerical simulations. The 
results are almost consistent with those given by adiabatic evolution. Different from adiabatic evolution, the sys-
tem in the low-frequency limit manifests more intricate behaviors and the operation time can also be regulated 
by the driving field. In particular, the time that the high fidelity lasts are closely related to the frequency and offset 
energy of the driving field. With the periodic square-well driving, we have derived an analytical expression for 
the evolution operator without any approximations. By this expression, we can calculate the amplitude of the 
square-well driving under fixed operation time and period of the driving field. We have also discussed realization 
of quantum operations by a δ-kick, which can be treated as a deformed square-well driving. Besides, the periodic 
driving method can be applied to the other quantum systems-it opens up a new avenue to manipulate the opera-
tion time in the topological quantum computation.

Methods
Floquet theory. Assume that the system Hamiltonian is periodic in time, i.e., = +H t H T t( ) ( ), where T is 
the period and the driving frequency ω = π

T
2 . The Floquet theory63 tells that the solutions of Schrödinger equa-

tion have the following form φΦ = εt e t( ) ( )n
i t

n
n , where εn is the quasi-energy and the Floquet state φ t( )n  

satisfies φ φ= +t T t( ) ( )n n . At the same time the eigenvalue equation of the system is ( = 1 )

φ ε φ






−
∂
∂







=H t i
t

t t( ) ( ) ( ) ,
(19)n n n

where = − ∂
∂

H H t i( )eff t
 is the so-called Floquet operator. To solve this equation it is very instructive to intro-

duce an extend Hilbert space64 consisting of time-periodic functions with the inner product defined by 
∫⋅ ⋅ = ⋅ ⋅dt

T
T1

0
. We will solve the eigenvalues and eigenstates of the Floquet operator by perturbation the-

ory in the following.

Perturbation theory. With sinusoidal driving, due to the total parity conservation, it is convenient to study 
in the even parity (or odd parity) subspace. Then the Hamiltonian can be expressed by a 2 ×  2 matrix, which can 
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be divided into two parts: the on-site energy term ε=ε
†H t t a a( ) ( )  and the tunnel term γ= −ˆ ˆ ˆ⁎ †H v a va( )t 1. In 

this following, we assume that the tunnel term is a perturbation65,66. Since ε=ε
†H t t a a( ) ( )  is diagonal in the 

space spanned by { 0 0 , 1 1 }F D F D
, when substituting into Eq. (19), the eigenstates of  


− 

ε
∂
∂

H t i( )
t

  are given 
by

λ =

λ =
ε
ω ω

λ

λ −

t e

t e

( ) ( , 0)

( ) (0, ) , (20)

i t T

i t i t T

1

2
sin

1

2
0

where λi (i =  1, 2) is the corresponding eigenvalue (i.e., quasi-energy). In consideration of the periodicity of the 
Floquet states, two quasi-energies are zero (modulo ω) in the zeroth-order approximation. As a result the two 
time-dependent eigenstates can be approximately viewed as time-independent eigenstates in the high-frequency 
limit (ω  1), i.e., λ =t( ) (1, 0)T1  and λ t( ) (0, 1)T2 . The quasi-energies in the first-order approximation can 
be obtained by diagonalizing the matrix66

=








∼
⁎H Q

Q
0

0
,

(21)t

where the matrix element are calculated by ∫= ω− ε
ωQ dtev

T
T i t

0
sin0 . This gives the quasi-energies ε = ± Q1,2  (in 

the “first Brillouin zone”) and the corresponding eigenstates ε λ λ= ±t t( ( ) ( ) )1,2
1
2 1 2 . The quasi-energies 

gap is consequently given by ∆ = |Q2 . In the light of the identity

∑
ε
ω

=








ε
ω ω ω

=−∞

∞
e e ,

(22)
i t

n
n

in tsin 00

where  n is the n-order Bessel function, we can finally obtain the analytical expression of quasi-energies gap in 
the maintext: ∆ = ε

ω( )v2 0
0 .

The derivation of Eq. (9). With square-well driving, the on-site energy can be written as,

ε
ε
ε

=





≤ < +
+ ≤ < +

t
nT t t nT

t nT t n T
( )

, ,
, ( 1) , (23)
1 1

2 1

where n =   1, 2, 3…   and ∈t T[0, ]1 . The evolution operator U within one period of time takes 
 = − −U T e e( , 0) iH t iH t2 2 1 1 with = −t T t2 1. After some tedious but straightforward algebra, one can obtain,

=




+
−





−U T
x x

e A B C
B C A

( , 0) 1 ,
(24)

i D

1 2
2

where

ε

ε

ε ε

ε ε ε ε

= − +


 +





×


 +





= −


 +





= −

= + = + = + .

A v x t x t x x t i x t

x x t i x t

B iv x x t x t x x t x t

C v x t x t

D t t x v x v

4 sin
2

sin
2

cos
2

sin
2

cos
2

sin
2

2 cos
2

sin
2

cos
2

sin
2

2 ( )sin
2

sin
2

,

, 4 , 4 (25)

2 1 1 2 2
1

1 1
1

1 1

2
2 2

2
2 2

2
2 2 1 1

1
1 1 2 2

1 2
1 1 2 2

1 1 2 2 1 1
2 2

2 2
2 2

At first, we design the driving time t1 (t2) for the on-site energy ε1 (ε2) to satisfy π=x t1 1  ( π=x t2 2 ), that is,

π

ε

π

ε
=

+
=

+
+ = .t

v
t

v
t t T

4
,

4
,

(26)
1 2

1
2 2 2

2
2 1 2

Certainly, the period of the square-well driving is fixed. According to Eq. (26), the evolution operator can be 
further simplified, i.e.,

=
− −− ( )U T
x x

e
x x
x x( , 0) 1 ,

(27)

i D

1 2
2 3 4

4 3

where ε ε= +x v43
2

1 2 and ε ε= −x v2 ( )4 1 2 . After N periods of time, the final evolution operator becomes
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= =





− 




⋅






+ − −

− +






−U U NT

x x
e

r r i r r

i r r r r
( , 0) ( , 0) 1

2
1 ( )

( )
,

(28)

N
iND N N N N

N N N N
1 2

2 1 2 1 2

1 2 1 2



where = − = = + = = +θ θ−r x ix r e r x ix r e r x x, , ,i i
1 3 4 2 3 4 3

2
4
2  and θ =tan x

x
4

3
. Clearly, it requires 

+ =r r 0N N
1 2  in order to realize the operation P1 perfectly (up to a global phase factor). By making the vectors r N

1  
and r N

2  produce a π-phase difference, that is, θ θ π− − =N N( ) , one can readily obtain the number of evolution 
periods,

π
= .

ε ε

ε ε

−

+

N
2 arctan (29)

v

v

2 ( )

4
2 1

2
1 2

References
1. Kitaev, A. Y. Anyons in an exactly solved model and beyond. Ann. Phys. 321, 2–111 (2006).
2. Nayak, C. et al. Non-Abelian anyons and topological quantum computation. Rev. Mod. Phys. 80, 1083 (2008).
3. Bonderson, P., Freedman, M. & Nayak, C. Measurement-Only topological quantum computation. Phys. Rev. Lett. 101, 010501 

(2008).
4. Miyake, A. Quantum computation on the edge of a symmetry-protected topological order. Phys. Rev. Lett. 105, 040501 (2010).
5. Akhmerov, A. R. Topological quantum computation away from the ground state using Majorana fermions. Phys. Rev. B 82, 020509 

(2010).
6. Xue, Z. Y. et al. Tunable interfaces for realizing universal quantum computation with topological qubits. Phys. Rev. A 88, 024303 

(2013).
7. Mong, R. S. K. et al. Universal topological quantum computation from a superconductor-abelian quantum hall heterostructure. 

Phys. Rev. X 4, 011036 (2014).
8. Wootton, J. R., Burri, J., Iblisdir, S. & Loss, D. Error correction for Non-Abelian topological quantum computation. Phys. Rev. X 4, 

011051 (2014).
9. Kitaev, A. Y. Fault-tolerant quantum computation by anyons. Ann. Phys. 303, 2–30 (2003).

10. Read, N. & Green, D. Paired states of fermions in two dimensions with breaking of parity and time-reversal symmetries and the 
fractional quantum Hall effect. Phys. Rev. B 61, 10267 (2000).

11. Hasan, M. Z. & Kane, C. L. Colloquium: Topological insulators. Rev. Mod. Phys. 82, 3045 (2010).
12. Qi, X. L. & Zhang, S. C. Topological insulators and superconductors. Rev. Mod. Phys. 83, 1057 (2011).
13. Alicea, J. New directions in the pursuit of Majorana fermions in solid state systems. Rep. Prog. Phys. 75, 076501 (2012).
14. Sau, J. D., Lutchyn, R. M., Tewari, S. & Sarma, S. D. Generic new platform for topological quantum computation using semiconductor 

heterostructures. Phys. Rev. Lett. 104, 040502 (2010).
15. Oreg, Y., Refael, G. & Oppen, F. V. Helical liquids and majorana bound states in quantum wires. Phys. Rev. Lett. 105, 177002 (2010).
16. Lutchyn, R. M., Sau, J. D. & Sarma, S. D. Majorana fermions and a topological phase transition in semiconductor-superconductor 

heterostructures. Phys. Rev. Lett. 105, 077001 (2010).
17. Das, A. et al. Zero-bias peaks and splitting in an Al-InAs nanowire topological superconductor as a signature of Majorana fermions. 

Nat. Phys. 8, 887–895 (2012).
18. Mourik, V. et al. Signatures of Majorana Fermions in Hybrid Superconductor-Semiconductor Nanowire Devices. Science 336, 

1003–1007 (2012).
19. Rokhinson, L. P., Liu, X. & Furdyna, J. K. The fractional ac Josephson effect in a semiconductor-superconductor nanowire as a 

signature of Majorana particles. Nat. Phys. 8, 795 (2012).
20. Perge, S. N. et al. Observation of Majorana fermions in ferromagnetic atomic chains on a superconductor. Science 346, 602 (2014).
21. Lee, E. J. H. et al. Spin-resolved Andreev levels and parity crossings in hybrid superconductor-semiconductor nanostructures. Nat. 

Nanotech. 9, 79 (2014).
22. Kraus, C. V., Diehl, S., Zoller, P. & Baranov, M. A. Preparing and probing atomic Majorana fermions and topological order in optical 

lattices. New J. Phys. 14, 113036 (2012).
23. Clarke, D. J., Sau, J. D. & Tewari, S. Majorana fermion exchange in quasi-one-dimensional networks. Phys. Rev. B 84, 035120 (2011).
24. Chiu, C. K., Vazifeh, M. M. & Franz, M. Majorana fermion exchange in strictly one dimensional structures. arXiv. 1403.0033 (2014).
25. Alicea, J. et al. Non-Abelian statistics and topological quantum information processing in 1D wire networks. Nat. Phys. 7, 412–417 

(2011).
26. Sau, J. D., Clarke, D. J. & Tewari, S. Majorana fermions in chiral topological ferromagnetic nanowires. Phys. Rev. B 84, 094505 (2011).
27. Heck, B. et al. Coulomb-assisted braiding of Majorana fermions in a Josephson junction array. New J. Phys. 14, 035019 (2012).
28. Kraus, C. V., Zoller, P. & Baranov, M. A. Braiding of atomic Majorana fermions in wire networks and implementation of the Deutsch-

Jozsa algorithm. Phys. Rev. Lett. 111, 203001 (2013).
29. Laflamme, C., Baranov, M. A., Zoller, P. & Kraus, C. V. Hybrid topological quantum computation with Majorana fermions: A cold-

atom setup. Phys. Rev. A 89, 022319 (2014).
30. Oka, T. & Aoki, H. Photovoltaic Hall effect in graphene. Phys. Rev. B 79, 081406 (2009).
31. Kitagawa, T., Berg, E., Rudner, M. & Demler, E., Topological characterization of periodically driven quantum systems. Phys. Rev. B 

82, 235114 (2010).
32. Lindner, N. H., Refael, G. & Galitski, V. Floquet topological insulator in semiconductor quantum wells. Nat. Phys. 7, 490 (2011).
33. Gu, Z., Fertig, H. A., Arovas, D. P. & Auerbach, A. Floquet spectrum and transport through an irradiated graphene ribbon. Phys. Rev. 

Lett. 107, 216601 (2011).
34. Jiang, L. et al. Majorana fermions in equilibrium and in driven cold-atom quantum wires. Phys. Rev. Lett. 106, 220402 (2011).
35. Liu, D. E., Levchenko, A. & Baranger, H. U. Floquet Majorana fermions for topological qubits in superconducting devices and cold-

atom systems. Phys. Rev. Lett. 111, 047002 (2013).
36. Katan, Y. T. & Podolsky, D. Modulated Floquet topological insulators. Phys. Rev. Lett. 110, 016802 (2013).
37. Rudner, M. S., Lindner, N. H., Berg, E. & Levin, M. Anomalous edge states and the bulk-edge correspondence for periodically driven 

two-dimensional systems. Phys. Rev. X 3, 031005 (2013).
38. Foa Torres, L. E. F., Perez-Piskunow, P. M., Balseiro, C. A. & Usaj, G. Multiterminal conductance of a floquet topological insulator. 

Phys. Rev. Lett. 113, 266801 (2014).
39. Benito, M. et al. Floquet engineering of long-range p-wave superconductivity Phys. Rev. B 90, 205127 (2014).
40. Lababidi, M., Satija, I. I. & Zhao, E. Counter-propagating edge modes and topological phases of a kicked quantum Hall system. Phys. 

Rev. Lett. 112, 026805 (2014).



www.nature.com/scientificreports/

13Scientific RepoRts | 6:22077 | DOI: 10.1038/srep22077

41. Perez-Piskunow, P. M., Usaj, G., Balseiro, C. A. & Foa Torres, L. E. F. Floquet chiral edge states in graphene. Phys. Rev. B 89, 121401 
(2014).

42. Li, Y., Kundu, A., Zhong, F. & Seradjeh, B. Tunable Floquet Majorana fermions in driven coupled quantum dots. Phys. Rev. B 90, 
121401 (2014).

43. Xue, Z. Y. et al. Robust interface between flying and topological qubits. Sci. Rep. 5, 12233 (2015).
44. Alicea, J. Majorana fermions in a tunable semiconductor device. Phys. Rev. B 81, 125318 (2010).
45. Stoudenmire, E. M., Alicea, J., Starykh, O. A. & Fisher, M. P. A. Interaction effects in topological superconducting wires supporting 

Majorana fermions. Phys. Rev. B 84, 014503 (2011).
46. Flensberg, K. Non-Abelian operations on Majorana fermions via single-charge control. Phys. Rev. Lett. 106, 090503 (2011).
47. Budich, J. C., Walter, S. & Trauzettel, B. Failure of protection of Majorana based qubits against decoherence. Phys. Rev. B 85, 121405 

(2012).
48. Goldstein, G. & Chamon, C. Decay rates for topological memories encoded with Majorana fermions. Phys. Rev. B 84, 205109 (2011).
49. Rainis, D. & Loss, D. Majorana qubit decoherence by quasiparticle poisoning. Phys. Rev. B 85, 174533 (2012).
50. Mazza, L., Rizzi, M., Lukin, M. D. & Cirac, J. I. Robustness of quantum memories based on Majorana zero modes. Phys. Rev. B 88, 

205142 (2013).
51. Karzig, T., Pientka, F., Refael, G. & Oppen, F. Shortcuts to non-Abelian braiding. Phys. Rev. B 91, 201102 (2015).
52. Creffield, C. E. & Platero, G. Dynamical control of correlated states in a square quantum dot. Phys. Rev. B 66, 235303 (2002).
53. Creffield, C. E. Location of crossings in the Floquet spectrum of a driven two-level system. Phys. Rev. B 67, 165301 (2003).
54. Silveri, M. P. et al. Stückelberg interference in a superconducting qubit under periodic latching modulation. New J. Phys. 17 043058 

(2015).
55. Leijnse, M. & Flensberg, K. Hybrid topological-spin qubit systems for two-qubit-spin gates. Phys. Rev. B 86, 104511 (2012).
56. Leijnse, M. & Flensberg, K. Quantum information transfer between topological and spin qubit systems. Phys. Rev. Lett. 107, 210502 

(2011).
57. Bravyi, S. Universal quantum computation with the v =  5/2 fractional quantum Hall state. Phys. Rev. A 73, 042313 (2006).
58. Deng, M. T. et al. Anomalous zero-bias conductance peak in a Nb-InSb Nanowire-Nb hybrid device. Nano Lett. 12, 6414 (2012).
59. Finck, A. D. K. et al. Anomalous modulation of a zero-bias peak in a hybrid nanowire-superconductor device. Phys. Rev. Lett. 110, 

126406 (2013).
60. Petta, J. R. et al. Manipulation of a single charge in a double quantum dot. Phys. Rev. Lett. 93, 186802 (2004).
61. Petersson, K. D., Petta, J. R., Lu, H. & Gossard, A. C. Quantum coherence in a one-electron semiconductor charge qubit. Phys. Rev. 

Lett. 105, 246804 (2010).
62. Nadj-Perge, S., Frolov, S. M., Bakkers, E. P. A. M. & Kouwenhoven, L. P. Spin-orbit qubit in a semiconductor nanowire. Nature 468, 

1084 (2010).
63. Shirley, J. H. Solution of the Schrodinger equation with a Hamiltonian periodic in time. Phys. Rev. 138, B979 (1965).
64. Sambe, H. Steady states and quasienergies of a quantum-mechanical system in an oscillating field. Phys. Rev. A 7, 2203 (1973).
65. Holthaus, M. The quantum theory of an ideal superlattice responding to far-infrared laser radiation. Z. Phys. B: Condens. Matter 89, 

251 (1992).
66. Creffield, C. E. & Platero, G. ac-driven localization in a two-electron quantum dot molecule. Phys. Rev. B 65, 113304 (2002).

Acknowledgements
We thank S. M. Frolov for helpful discussions. This work is supported by the National Natural Science Foundation 
of China (Grants No. 11534002 and No. 61475033).

Author Contributions
X.X.Y. proposed the idea and led the study, Z.C.S. and X.X.Y. performed the analytical and numerical calculations, 
Z.C.S., W.W. and X.X.Y. prepared the manuscript, all authors reviewed the manuscript.

Additional Information
Competing financial interests: The authors declare no competing financial interests.
How to cite this article: Shi, Z. C. et al. Quantum gates by periodic driving. Sci. Rep. 6, 22077; doi: 10.1038/
srep22077 (2016).

This work is licensed under a Creative Commons Attribution 4.0 International License. The images 
or other third party material in this article are included in the article’s Creative Commons license, 

unless indicated otherwise in the credit line; if the material is not included under the Creative Commons license, 
users will need to obtain permission from the license holder to reproduce the material. To view a copy of this 
license, visit http://creativecommons.org/licenses/by/4.0/

http://creativecommons.org/licenses/by/4.0/

	Quantum gates by periodic driving
	Results
	Sinusoidal driving. 
	Square-well driving. 
	δ-kick. 
	Application to other systems. 

	Discussions
	Methods
	Floquet theory. 
	Perturbation theory. 
	The derivation of Eq. (9). 

	Acknowledgements
	Author Contributions
	Figure 1.  The schematic setup for realizing the operation P1.
	Figure 2.  Fidelity and V as a function of time in the realization of the operation P1.
	Figure 3.  The quasi-energies gap versus (a) the amplitude when , (b) the frequency when .
	Figure 4.  The total operation time versus the amplitude and the frequency of the driving field.
	Figure 5.  The coefficients (a) a0, (b) a1, (c) b1, and (d) in the fidelity expression versus the quasi-energies gap.
	Figure 6.  The evolution of fidelity with different frequencies of driving field.
	Figure 7.  Fidelity as a function of time and different parameters of driving field.
	Figure 8.  The system dynamics with different forms of square-well driving.
	Figure 9.  The schematic setup to entangle a conventional qubit and topological qubit.
	Figure 10.  Realizing the operation P2 by (a) adiabatic evolution and (b) by periodic square-well driving.



 
    
       
          application/pdf
          
             
                Quantum gates by periodic driving
            
         
          
             
                srep ,  (2016). doi:10.1038/srep22077
            
         
          
             
                Z. C. Shi
                W. Wang
                X. X. Yi
            
         
          doi:10.1038/srep22077
          
             
                Nature Publishing Group
            
         
          
             
                © 2016 Nature Publishing Group
            
         
      
       
          
      
       
          © 2016 Macmillan Publishers Limited
          10.1038/srep22077
          2045-2322
          
          Nature Publishing Group
          
             
                permissions@nature.com
            
         
          
             
                http://dx.doi.org/10.1038/srep22077
            
         
      
       
          
          
          
             
                doi:10.1038/srep22077
            
         
          
             
                srep ,  (2016). doi:10.1038/srep22077
            
         
          
          
      
       
       
          True
      
   




