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Introduction
Lung cancer is the most common human cancer and the deadli-
est in the United States and globally. Non–small-cell lung can-
cer (NSCLC) is the most common cause of lung cancer death, 
accounting for up to 85% of deaths from lung cancer. Within 
NSCLC, adenocarcinoma and squamous cell carcinoma are the 
2 major subtypes, with distinct prognoses and therapeutic rem-
edies.1,2 Current guidelines for treating lung cancer are largely 
based on clinical and pathological staging systems. However, 
the outcome varies widely.1,2 Identifying the biomarkers that are 
responsible for patient risk prediction could help with treatment 
options, as well as understanding features of the tumor. 
Pathological examination of tumor tissue slides is routine in 
lung cancer diagnosis. The pathological images are widely avail-
able from routine clinical practices. Recent studies3–5 have 
shown that the growth patterns of lung tumors are associated 
with patient survival outcomes. The pathological image features 
derived from the computer-aided pathological analysis have 
been used to predict the survival of patients with breast cancer6,7 
and complement cancer genomic profiling.7,8 These studies 
demonstrate the feasibility of using digital pathological image 
analysis for objective and unbiased clinical prognosis. However, 
there still lacks such an analysis for lung cancer due to the com-
plexity and heterogeneity of the disease.

Modeling spatial correlations in images is fundamental for 
pathological image analysis. In statistics, Markov random field 
models, such as the Ising model and Potts model, have been 
widely used to extract spatial correlation information for imag-
ing data,9–11 The major difficulty with the Ising and Potts 
models is their intractable normalizing constant, which makes 
their parameters hard to be estimated.

In this article, we model the spatial distribution of differ-
ent types of cells, namely, lymphocyte, stroma, and tumor 
cells, using a modified Potts model. The parameters of the 
Potts model are often called interaction parameters, which 
characterize the clustering behavior of the same types of 
spins (ie, cells in the context of this article). We estimate the 
parameters of the Potts model using the double Metropolis-
Hastings (DMH) algorithm12 under a Bayesian framework. 
The DMH algorithm is very efficient for sampling from dis-
tributions with intractable normalizing constants, especially 
for the distributions defined on a large-scale lattice. We 
found that the interaction between lymphocytes and tumor 
cells is significantly associated with the patient’s survival 
time, and furthermore, it can be used together with the cell 
count information to improve the prediction of the patient’s 
survival time.

The remainder of this article is organized as follows. Section 
“Potts model” describes the modified Potts model and gives the 
details on how the DMH algorithm can be used to estimate its 
parameters. Section “Lung cancer imaging data” proposes a 
hidden, modified Potts model and presents our findings for 
lung cancer pathological image data. Section “Discussion” con-
cludes the article with a brief discussion.

Potts Model
A modified Potts model

The q-state Potts model13 consists of a 2-dimensional lattice of 
spins, where each spin takes values from a set of q different ele-
ments. The energy function of the model is given by
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where x = { xij } denotes the collection of all spins of the model, 
( , ) ~ ( , )i j i j′ ′  denotes the neighboring pairs of the spins, J ij i j, ′ ′

denotes the interaction parameter between the spin xij  and the 
spin xi j′ ′, δ ( , )x xij i j′ ′  is an indicator function which is equal to 
1 if x xij i j= ′ ′  and 0 otherwise, and the sum takes over all neigh-
boring pairs of spins. If q = 2, the Potts model is reduced to the 
Ising model.14 The Potts model is also related to, and general-
ized by, several other models, such as the XY model,15 the 
Heisenberg model16 and the N-vector model.17 Generalizations 
of the Potts model have been used to model grain growth in 
metals and coarsening in foams.18,19 A further generalization of 
the model, known as the cellular Potts model,20 has been used 
to simulate static and kinetic phenomena in foam and biologi-
cal morphogenesis.

In the standard form of Potts model (1), J ij i j, ′ ′  represents 
the strength of interaction between the same type of neighbor-
ing spins as the function δ ( , )x xij i j′ ′  takes a non-zero value if 
and only if x xij i j= ′ ′, where the value of xij  indicates the type 
of the spin. However, for the lung cancer pathological imaging 
data, we would like to study the interactions between different 
types of cells, which are coded as 1 for lymphocyte cells, 2 for 
stroma cells, and 3 for tumor cells. For this reason, we consider 
a modified Potts model with the energy function given by
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where k and l take values from the set {1,2,3}, θ12  represents 
the interaction between lymphocyte and stroma cells, θ13  rep-
resents the interaction between lymphocyte and tumor cells, 
and θ23  represents the interaction between stroma and tumor 
cells. This modified Potts model can also be viewed as a simpli-
fied cellular Potts model without the volume and surface 
constraints.

Corresponding to the energy function (2), the probability 
mass function of the modified Potts model is given by
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where θθ = { }θ θ θ12 13 23, , , and Z( )θθ  is the normalizing con-
stant. As an exact evaluation of Z( )θθ  needs to sum over the 
entire space of x, which consists of 3N different elements with 
N denoting the total number of spins, Z( )θθ  is intractable 
even for a small size model, say N = 100. How to estimate the 
parameters for such a model has been studied in the recent 
literature.9,12,21–23

DMH algorithm for the modified Potts model

Suppose that we are interested in estimating θθ  for the modi-
fied Potts model under a Bayesian framework. Let π ( )θθ  
denote the prior density function of θθ . Then, the posterior 
density function is given by

	 π
ϕ

πθθ
θθ
θθ

θθ|x x( ) ∝ ( , )
( )

( ).
Z

	 (4)

It is easy to see that the Metropolis-Hastings (MH) algo-
rithm cannot be directly applied to simulate from this poste-
rior as the acceptance probability would involve an unknown 
normalizing constant ratio Z Z( ) / ( )θθ θθ ′ , where ′θθ  denotes 
the proposed value.

To address this issue, some auxiliary variable Markov chain 
Monte Carlo (MCMC) algorithms have been proposed, which 
aim to have the normalizing constant ratio Z Z( ) / ( )θθ θθ ′  
canceled in simulations by augmenting appropriate auxiliary 
variables to the target distribution and/or the proposal distri-
bution. Along this direction, Møller et al21 proposed an algo-
rithm which augments both the target and proposal 
distributions, and Murray et  al22 proposed the so-called 
exchange algorithm which arguments only the proposal distri-
bution. Although the underlying idea is very attractive, these 2 
algorithms require the auxiliary variables to be drawn using a 
perfect sampler.24 As perfect sampling can be very expensive or 
impossible for many models with intractable normalizing con-
stants, the applications of these algorithms are highly hindered. 
To overcome this difficulty, Liang12 proposed the DMH algo-
rithm, and Liang et al23 proposed an adaptive exchange algo-
rithm. The adaptive exchange algorithm generates auxiliary 
variables via an importance sampling procedure from a Markov 
chain running in parallel, and the DMH algorithm generates 
auxiliary variables through a short run of the MH algorithm 
initialized with the original observation. As noted in Liang,12 
initializing the auxiliary MH chain with the original observa-
tion improves convergence of the algorithm. Other than the 
auxiliary variable MCMC algorithm, some approximation-
based algorithms have been proposed in the literature, such as 
maximum pseudo-likelihood estimation,25 Monte Carlo maxi-
mum likelihood estimation,26 and adaptive kernel smooth-
ing,27,28 which approximate the likelihood function, the 
normalizing constant Z( )θθ , or the normalizing constant ratio 
Z Z( ) / ( )θθ θθ ′ . A recent comparative review29 concludes that, 
compared with other algorithms, the DMH algorithm is very 
efficient for complex models with intractable normalizing con-
stants, although the estimates are only asymptotically correct. 
The DMH algorithm is adopted in this article for estimating 
the parameters of the modified Potts model. The DMH algo-
rithm can be described as follows.

Suppose that we are interested in simulating a sample y from 
f ( | )⋅ ′θ  using the MH algorithm. If starting with the current 

state x, the transition probability, P m
′θ

( ) ( | )y x , is given by
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where K ( )⋅ → ⋅  is the MH transition kernel. Provided that the 
Markov chain has reached equilibrium states, then, by the 
detailed balance condition, we have
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Let q( | , )′θθ θθt x  denote the proposal distribution for draw-
ing a new parameter vector ′θθ . The DMH algorithm iterates 
between the following steps:

(a)	 Draw a new sample ′θθ from the proposal density func-
tion q( | , )′θθ θθt x .

(b)	 Given ′‚ , simulate an auxiliary variable y y x~ ( | )( )P m
′θ  

starting from the observation x  and calculate the MH 
ratio:
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(c)	 Set θθ θθt+ = ′1  with probabilitymin{ , ( , , )}1 r θθ θθt y x′ | ; set 
θθ θθt t+ =1  otherwise.

Suppose that a sequence of samples θθ θθ1, , n  has been 
collected from a run of DMH. An approximate Bayesian 
estimator of θθ  can then be obtained by averaging over the 
samples:

θθ θθ=
=
∑1

1n i

n

i .

As implied by equation (6), the DMH sampler is almost 
exact for those parameters around the true value of θ. Hence, 
the estimator θθ can be rather accurate even when m is not 
very large.

Simulation examples

We tested the performance of the DMH algorithm on the 
modified Potts model using simulated examples. We consid-
ered a variety of values of θ as given in Table 1. For each setting 
of θ, we simulated 30 data sets independently using the Gibbs 
sampler on a 50 × 50 lattice. To simulate each data set, the 
Gibbs sampler was run for 105 iterations with random starting 
configurations.

To conduct a Bayesian analysis for the simulated data, we let  
θ be subject to a uniform prior distribution, ie, π ( )θθ ∝ 1 for 
θθ ∈[ , ]0 1 3. For each of the simulated data sets, DMH was run 
for 6000 iterations, where the rst 1000 iterations were dis-
carded for the burn-in process and the samples generated in 
the remaining iterations were used for inference. At each itera-
tion, the auxiliary sample was simulated using the Gibbs sam-
pler with a single sweep for all elements. Each run costs about 
18 seconds central processing unit (CPU) time on a Dell 
OptiPlex 9020 computer. The estimates of θ are summarized in 
Table 1, where each estimate is obtained by averaging more 
than 30 independent data sets. Table 1 indicates that the DMH 
algorithm works well in parameter estimation for the modified 
Potts model.

Lung Cancer Imaging Data
The data set and accessibility

The pathological images and survival status from 205 patients 
with NSCLC in the National Lung Screening Trial (NLST) 
study30 were collected. The characteristics of the participants 
are summarized in Table 2. The Kaplan-Meier curve for sur-
vival of the whole set of patients is shown in Figure 1. For each 
patient, 1, 2, or 3 tissue slides were first taken, where the num-
ber of slides depends on the size of tumor. For patients with a 
large size of tumor, more slides are needed to have a more com-
prehensive characterization of the tumor, and vice versa. Then, 
each tissue slide was examined by a lung cancer pathologist, the 
regions of interest (ROIs) within the tumor region(s) were 
determined, and 5 ROIs were randomly selected from each 
patient for further analysis. In total, we had 1585 ROI images. 

Table 1.  Parameter estimates for the simulated data by the double Metropolis-Hastings algorithm, where SE(·) denotes the standard error of the 
corresponding estimate.

(θ12, θ13, θ23) θ̂ SE (θ̂12) θ̂13 SE (θ̂13) θ̂23 SE (θ̂23)

(0, 0.1, 0.1) 0.0360 0.0032 0.0975 0.0069 0.1016 0.0068

(0, 0.3, 0.3) 0.0403 0.0035 0.3099 0.0053 0.3108 0.0078

(0, 0.3, 0.7) 0.0444 0.0039 0.2980 0.0092 0.7058 0.0093

(0.1, 0.1. 0.1) 0.1005 0.0059 0.0988 0.0071 0.0996 0.0070

(0.3, 0.3, 0.3) 0.2981 0.0083 0.2926 0.0079 0.2994 0.0098

(0.1, 0.3, 0.5) 0.0971 0.0090 0.3069 0.0119 0.5024 0.0116
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In the ROIs, the nucleus of each cell and the cell boundary 
were determined using a watershed method.31 For each cell, a 
160 pixels by 160 pixels image patch was extracted around the 

center, and the cell type was predicted using a convolutional 
neural network32 developed from another study. The prediction 
was evaluated by the lung cancer pathologist, and the accuracy 
was more than 94%. The cell locations (ie, the coordinates of 
the cell on the ROI image) and the predicted cell types were 
used as inputs of the proposed method in this article. We are 
making the code publicly available. Once the paper is accepted, 
the code will be linked to the published version of the article.

DMH for a hidden Potts model

As the cell locations are irregular, it is difficult to model the 
pathological image by a Potts model. In particular, it is difficult 
to identify the neighboring cells for each cell. For this reason, 
we model the image by a hidden Potts model by introducing an 
auxiliary lattice to the image, which is illustrated by Figure 2. 
We note that the idea of modeling spatial data via an auxiliary 
lattice has been explored in the literature.33,34

Consider a pathological image with n cells located at 
s sn1, , . Let yk  denote the type of the cell located at sk , and 
it takes value 1 for lymphocyte cells, 2 for stroma cells, and 3 for 
tumor cells. Let y = { }yk  denote the collection of observed cell 
types in the image. Let W i j i M j N= = ={( , ) : , , , , }1 1   
denote the auxiliary lattice, which partitions the image  
into ( )( )M N+ +1 1  squares. Denote the squares by 
C C C M N1 2 1 1, , , .( )( ) + +  Let Ck  denote the square that sk
belongs to. For convenience, we let each Ck  be compact, ie, 
including all the boundary points of the square, while assuming 
that there are no cells belonging to 2 squares. If a cell is exactly 
on the boundary of some squares, then we randomly assign the 
cell to one of them. Let X i j Wij ,( , ) , denote the hidden cell 
types at the auxiliary lattice. Conditional on X, we model the 
distribution of { }Yk  by

Table 2.  NSCLC patient characteristics (N = 205).

Cohort NLST

No. of patients N = 205

Age at diagnosis, y
Median [LQ-HQ]

64 [60-68]

Follow-up, y
Median [LQ-HQ]

6.6 [5.4-6.9]

Vital status, % Alive 136

Deceased 64

NA 5

Sex, % M 112

F 89

NA 4

Cancer stage, % I 135

II 20

III 33

IV 13

NA 4

Smoking status, % Smoker 110

Nonsmoker 91

NA 4

Abbreviations: HQ, high quartile; LQ, low quartile; NLST, National Lung 
Screening Trial.

Figure 1.  Kaplan-Meier plot for 205 patients with non–small-cell lung 

cancer.

Figure 2.  Illustration of the auxiliary lattice, where the circles represent 

cells. In real data sets, the location of a cell is given by a point so that a 

cell cannot belong to more than 1 square.
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where γ  is a projection parameter with a prespecified value. 
The larger γ  is, the more similar the original and imputed 
images are.

Let f ( | )x θθ , as specified in equation (3), denote the likeli-
hood function of the hidden Potts model. Let π ( )θθ  denote the 
prior density function of θθ . Assume that all ′Yk s are inde-
pendent conditional on X, then we have

f P Y y f
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Therefore, the full conditional posterior of Xij is given by
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where q 1 2 3, ,{ } , Cij  denotes the union of the squares that 
the spin ( , )i j  belongs to, and ∂ ij denotes the neighboring 
spins of the spin ( , )i j . In this article, a free boundary condi-
tion is assumed for the model, under which the boundary 
points have fewer neighboring spins than the interior spins. 
After the normalization for equation (9), we have
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Therefore, given y, the projection parameter, and the model 
parameter, the hidden Potts model can be imputed using the 
Gibbs sampler through iteratively drawing Xij s from distribu-
tion (10).

Similarly, we can get the full conditional posterior of θθ :

	 π γ π( , , ) ( ) ( ).θθ θθ θθ| |x y x∝ f 	 (11)

As γ  is a prespecified constant, the posterior can be simu-
lated by iterating between the following 2 steps:

DMH algorithm for hidden Potts models
•	 Impute the hidden Potts model by simulating from 

equation (10) for all ( , ) .i j W∈
•	 Simulate θθ  from distribution (11) using the DMH 

algorithm.

This algorithm consists of a few tunable parameters, includ-
ing γ , M, and N. As mentioned previously, determine the simi-
larity of the observed and imputed images. To make the 2 
images more similar, we set γ  to a large value. In all examples 
of this article, we set γ = 10. The parameters M and N deter-
mine the size of the auxiliary lattice. Following the suggestion 
of Park and Liang,33 we choose M and N such that n ≈ MN. To 
be precise, we set M and N in the following way for each image: 
Let d1 and d2 denote the ranges of the cell locations at x-axis 
and y-axis, respectively. Then, we set the side length of each 
square to l d d n= 1 2 / , and set M d l= +[ ]/1 1  and 
N d l= +[ ]/2 1, where [z] denotes the integer part of z.

Numerical results

The algorithm described above was applied to the 1585 ROI 
images. For each image, the algorithm was run for 6000 itera-
tions, where the first 1000 iterations were discarded for the 
burn-in process and the samples generated in the remaining 
iterations were used for inference, and it cost about 14 minutes 
of CPU time on a Dell OptiPlex 9020 computer. The CPU 
time may vary slightly according to the values of M and N. 
Figure 3 shows the observed (left panels) and imputed (right 
panels) images for 3 ROIs, where each of the imputed images 
is obtained by averaging over the samples generated in a single 
run of the DMH algorithm. As it takes a large value, the 
imputed image is almost the same at each iteration after  
the simulation has reached equilibrium. As shown in Figure 3, 
the imputed images are very similar to the observed ones.

To assess the association between the spatial distributions of 
cells in pathological images and patients’ survival status, we fit-
ted a Cox proportional hazards model on the survival time 
with respect to the estimates of the interaction parameters of 
the hidden Potts model. Here, the survival time is defined as 
the time from diagnosis (of lung cancer) to death from all 
causes; right-censored cases exist. A patient with censored sur-
vival time means the patient is still alive at the last follow-up or 
lost to follow-up. In the Cox regression model, the hazard 
function has the form

h t Z h Z Zto k k( ; ) exp ,( )= + +( )β β1 1 

where h to ( )  is the baseline hazard function, and Z Zk1, ,  are 
covariates having a multiplicative effect on the hazard function. 
For our model, we have k = 3 and the covariates Z1 12=θ , 



6	 Cancer Informatics ﻿

Z2 13=θ , and Z3 23=θ ,  which were produced by the proposed 
method with the projection parameter γ = 10. The parameters 
β β1, , k  are estimated using the R package “survival.”35 As 
the data set contains multiple observations per patient, the 
generalized estimating equation method was used to compute 
a robust variance for each parameter estimate.36

Table 3 summarizes the estimates of the parameters of the 
Cox regression model. The overall P value for the significance of 
the model is .03374. The parameter estimates indicate that a 
higher value of the interaction between lymphocytes and tumor 
cells is significantly associated with a higher risk of death (at a 
significance level of .05); the hazard coefficient shows a negative 
correlation between the survival time and the value of the inter-
action between lymphocyte and tumor cells. In other words, 

Figure 3.  Comparison of the observed (left panels) and imputed (right panels) images for 3 regions of interest which are all from different patients: 

lymphocyte cells are in blue, stroma cells are in red, and tumor cells are in light gray.

Table 3.  Survival analysis for lung cancer pathological images with 
the cell spatial interaction information ( γ = 10 ).

Parameter Coef Exp(coef) SE P value

θ12 −0.2631 0.7687 7.0305 .968

θ13 2.5395 12.6739 0.9767 .0043

θ23 0.7078 2.0296 0.4049 .0848

Abbreviation: SE, standard error.
The significance of the bold value(s) is identified at a level of 0.05.

widespread tumor cells indicate severity of the disease. Table 3 
also shows that the interaction between stroma and tumor cells 
is also weekly associated with the risk of death (at a significance 
level of .1). However, there is no evidence suggesting any 
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association between the interaction of lymphocytes and stroma 
cells and the risk of death. In summary, we may conclude that 
the proposed hidden Potts model is able to extract some useful 
information about the status of the disease.

To assess the sensitivity of the results to the projection 
parameter γ , different values of γ  were tried. The results are 
reported in Tables 4 and 5, which indicate that our results are 
not sensitive to the value of γ .

We also assessed the proportional hazards assumption for 
the Cox regression model on this data set.37 The P value for 
the whole model is .219, and the P values of the respective 
parameters are all greater than .10, suggesting that the pro-
portional hazards assumption is valid and the regression coef-
ficients θθ = { }θ θ θ12 13 23, ,  remain constant over time. Figure 4 
shows the plot of scaled Schoenfeld residuals versus time.

Finally, we conducted a survival analysis based on the cell 
count information only. In particular, we considered the cell 
count ratios, lymphocyte/stroma and tumor/stroma. The 
results, which are shown in Table 6, indicate that the cell count 
information is also very useful in predicting patient survival; 
the hazard coefficient implies a negative correlation between 
the survival time and the ratio tumor/stroma. It is very interest-
ing to point out that the spatial interaction information learned 
by the proposed method for different types of cells is comple-
mentary to the cell count information. As indicated in Table 7, 
the prediction for the survival can be further improved by using 
both of them. With both information, the overall P value  

(in likelihood ratio test) of the Cox regression model has been 
improved to .00539 from .02367 (with the cell count infor-
mation only). In addition, compared with Tables 3 and 6, the 
significance levels of θ13, θ23, and tumor/stroma ratio are also 
improved.

Table 5.  Survival analysis for lung cancer pathological images with 
the cell spatial interaction information (γ = 12).

Parameter Coef Exp(coef) SE P value

θ12 −1.6388 0.1942 1.5536 .2461

θ13 2.5323 12.5911 1.1047 .0037

θ23 −0.0101 0.9900 0.3765 .9782

Abbreviation: SE, standard error.
The significance of the bold value(s) is identified at a level of 0.05.

Table 4.  Survival analysis for lung cancer pathological images with 
the cell spatial interaction information (γ  = 8).

Parameter Coef Exp(coef) SE P value

θ12 −1.5196 0.2188 1.5611 .2864

θ13 2.4410 11.4846 1.1122 .0058

θ23 −0.0294 0.9734 0.3782 .9424

Abbreviation: SE, standard error.
The significance of the bold value(s) is identified at a level of 0.05.

Figure 4.  Scaled Schoenfeld residuals versus time for θθ = { }θ θ θ12 13 23, , .
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Discussion
In this article, we have proposed to model pathological 
images using a hidden Potts model and applied the DMH 
algorithm to estimate the model parameters. The introduc-
tion of auxiliary lattice makes the proposed method very 
general, which can be used for any type of imaging data with 
or without regular observations. The auxiliary lattice also 
helps reduce the complexity of imaging data and defines  
a concise and explicit neighborhood for each spin of the  
hidden Potts model. Other auxiliary variable MCMC  
algorithms, eg, the adaptive exchange algorithm,23 can 
potentially be applied to this problem. However, it would be 
more time-consuming given the hidden structure of the 
proposed Potts model.

For the lung cancer pathological imaging data, our study 
shows that the survival time of NSCLC patients might be 
significantly associated with the strength of interactions 
between lymphocyte and tumor cells. The spatial interaction 
parameter together with the cell count information can 
potentially be used as a biomarker for prognosis and person-
alized treatments of patients with NSCLC. It would be of 
great interest to extend the proposed method to other patho-
logical imaging data.
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