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Abstract
By suppressing neuronal apoptosis, Icariin is a potential therapeutic drug for neuronal de-

generative diseases. The molecular mechanisms of Icariin anti-apoptotic functions are still

largely unclear. In this report, we found that Icariin induces the expression of Synoviolin, an

endoplasmic reticulum (ER)-anchoring E3 ubiquitin ligase that functions as a suppressor of

ER stress-induced apoptosis. The nuclear factor erythroid 2-related factor 1 (NFE2L1) is re-

sponsible for Icariin-mediated Synoviolin gene expression. Mutation of the NFE2L1-binding

sites in a distal region of the Synoviolin promoter abolished Icariin-induced Synoviolin pro-

moter activity, and knockdown of NFE2L1 expression prevented Icariin-stimulated Synovio-

lin expression. More importantly, Icariin protected ER stress-induced apoptosis of PC12

cells in a Synoviolin-dependent manner. Therefore, our study reveals Icariin-induced Syno-

violin expression through NFE2L1 as a previously unappreciated molecular mechanism un-

derlying the neuronal protective function of Icariin.

Introduction
Icariin, the prenyl acetylation of kaempferide 3,7-O-diglucoside, is a flavonoid derived from
the genus Epimedium, a plant known as Horny Goat Weed or Yin Yang Huo [1]. Extracts from
these plants are used in Chinese herbal medicine to enhance erectile function. Recent studies,
including work from our laboratory, have shown that Icariin has a potent neuronal protective
activity and prevents neuronal degenerative disease in mouse models [2–20]. Several pathways
are likely involved in Icariin-induced neuronal cell proliferation and inhibition of apoptosis
[13, 14, 21–27]. We have shown that Icariin inhibits β-amyloid peptide segment 25–35—in-
duced expression of β-secretase in the rat hippocampus [10, 28–30]. Icariin also attenuates β-
amyloid–induced neurotoxicity by inhibition of tau protein hyperphosphorylation [9]. More
recently, Zhang et al observed that Icariin may prevent corticosterone-induced cell death via
activation of the PI3-K/Akt pathway in neuronal cells [4]. In addition to its direct effect on
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neurons, Icariin inhibits both TAK1/IKK/NF-kappaB and JNK/p38 MAPK pathways in micro-
glial cells to suppress inflammatory cytokine production, thus indirectly protecting neurons
from inflammatory injury [7, 13, 16, 31–34]. An elevated ER stress response has been detected
in brain tissues from patients with neuronal degenerative diseases, and ER stress-induced cell
death has been considered as one of the possible casual factors of neuronal cell death in these
diseases [35–42]. However, whether the neural protective activity of Icariin involves suppres-
sion of ER stress-induced neuronal cell apoptosis remains to be determined.

Synoviolin, also known as Hrd1, is an ER membrane-spanning protein. Synoviolin was ini-
tially identified as a ubiquitin ligase involved in degrading misfolded proteins [43, 44]. Since
Hrd1 expression is often upregulated in synovial fibroblasts in patients with rheumatoid arthri-
tis, it was renamed Synoviolin [45]. We recently reported that proinflammatory cytokines, in-
cluding TNF-α and IL-1β, are responsible for inducing Synoviolin expression in synovial
fibroblasts [46]. Synoviolin achieves its anti-apoptotic functions through multiple mechanisms:
first, Synoviolin degrades misfolded proteins to suppress ER stress-induced cell death [47]; sec-
ond, we discovered that Synoviolin ubiquitinates IRE1α (inositol-requiring enzyme 1α), a criti-
cal kinase regulating ER stress-induced cell death [48]; and third, Synoviolin has been
identified as an E3 ubiquitin ligase that targets p53, implying that Synoviolin may inhibit apo-
ptosis through cytoplasmic p53 degradation [49].

In the current study, we observed that Icariin induces expression of the anti-apoptotic factor
Synoviolin at the gene transcriptional level. Further analysis demonstrated that the transcrip-
tion factor NFE2L1 is responsible for Icariin-induced Synoviolin mRNA transcription. Conse-
quently, Icariin protects ER stress-induced neuronal cell death in a Synoviolin-dependent
manner. Thus, our studies identify Synoviolin as a molecular link between Icariin and its neu-
ronal anti-apoptotic activity.

Materials and Methods

Cells and reagents
PC12 cells were cultured in D-MEM (Gibco, Grand Island, NY, USA) supplemented with 10%
fetal bovine serum, 50 μM β-mercaptoethanol, 100 mM sodium pyruvate, 100 mMHEPES
buffer, and 1% penicillin/streptomycin. Specific antibodies against Synoviolin (H7790) and
β-Actin were purchased from Sigma (St. Louis, MO, USA) and NFE2L1 (SC-721) from Santa
Cruz (Santa Cruz, CA, USA). siRNA specific to Synoviolin and NFE2L1 (SR504532), as well as
controls, were from Origene (Rockville, MD, USA).

Immunoblot analysis
PC12 cells were treated with Icariin at the indicated concentrations and harvested after
24 hours. Cells were lysed in radioimmunoprecipitation (RIPA) buffer containing phosphatase
inhibitors and protease inhibitors (Roche Diagnostics, Indianapolis, IN, USA). Cell lysates
were boiled with Laemlli’s buffer, then subjected to SDS-PAGE and transferred to nitrocellu-
lose membrane. Membranes were blocked with 5% milk in TBS-T, incubated with the indicat-
ed primary antibodies overnight, followed by incubation with HRP-conjugated secondary
antibody as described [50]. Immunoblots were developed using enhanced chemiluminescent
substrate (Pierce, Rockford, IL, USA) and visualized using the ChemiDoc XRS+ System
(BioRad, Hercules, CA, USA).
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Real-time quantitative PCR
Quantification of mRNA expression was performed as described [51]. 106 PC12 cells were
lysed in Trizol (Invitrogen, Carlsbad, CA, USA), and RNA isolated per manufacturer’s instruc-
tions. 1 μg of isolated RNA was then reversed transcribed using the qScript cDNA synthesis kit
(Quanta BioSciences, Gaithersburg, MD, USA). Real-time quantitative PCR (qPCR) was per-
formed in duplicate wells using the iCycler Sequence and SsoFast SYBR Green Supermix
(BioRad). Relative expression was normalized to expression of Actb.

Luciferase reporter assay
The Synoviolin promoter region was amplified by PCR and subcloned into the pGL4.10(luc2)
vector (Promega, Madison, WI, USA). PC12 cells in 12-well plates were transfected with
pRL-TK (Promega) and various pSynoviolin luciferase plasmids as indicated using Lipofecta-
mine transfection reagent (Invitrogen Life Technologies, San Diego, CA, USA). Luciferase as-
says were performed as previously reported [52]. The pRL-TK plasmid contains the Renilla
reniformis (sea pansy) luciferase gene under the transcriptional control of the herpesvirus thy-
midine kinase promoter and constitutively expresses low levels of renilla luciferase. Transfected
cells were lysed, and the luciferase activities in the cell lysates were analyzed using the Dual Lu-
ciferase Reporter assay kit (Promega). Luciferase activity was measured as relative light units
(RLUs) using a luminometer (Turner BioSystems, Inc. Sunnyvale, CA, USA).

Chromatin immunoprecipitation (ChIP) assay
PC12 cells were treated with or without Icariin for 24 hours and used for ChIP analysis as re-
ported [53]. Cells were cross-linked with 1% formaldehyde, and lysed with SDS lysis buffer.
Cell lysates were sonicated, and 5% of cell lysate was removed and used to determine the total
amount of target DNA in input. Remaining cell lysates were diluted in ChIP dilution buffer.
Immunoprecipitation was performed with either NEF2L1 or Xbp-1 antibodies (4 μg) at 4°C
overnight. Immune complexes were then mixed with salmon sperm DNA/protein agarose 50%
slurry at 4°C for 1 h. After immunoprecipitates were washed sequentially with low salt buffer,
high salt buffer, LiCl wash buffer, and Tris EDTA, DNA-protein complexes were eluted with
elution buffer, and cross-linking was reversed. Genomic DNA was extracted using phenol/
chloroform, and ethanol-precipitated DNA was re-suspended in Tris EDTA and used for the
real-time PCR analysis.

ER stress-induced cell death
PC12 cells were treated with 10 μM tunicamycin (EMD, San Diego, CA, USA) for 24 hours
with or without addition of Icariin. Treated cells were collected and stained with FITC-conju-
gated Annexin V as described [54]. Cell apoptosis was analyzed by flow cytometry to detect ex-
pression of Annexin V (eBioscience, San Diego, CA, USA).

Results

Icariin induces Synoviolin expression in neuroblastic cells
We previously discovered that Icariin suppresses neuronal cell death and protects mice against
neuronal degenerative disease [10]. To investigate the underlying molecular mechanisms, we
analyzed the effects of Icariin on the protein expression of Synoviolin, an anti-apoptotic E3 ubi-
quitin ligase. PC12 cells were cultured in the presence of Icariin for 24 hours, the treated cells
were collected and lysed, and protein expression levels of Synoviolin were examined by immu-
noblotting. As shown in Fig. 1A, Synoviolin protein expression dramatically increased in PC12
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cells after treatment with 5 μM Icariin, indicating that Icariin induces Synoviolin expression in
neuronal PC12 cells. We further demonstrated that Icariin treatment enhanced Synoviolin ex-
pression in a dose-dependent manner (Fig. 1B)

Next we asked whether Icariin induces Synoviolin expression at the transcriptional level.
Total RNA was extracted from Icariin-treated and untreated control PC12 cells. mRNA levels
of Synoviolin were determined by real-time qPCR using β-actin mRNA as an internal control.
As expected, Synoviolin mRNA levels were significantly higher in the Icariin-treated cells com-
pared to controls (Fig. 1C). Similar to our immunoblot analysis, Icariin induced Synoviolin
mRNA expression in a dose-dependent manner. These results indicate that Icariin induces
Synoviolin expression at the mRNA level.

Icariin enhances Synoviolin reporter activity in PC12 cells
To elucidate the molecular mechanisms underlying Icariin-induced Synoviolin mRNA expres-
sion, we subcloned the promoter region of Synoviolin into a luciferase vector (Fig. 2A). We
then used the Synoviolin reporter plasmid to test whether Icariin induces Synoviolin expres-
sion at the transcriptional level. High levels of luciferase activity were detected in PC12 cells

Fig 1. Icariin induces Synoviolin expression at the transcriptional level. PC12 cells were cultured with or
without Icariin at different concentrations as indicated. (A & B) 24 hours after Icariin treatment, protein
expression levels of Synoviolin (top panels) were determined by immunoblotting using β-Actin as a loading
control (bottom panels). (C) Total RNA was isolated from PC12 cells 24 hours after treatment with or without
Icariin. The levels of Synoviolin mRNA were determined by real-time qPCR using GAPDH as an
internal control.

doi:10.1371/journal.pone.0119955.g001
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when transfected with Synoviolin reporter plasmids carrying either 2kb or 4kb of the Synovio-
lin promoter, indicating that this region carries the regulatory elements required for Synoviolin
gene transcription. We also detected a significantly higher luciferase activity when the 4kb
Synoviolin promoter region reporter was transfected into PC12 cells compared to the 2kb pro-
moter region reporter, suggesting that the distal 2kb region is important for Synoviolin gene
transcription. When the transfected cells were treated with Icariin, a significant increase in lu-
ciferase activity was detected in cells transfected with the Synoviolin 4kb, but not 2kb, reporter,
suggesting that the distal 2kb promoter region also carries the element that is positively regulat-
ed by Icariin.

NFE2L1 binding sites are involved in Icariin-mediated Synoviolin
expression
Analysis of the transcription factor binding sites in the 4kb Synoviolin promoter identified one
Xbp-1 binding site within the proximal 2kb region and five NFE2L1 binding sites in the distal
3.5–4kb region (Fig. 3A & B). We speculated that the NFE2L1 binding sites are involved in

Fig 2. The effects of Icariin on Synoviolin reporter activity. The Synoviolin promoter region was amplified
by PCR using genomic DNA from PC12 cells as template. The amplified DNA fragment was subcloned into a
luciferase reporter vector. (A) Luciferase reporter plasmids carrying the Synoviolin promoter region (2kb and
4kb) or empty vector control plasmid were transfected into PC12 cells. Two days after transfection, luciferase
activity was determined. (B) 24 hours after transfection, cells were treated with or without Icariin for an
additional 24 hours and luciferase activity was determined.

doi:10.1371/journal.pone.0119955.g002
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Icariin-mediated Synoviolin gene transcription. To test this hypothesis, the distal promoter re-
gion containing the five NFE2L1 binding sites was deleted and luciferase reporter activity was
determined (Fig. 3B). As shown in Fig. 3C, deletion of the NFE2L1-binding site region signifi-
cantly reduced Synoviolin reporter activity, indicating that NFE2L1 is a transcription factor
that acts on the Synoviolin promoter in PC12 cells. Interestingly, deletion of the
NFE2L1-binding sites in the Synoviolin promoter completely abolished Icariin-stimulated
Synoviolin reporter activity (Fig. 3D). To confirm these observation, we generated point muta-
tions of each binding sites (Fig. 3B). As shown in Fig. 3E, mutation of all five NFE2L1-binding
sites dramatically inhibited Synoviolin transcription activity. Notably, consistent to our results
using the deletion mutate, icariin failed to induce Synoviolin transcription when all the five

Fig 3. Icariin stimulates Synoviolin reporter activity through NFE2L1 binding sites. (A) The distal region that carries the five NFE2L1 transcription
factor-binding sites (red) are shown. (B) The 4-Kb Synoviolin promoter were cloned into a luciferase reporter plasmid. The NFE2L1- (red lines) and Xbp-1-
binding site (yellow line) are indicated. The deletion (second) or point mutation of all the five NFE2L1 (3rd panel) or the Xbp-1 (bottom panel) are illustrated.
(C) Luciferase reporter plasmids containing the 4kb Synoviolin promoter or a mutant with the four NFE2L1 binding sites deleted (Syvn/ΔNFE2L1) were
transfected into PC12 cells. 48 hours after transfection, luciferase activity in the lysates of transfected cells was determined. (D & E) The Synoviolin luciferase
reporter plasmids or each of the mutants in (B) were transfected into PC12 cells. One day after transfection, cells were treated with Icariin for an additional 24
hours. Cells were then collected and lysed and luciferase activity was determined. Error bars represent data from 5 independent experiments (Mean ± SD).
Student’s t test was used for the statistical analysis. NS: not significant, *p<0.05 and **p<0.01.

doi:10.1371/journal.pone.0119955.g003
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NFE2L1-binding sites were mutated. In contrast, mutation of the Xbp-1 binding sites, while in-
hibited the basal level of Synoviolin transcription activity, did not affect icariin-induced Syno-
violin expression (Fig. 3E). These results suggest NFE2L1 is responsible for Icariin-induced
Synoviolin expression.

Icariin induces Synoviolin gene transcription in an NFE2L1-dependent
manner
We then used an shRNA-mediated knockdown approach to test our hypothesis that Icariin
promotes Synoviolin gene expression through NFE2L1. Immunoblotting analysis confirmed
that a specific shRNA efficiently suppressed NFE2L1 protein expression in PC12 cells
(Fig. 4A). ChIP analysis detected a direct binding of the NFE2L1 to the distal region of Syno-
violin promoter, which was largely diminished by NFE2L1 knockdown. Notably, Icariin treat-
ment significantly increased NFE2L1 binding to Synoviolin promoter in PC12 cells (Fig. 4B).
In contrast, Xbp-1 binding to Synoviolin promoter was not affected by Icariin treatment
(Fig. 4C). In addition, we detected an approximate 60% reduction in Synoviolin mRNA levels
in PC12 cells with NFE2L1 knockdown compared to control shRNA transfected cells.

Fig 4. NFE2L1 knockdown abolishes Icariin-induced Synoviolin expression. (A) PC12 cells were transfected with NFE2L1 shRNA or control shRNA.
Two days after transfection, the expression levels of NFE2L1 were analyzed by immunoblotting using anti-NFE2L1 Abs (top panel). The expression levels of
tubulin protein were determined as a loading control (bottom panel). (B & C) PC12 or its NFE2L1 knockdown cells were treated with or without Icariin for 24
hours. ChIP assay using anti-NFE2L1 (B) or with anti-Xbp-1 (C) antibodies. Tunicamycin (TM) treated cells were used as a positive control for Xbp-1 ChIP
analysis. (D) The Synoviolin luciferase reporter plasmids were co-transfected with NFE2L1-shRNA or control shRNA plasmid into PC12 cells. One day after
transfection, cells were treated with or without Icariin for an additional 24 hours. The luciferase activity in the lysates of transfected cells was determined.
Error bars represent data from 5 independent experiments (Mean ± SD). Student’s t test was used for the statistical analysis. **p<0.01, and ***p<0.001.

doi:10.1371/journal.pone.0119955.g004
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Interestingly, in contrast to the average 3-fold increase in Synoviolin mRNA expression seen
upon Icariin treatment of control shRNA transfected PC12 cells, Icariin failed to enhance
Synoviolin mRNA transcription in PC12 cells when NFE2L1 was knocked down. These results
clearly indicate that Icariin enhances Synoviolin expression in an NFE2L1-dependent manner.

Icariin protects against neuronal cell death through upregulation of
Synoviolin
We and others have shown that Icariin holds great therapeutic potential, with evidence of pro-
tection against neuronal degenerative disease in mice. One of the proposed underlying mecha-
nisms is that Icariin protects neuronal cells from apoptosis [9, 10]. Since Synoviolin is an anti-
apoptotic factor, our discovery that Icariin induces Synoviolin gene transcription suggested
that Icariin may inhibit neuronal cell death through upregulation of Synoviolin. To test this hy-
pothesis, we used an shRNA-mediated gene knockdown approach to inhibit Synoviolin expres-
sion and test whether Icariin is able to protect PC12 cells from ER stress-induced apoptosis in
the absence of Synoviolin. Synoviolin-specific shRNA largely inhibited Synoviolin expression
in PC12 cells as determined by immunoblotting (Fig. 5A). As previously reported, treatment of
PC12 cells with the pharmacological ER stress inducer tunicamycin at 10 μg/ml resulted in an
average of 30% annexin V-positive apoptotic cells. Importantly, treatment of PC12 cells with
Icariin fully protected against tunicamycin-induced cell death (Fig. 5B). As expected, tunica-
mycin treatment of PC12 cells with Synoviolin knocked down led to an elevated percentage of
apoptotic cells, from 30% to approximately 50%. Notably, addition of Icariin failed to protect
Synoviolin knockdown PC12 cells from tunicamycin-induced apoptosis (Fig. 5B & 5C), indi-
cating that Synoviolin function is essential for Icariin-mediated protection of neuronal cells
from ER stress-induced apoptosis. Real-time PCR analysis confirmed that Synoviolin expres-
sion was sufficiently inhibited by siRNA even after Icariin treatment (Fig. 5D). Therefore, our
study found that Synoviolin upregulation plays a critical role in the protective function of
Icariin.

Based on our discoveries, we proposed a model for Icariin in protecting against neuronal
cell death (Fig. 5E): Icariin induces Synoviolin expression in PC12 cells through the transcrip-
tion factor NFE2L1. Upregulated Synoviolin then inhibits PC12 cell apoptosis when the ER
stress response occurs.

Discussion
The therapeutic potential of Icariin for the treatment of neuronal degenerative disease has
stimulated extensive research into the molecular mechanisms underlying the protective effect
of Icariin against apoptosis of neuronal cells. Here, we demonstrated that Icariin protects ER
stress-induced PC12 cell death through induction of Synoviolin expression. This conclusion is
supported by the following observations: first, Icariin induced both protein and mRNA expres-
sion of Synoviolin in PC12 cells; second, the transcription factor NFE2L1 was required for Icar-
iin-mediated Synoviolin promoter activity, with knockdown of NFE2L1 expression largely
abolishing Icariin-induced Synoviolin expression; and third, suppression of Synoviolin expres-
sion by shRNA-mediated knockdown abolished the ability of Icariin to protect PC12 cells from
ER stress-induced cell death.

Synoviolin is a known anti-apoptotic factor during ER stress-induced cell death. A signifi-
cant reduction in Synoviolin protein levels has been detected in the cerebral cortex of Alzhei-
mer’s disease patients [55]. However, the mediators of Synoviolin transcriptional regulation in
neurons remain unclear. Our observations here indicate that the transcription factor NFE2L1
is involved in regulating Synoviolin mRNA transcription in PC12 cells, providing a possible
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explanation for the reduced Synoviolin expression in the brains of AD patients. Notably, Lee
et al discovered that mice with a late-stage deletion of NFE2L1 in neuronal cells have dysregu-
lated proteasome gene expression and develop neurodegeneration syndromes [56]. It will be
interesting to study the Synoviolin promoter-binding activity of NFE2L1 in neurons from AD
patients. Several studies have shown that Synoviolin suppresses neuronal cell death in human
neuronal cells and experimental rodent models of neuronal degenerative disease [47, 55, 57–
69]. Therefore, our discovery that Icariin induces Synoviolin expression to suppress ER stress-
induced neuron cell apoptosis provides a rationale for the clinical application of Icariin in treat-
ment of patients with neuronal degenerative diseases, particularly in patients with reduced
Synoviolin expression levels.

Fig 5. Icariin protects ER stress-induced PC12 cell death through Synoviolin. (A) PC12 cells were transfected with Synoviolin shRNA or control shRNA.
Two days after transfection, the expression levels of Synoviolin were analyzed by immunoblotting using anti-Synoviolin Abs (top panel). The expression
levels of tubulin protein were determined as a loading control (bottom panel). (B & C) ER stress-induced cell death by tunicamycin treatment in wild type
control and Synoviolin knockdown cells were analyzed by flow cytometry for the expression of annexin V. Representative images from 5 independent
experiments are shown (B). Viability of PC12 cells from 5 independent experiments is shown (Mean ± SD). Student’s t test was used for the statistical
analysis. **p< 0.05. NS: not significant. (D) The mRNA expression levels of Synoviolin in WT and Synoviolin knockdown PC12 cells after Icariin treatment
was confirmed by real-time PCR. (E) A proposed model of Icariin in protecting PC12 cells against apoptosis. Error bars represent data from 5 independent
experiments (Mean ± SD). Student’s t test was used for the statistical analysis. **p<0.01, and ***p<0.001.

doi:10.1371/journal.pone.0119955.g005
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There are at least five conserved NFE2L1-specific binding sites on the distal region of the
mouse, rat, and human Synoviolin promoter. These NFE2L1-binding sites are absolutely re-
quired for Icariin activity in promoting Synoviolin mRNA transcription, as deletion of the five
NFE2L1-binding sites fully abolished Icariin-induced Synoviolin reporter activity. NFE2L1 has
been identified as a substrate of Synoviolin-mediated ubiquitination and degradation [70, 71].
Therefore, our finding that NFE2L1 is a transcription factor acting on the Synoviolin promoter
implies that a negative feedback loop regulates Synoviolin expression. Similarly, the X
box protein 1 (Xbp-1) is another transcription factor involved in Synoviolin gene expression
[21, 72], and we identified an Xbp-1 binding site in the promoter region of Synoviolin locus.
We have previously shown that IRE1α, an ER stress transducer and the only known factor up-
stream of the Xbp-1 activator that acts by splicing Xbp-1 mRNA, is ubiquitinated and degraded
by Synoviolin [48]. A similar negative regulatory feedback loop between Synoviolin and Xbp-1
may also exist. Further studies are needed to explore how these two feedback loops are regulat-
ed and whether they occur in different physiological and pathological settings in neurons. In
addition to NFE2L1 and Xbp-1, Ets-1 binding sites (EBS-1) have been identified and the Ets-
1-mediated Synoviolin expression plays important roles in cellular hemostasis [73]. Moreover,
Izumi et al demonstrated that the interleukin enhancer binding factor 3 (ILF-3) activates the
Synoviolin promoter via association with GABP-α in rheumatoid synovial cells during joint in-
flammation [74]. Therefore, Synoviolin gene appears to be regulated by multiple
transcription factors.

Our study shows that a full protection against ER stress-induced PC12 cell death requires
Synoviolin expression. It has been well established that Synoviolin is a critical anti-apoptotic
factor that suppresses ER stress-induced cell death by directly degrading misfolded proteins
through the ubiquitin pathway [75]. Therefore, together with the fact that the ER stress re-
sponse is often associated with the pathogenesis of neuronal degenerative diseases in humans
[35–42], our study suggests that Icariin may be particularly effective in the treatment of neuro-
nal degenerative diseases with elevated ER stress response.
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