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Abstract

The stage of cancer is a discrete ordinal response that indicates the aggressiveness of disease and 

is often used by physicians to determine the type and intensity of treatment to be administered. 

For example, the FIGO stage in cervical cancer is based on the size and depth of the tumor as 

well as the level of spread. It may be of clinical relevance to identify molecular features from 

high-throughput genomic assays that are associated with the stage of cervical cancer to elucidate 

pathways related to tumor aggressiveness, identify improved molecular features that may be useful 

for staging, and identify therapeutic targets. High-throughput RNA-Seq data and corresponding 

clinical data (including stage) for cervical cancer patients have been made available through 

The Cancer Genome Atlas Project (TCGA). We recently described penalized Bayesian ordinal 

response models that can be used for variable selection for over-parameterized datasets, such as 

the TCGA-CESC dataset. Herein, we describe our ordinalbayes R package, available from 

the Comprehensive R Archive Network (CRAN), which enhances the runjags R package by 

enabling users to easily fit cumulative logit models when the outcome is ordinal and the number 

of predictors exceeds the sample size, P > N, such as for TCGA and other high-throughput 

genomic data. We demonstrate the use of this package by applying it to the TCGA cervical cancer 

dataset. Our ordinalbayes package can be used to fit models to high-dimensional datasets, and 

it effectively performs variable selection.
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1. Introduction

Despite the advent of HPV vaccinations and effective screening programs, globally, cervical 

cancer is the fourth most common cancer among women [1]. The estimated number of 

new cases in 2020 is 604,127 with 341,831 deaths [2]. The stage of cervical cancer, as 

outlined in the International Federation of Gynecology and Obstetrics (FIGO) guidelines, 

is based on physical examinations, endoscopic procedures, and imaging. Specifically, the 

FIGO stage is based on the size and depth of the tumor as well as the level of spread 

[3]. It is important that the stage, a discrete ordinal response, be correct as it is used 

to guide treatment planning, counsel patients with respect to prognosis, and to determine 

whether the patient meets eligibility criteria for available clinical trials or other research 

studies [4,5]. Unfortunately, there is still debate as to whether surgical or non-invasive 

radiological modalities for identifying parametrial and lymph node involvement is preferred 

when staging a patient [4]. Thus, it is clinically relevant to identify molecular features from 

high-throughput genomic assays that are associated with the stage of cervical cancer to 

elucidate pathways related to tumor aggressiveness, identify improved molecular features 

that may be useful for staging, and identify therapeutic targets.

Penalized frequentist models have been widely applied when analyzing high-dimensional 

data. Such models were initially described for linear [6] and logistic [7] regression and 

subsequently for ordinal response models [8–10]. However, when applying penalized 

frequentist models, the penalty parameter, or vector of parameters in the case of elastic 

net, must be selected by the analyst. As a result, the coefficient estimates from the resulting 

model are conditional on that penalty parameter. For that reason, penalized Bayesian models 

were developed for the linear [11–14] and logistic [15–17] regression settings. We also 

recently described penalized Bayesian models for the ordinal response setting [18] and 

demonstrated that our penalized Bayesian cumulative logit model has improved variable 

selection performance when compared to penalized frequentist cumulative logit models [19].

Herein, we describe our ordinalbayes R package, which enhances the runjags R 

package [20] by enabling users to easily fit penalized Bayesian cumulative logit models. 

The ordinalbayes function can be used to fit LASSO, normal spike-and-slab, double 

exponential spike-and-slab, and regression-based variable inclusion indicator Bayesian 

models. Variable selection can be performed using the Bayes factor or using the posterior 

distributions of the variable inclusion indicators directly. In the following sections, we 

describe our implementation and describe the syntax required for each of our Bayesian 

models. We then illustrate the functions in the ordinalbayes R package using two 

examples where we were interested in identifying transcripts important to predicting the 

FIGO stage in cervical cancer patients using high-throughput gene expression data. A small 

example is provided in Appendix A.
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2. Materials and Methods

2.1. Ordinal Bayesian Models and R Syntax

We previously described four penalized cumulative logit Bayesian models that can be fit 

when the covariate space is high-dimensional [18]. This includes a regression-based variable 

inclusion indicator ordinal model, a LASSO ordinal model, a normal spike-and-slab ordinal 

model, and a double exponential spike-and-slab ordinal model. To introduce our penalized 

cumulative logit Bayesian models, we let Y1, … ,Yn represent the ordinal responses for n 
subjects, which can take on one of 1, … , K ordinal response levels, with K representing the 

number of ordinal levels. Let xi = (xi1, xi2, … , xiP)′ represent the vector of covariates for 

subject i, where P represents the number of predictors. When assuming proportional odds, 

the effect of each covariate is constant across all ordinal response levels such that the slope 

for the ordinal responses are parallel. For each ordinal level k = 1, 2, … , K − 1, let β = (β1, 

β2 … , βP)′ denote a vector of unknown regression coefficients. The cumulative logit model 

is

log
Pr Yi ≤ k ∣ xi
Pr Yi > k ∣ xi

= αk − β′xi, k = 1, 2, …, K − 1,

where Pr(Yi ≤ k|xi) is the cumulative probability of the event Yi ≤ k given xi. The thresholds 

differentiate between the K ordinal levels and must satisfy the constraint −∞ = α0 < α1 <α2 

< ··· < αK−1 <αK = ∞.

Herein, we describe our ordinalbayes package that enhances the functionality of the 

runjags package by providing functions specific to fitting these four penalized ordinal 

Bayesian models and extracting results of interest. We also provide an overview of each 

model. Tables summarizing the package functions and syntax appears in Appendix C.

The primary function for model fitting in the ordinalbayes package is ordinalbayes. The 

function arguments are

function (formula, data, x = NULL, subset, center = TRUE, scale = TRUE,

a = 0.1, b = 0.1, model = “regressvi”, gamma.ind = “fixed”,

pi.fixed = 0.05, c.gamma = NULL, d.gamma = NULL, alpha.var = 10,

sigma2.0 = NULL, sigma2.1 = NULL, coerce.var=10, lambda0 = NULL,

adaptSteps = 5000, burnInSteps = 5000, nChains = 3, numSavedSteps = 9999,

thinSteps = 3, parallel = TRUE, seed = NULL, quiet = FALSE)

This function accepts a model formula that specifies the ordinal response on the left-hand 

side of the equation and any unpenalized predictor variable(s) on the right-hand side of 

the equation. Unpenalized predictors are variables such as age that we include in the 

model without applying any shrinkage of their corresponding parameter estimates. When 

unpenalized predictors are included as covariates in the model, the user can specify the 

variance associated with the corresponding model parameters (default coerce.var = 10). 

If no unpenalized predictor variables are included, the model formula should be y ~ 1 
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(representing the intercept). The user can subset the data.frame prior to model fitting, 

for example, subset=(race ==“white”). To specify the penalized covariates in the 

model, the user should pass the data.frame to the x parameter, indicating the relevant 

columns of covariates. By default, the penalized covariates are centered (center = TRUE) 

and scaled (scale = TRUE).

The selected parameters are initialized prior to updating through MCMC. For one chain, 

the k − 1 ordinal thresholds, αk, are initialized to the logit of the cumulative response 

probabilities, which is equivalent to the estimated k − 1 thresholds in an intercept-only 

model

αk = log
∑i = 1

n ∑m = 1
k Yik/n

1 − ∑i = 1
n ∑m = 1

k Yik/n
.

For multiple chains, initial values for the αk terms for chains beyond the first chain are 

sampled from a Normal(0, 0.5) distribution and then sorted to impose the α1 < ··· <αk−1 

order restriction. Within the MCMC, the αk terms are sampled from a Normal 0, σαk
2 , and 

users can adjust the variance by specifying alpha.var (default 10 such that the precision is 

0.10). All penalized coefficients (βj for j = 1, … , P) are initialized to zero.

Other relevant parameters common to all model types include: nChains, the number 

of parallel chains for the model (default 3); adaptSteps, the number of iterations for 

adaptation (default 5000); burnInSteps, the number of iterations of the Markov chain to 

run (default 5000); numSavedSteps, the number of saved steps per chain (default 9999); 

and thinSteps, the thinning interval for monitors (default 3). Provided the user will be 

running the model on a machine with multiple processors, the computational speed can 

be improved by running the chains in parallel by specifying parallel = TRUE. When 

parallel = TRUE, runjags executes the MCMC sampling using nChains parallel 

processors. To ensure the user can obtain reproducible results, seed accepts an integer that 

is used to set the random seed. The output from JAGS can be suppressed by specifying 

quiet = TRUE. The user can fit one of four available Bayesian models. A list of the 

parameters the user can set for all four models is provided in Table A1. Following Section 

2.1.1, which describes applying ordinalbayes to Bioconductor objects, each of the four 

models is described along with the relevant arguments that must be specified by the user. A 

list of the parameters the user needs to set for each specific model is provided in Table A2.

2.1.1. Use with Bioconductor Objects: SummarizedExperiment and 
ExpressionSet—When analyzing data processed using the DESeq2 Bioconductor 

package, the genomic feature object is of class DESeqTransform, which is a 

SummarizedExperiment, and therefore, the phenotypic data are accessed using the 

colData extractor function. When analyzing data processed using packages that structure 

the genomic feature object as a Biobase ExpressionSet, the phenotypic data are 

accessed using the pData extractor function. Therefore, in the ordinalbayes call, data 

should be either a colData() or pData() call to the genomic feature object. Again, 
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the ordinalbayes function accepts a model formula that specifies the ordinal response 

on the left-hand side of the equation and any unpenalized predictor variable(s) from the 

phenotypic dataset on the right-hand side of the equation. If no unpenalized predictor 

variables are included, the model formula should be y ~ 1 (representing the intercept).

When specifying the penalized covariates in the model, the user should pass to the x 

parameter the appropriate call for extracting the genomic feature data from the object. For 

SummarizedExperiment objects, the genomic features to be penalized are accessed using 

the assay() extractor function. For ExpressionSet objects, the genomic features to be 

penalized are accessed using the exprs() extractor function. The user can also pass a 

matrix to x; however, the user needs to carefully verify that the observations in the x matrix 

are appropriately aligned to the phenotypic data. Note that the number of rows in both data 

and x should be the same, such that the transpose of assay or exprs should be supplied to 

x.

2.2. Regression-Based Variable Inclusion Indicator Ordinal Model

By default, the model that is fit is the regression-based variable inclusion indicator Bayesian 

model, specified by model = “regressvi”. This model takes the form

log
Pr Yi ≤ k ∣ xi
Pr Yi > k ∣ xi

= αk − ∑
j = 1

p
γjβjxij, for k = 1, 2, …, K − 1

βj ∣ λ DE(0, 1/λ), for j = 1, …, p
λ Gamma(a, b)
αk Normal 0, σαk

2 , α1 < α2 < … < αK − 1, for k = 1, 2, …, K − 1
γj Bernoulli πj , for j = 1, …, p
πj = t or πj Beta(c, d), for j = 1, …, p

and assumes the penalized coefficients are from a Laplace (or double exponential) 

distribution with parameter λ and that λ is from a Gamma distribution with parameters 

a and b. Based on our extensive simulations [19], model performance is not affected by 

choices of a and b, so we provide defaults of 0.1 for both. The variable inclusion indicator 

γj is assumed to follow a Bernoulli distribution with parameter πj. The user can use either 

a fixed constant prior (default) or a random prior. When using a fixed constant prior, the 

user must specify both gamma.ind=“fixed” and set pi.fixed to some constant in the (0, 

1) interval (default is 0.05). Alternatively, a random prior for πj is acheived by specifying 

both gamma.ind=“random” and parameter values (c.gamma and d.gamma) for the Beta 

distribution. Values of c.gamma and d.gamma should be selected such that the mean of 

the Beta distribution for the variable inclusion indicators corresponds to the anticipated 

proportion of covariates truly associated with the ordinal response, given by c/(c + d), while 

considering that the variance is given by

cd
(c + d)2(c + d + 1)

.
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If unpenalized coefficients are included in the model, their coefficients are ζ ~ Normal 

0, σcoerce2 .

2.3. Lasso Ordinal Model

The LASSO Bayesian ordinal model can be fit by specifying model=“lasso”. This model 

assumes the penalized coefficients βj for j = 1, … , P are from independent Laplace (or 

double exponential) distributions with parameter λ and that λ is from a Gamma distribution 

with parameters a and b.

log
Pr Yi ≤ k ∣ xi
Pr Yi > k ∣ xi

= αk − ∑
j = 1

p
βjxij, for k = 1, 2, …, K − 1

βj ∣ λ DE(0, 1/λ), for j = 1, …, p
λ Gamma(a, b)
αk Normal 0, σαk

2 , α1 < α2 < … < αK − 1, for k = 1, 2, …, K − 1

As previously mentioned, model performance is not affected by choices of a and b, so we 

provide defaults of 0.1 for both. If unpenalized coefficients are included in the model, their 

coefficients are ζ Normal 0, σcoerce2 .

2.4. Normal Spike-and-Slab Ordinal Model

The normal spike-and-slab Bayesian ordinal model can be fit by specifying 

model=“normalss”. This model is given by

log
Pr Yi ≤ k ∣ xi
Pr Yi > k ∣ xi

= αk − ∑
j = 1

p
βjxij, for k = 1, 2, …, K − 1

βj ∣ γj 1 − γj × Normal 0, σ0
2 + γj × Normal 0, σ1

2 , for j = 1, …, p
αk Normal 0, σαk

2 , α1 < α2 < … < αK − 1, for k = 1, 2, …, K − 1
γj Bernoulli πj , for j = 1, …, p
πj = t or πj Beta(c, d), for j = 1, …, p.

When fitting this model, the user is required to specify the variance for the spike σ0
2

by setting sigma2.0 to a small positive value (e.g., 0.01) and variance for the slab σ1
2

by setting sigma2.1 to a large positive value (e.g., 10). As with the regression-based 

variable inclusion indicator Bayesian model, the variable inclusion indicator γj is assumed 

to follow a Bernoulli distribution with parameter πj. The user can use either a fixed 

constant prior (default) or a random prior. When using a fixed constant prior, the user 

must specify both gamma.ind=“fixed” and set pi.fixed to some constant in the (0, 

1) interval (default is 0.05). Alternatively, a random prior for πj is acheived by specifying 

both gamma.ind=“random” and parameter values (c.gamma and d.gamma) for the Beta 

distribution. If unpenalized coefficients are included in the model, their coefficients are 

ζ Normal 0, σcoerce2 .
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2.5. Double Exponential Spike-and-Slab Ordinal Model

The double exponential spike-and-slab ordinal model can be fit by specifying 

model=“dess” and is given by

log
Pr Yi ≤ k ∣ xi
Pr Yi > k ∣ xi

= αk − ∑
j = 1

p
βjxij, for k = 1, 2, …, K − 1

βj ∣ λ, γj 1 − γj × DE 0, 1/λ0 + γj × DE(0, 1/λ), for j = 1, …, p
λ Gamma(a, b)
αk Normal 0, σαk

2 , α1 < α2 < … < αK − 1, for k = 1, 2, …, K − 1
γj Bernoulli πj , for j = 1, …, p
πj = t or πj Beta(c, d), for j = 1, …, p

When fitting this model the user is required to specify the parameter for the spike (λ0) 

using lambda0, which should be a large positive value (e.g., 20), while the slab is taken 

to be a double exponential distribution with parameter λ where that λ is from a Gamma 

distribution with parameters a and b. As with the regression-based variable inclusion 

indicator and Normal spike-and-slab models, the variable inclusion indicator γj is assumed 

to follow a Bernoulli distribution with parameter πj. The user can use either a fixed 

constant prior (default) or a random prior. When using a fixed constant prior, the user 

must specify both gamma.ind=“fixed” and set pi.fixed to some constant in the (0, 

1) interval (default is 0.05). Alternatively, a random prior for πj is achieved by specifying 

both gamma.ind=“random” and parameter values (c.gamma and d.gamma) for the Beta 

distribution. If unpenalized coefficients are included in the model, their coefficients are 

ζ Normal 0, σcoerce2 .

2.6. Other Package Functions

The ordinalbayes function yields an object of class ordinalbayes. Generic functions 

have been specifically tailored to extract meaningful results from the resulting MCMC 

chain. The print function returns several summaries from the MCMC output for each 

parameter monitored, including: the 95th lower confidence limit for the highest posterior 

density (HPD) credible interval (Lower95), the median value (Median), the 95th upper 

confidence limit for the HPD credible interval (Upper95), the mean value (Mean), the 

sample standard deviation (SD), the mode of the variable (Mode), the Monte Carlo standard 

error (MCerr,) percent of SD due to MCMC (MC%ofSD), effective sample size (SSeff), 

autocorrelation at a lag of 30 (AC.30), and the potential scale reduction factor (psrf). The 

plot function provides a trace of the sampled output and optionally the density estimate for 

each variable in the chain. This function additionally adds the appropriate beta and gamma 

labels for each penalized variable name.

When identifying important covariates, the regression-based variable inclusion indicator, 

normal spike-and-slab, and double exponential spike-and-slab Bayesian ordinal models all 

incorporate a variable inclusion indicator, γj, in the model. Variable selection can be based 

on whether the posterior mean of γj exceeds a pre-specified threshold. Alternatively, we 

can use the Bayes factor to test the hypotheses H0j : γj = 0 versus Haj : γj = 1, where 

the null hypothesis is rejected for feature j if the Bayes factor exceeds a pre-specified 
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threshold. For the LASSO, normal spike-and-slab, and double exponential spike-and-slab 

Bayesian ordinal models, the Bayes factor can be used to test an interval null hypothesis 

H0j : |βj| ≤ ϵ versus Haj : |βj| > ϵ, where ϵ is a small positive value that is close to 0. 

For the regression-based variable inclusion indicator Bayesian ordinal model, the Bayes 

factor can be used to test H0j : |γjβj| ≤ ϵ versus Haj : |γjβj| > ϵ. Note that for the 

Bayesian LASSO, no variable inclusion indicators are incorporated, so variable selection 

can only be performed using the Bayes factor for β. The summary function requires an 

ordinalbayes object, and the user can specify epsilon (default 0.1) for testing the 

null hypothesis that H0j : |βj| ≤ ϵ. The output from summary is a list containing the 

following components: alphamatrix, the MCMC output for the threshold parameters; 

betamatrix, the MCMC output for the penalized parameters; zetamatrix, The MCMC 

output for the unpenalized parameters (if included); gammamatrix, the MCMC output for 

the variable inclusion parameters (not available when model = “lasso”); gammamean, 

the posterior mean of the variable inclusion indicators (not available when model = 

“lasso”); gamma.BayesFactor, Bayes factor for the variable inclusion indicators (not 

available when model = “lasso”); Beta.BayesFactor, Bayes factor for the penalized 

parameters; and lambdamatrix, the MCMC output for the penalty parameter (not available 

when model=“normalss”). The coef function also accepts an ordinalbayes object and 

returns a function (default is method=mean) of the posterior distribution of the penalized 

parameter estimates and variable inclusion indicators.

The predict function accepts an ordinalbayes object and optionally allows the user to 

specify new data for unpenalized predictors and the penalized predictors by invoking neww 

= and newx =, respectively. If neww and newx are not supplied, the original data are used 

for prediction. The model.select parameter allows the user to obtain model predictions 

through one of three different methods. When model.select = “average” (default), the 

mean coefficient values over the MCMC chain are used to estimate fitted probabilities; the 

predicted response is attaining the maximum fitted probability. When model.select = 

“median”, the median coefficient values over the MCMC chain are used to estimate fitted 

probabilities; the predicted ordinal response is attaining the maximum fitted probability. 

When model.select = “max.predicted.class”, each step in the chain is used to 

calculate fitted probabilities and the ordinal response, then the final predicted ordinal 

response is taken as that ordinal response level that is most frequently predicted. The 

function fitted is synonymous with predict.

2.7. Analysis of Cervical Cancer Dataset

We downloaded the transcript-level HTSeq count data for the 309 subjects from 

the The Cancer Genome Atlas Cervical Squamous Cell Carcinoma and Endocervical 

Adenocarcinoma (TCGA-CESC) project [21] having transcriptome profiling performed 

using the TCGAbiolinks Bioconductor package [22]. We then restricted attention to the 253 

cervical cancer subjects with a primary diagnosis of squamous cell carcinoma. Subsequently, 

we removed one subject whose sample was FFPE preserved, one subject with metastatic 

disease, two subjects who contributed only solid normal tissue, and seven subjects lacking 

FIGO stage. This left 242 subjects in Stage I (N = 124), II (N = 61), and III-IV (N = 
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57). Using the DESeq2 Bioconductor package [23], we performed differential expression 

analysis using the stage as the independent predictor in the negative binomial model. We 

then applied the regularized log transformation to robustly transform the count data to a log2 

scale to stabilize the variance and then filtered the resulting dataset to retain transcripts that 

had a mean expression > 0.5 and FDR< 0.10 from the stage I versus stages III/IV contrast.

We fit a regression-based variable inclusion indicator Bayesian ordinal model using a 

Beta(0.01, 0.19) hyperprior for the πj using the runjags package to run three parallel 

chains with 5000 burn-in, 5000 tuning steps, and thinned to keep every third step in the 

sampling process to reduce auto-correlation in our posterior samples, and we kept 9999 

saved steps per chain. Convergence was assessed using Gelman and Rubin’s potential scale 

reduction factor (PSRF).

3. Results

There were 1137 transcripts that were differentially expressed at a Benjamini–Hochberg 

FDR< 0.05 and 2009 transcripts that were differentially expressed at a Benjamini-Hochberg 

FDR< 0.10 when examining the contrast between stage I and stages III/IV. These 2009 

transcripts were retained for Bayesian modeling. Forty transcripts had a Bayes factor > 4 

when testing H0j : |γjβj| ≤ 0.1 versus Haj : |γjβj| > 0.1. Forty-one transcripts had a Bayes 

factor > 4 when testing H0j : γj = 0 versus Haj : γj = 1 (Table 1). Notably, the features 

were the same with the exception that Bayes factor testing γj = 0 additionally identified 

ENSG00000115548 (Gene symbol KDM3A).

Many genes listed in Table 1 are relevant to cervical cancer, related cancers of the female 

reproductive system, or cancer in general. For example, in a tissue-based study, CAPN6 was 

not detected in normal cervical squamous epithelium, but its expression was observed in 

low-grade and increased further in high-grade squamous cervical intraepithelial lesions [24]. 

KDM3A is an epigenetic regulator that has been found to be highly expressed in cervical 

cancer tissues and involved in cervical cancer progression [25]. P4HA1 was included in a 

five-gene signature to predict cervical cancer prognosis [26]. A previous study suggested 

that CMTM5 is a tumor suppressor that is frequently methylated and thus loses function 

in cancer [27], including cervical cancer [28]. RAB6C has been shown to be aberrantly 

methylated in cervical cancer compared to normal tissues [29]. ALDH7A1 was among 

30 genes that demonstrated a dose–response pattern with NNK, a tobacco carcinogen, in 

cervical cancer samples [30], implicating tobacco may be a causative factor in cervical 

cancer development in addition to HPV infection.

Other genes, while not yet described in cervical cancer, have been found to be prognostic 

in ovarian cancer (RGS11 [31], CHAD and CBLN2 [32], NETO1 [33], HSPE1 [34], 

and BIRC6, which Lnc-TTC27–9 is intronic to [35]). The expression of SH3BP5 is 

reduced in ovarian cancer samples compared to normal tissue and that silencing of Sab 

protein expression may lead to chemo-resistance [36]. The expression of SNTN has high 

discriminatory power to differentiate between normal tissue, serous borderline ovarian 

tumors, and serous ovarian carcinoma [37]. IL22RA2 is highly expressed in various tissues, 

including those in the female reproductive system [38]. With respect to genes associated 
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with other cancers, NXT2 was among 12 genes used to define prognostic risk groups 

in melanoma [39]. A review article described that the aberrant expression of HS3ST3B1 
is observed in many cancers, and the authors posited that HS3ST3B1 may act as a tumor-

promoting enzyme [40]. The expression of KRT85 was found to be associated with overall 

survival in subjects with colon cancer [41].

When using the fitted model using the 2009 transcripts, only 16.9% of subjects were 

misclassified, with all misclassifications in Stage II. However, when fitting a parsimonious 

model including only the 41 transcripts in Table 1, the misclassification rate decreased to 

11.6%. For evaluating the effectiveness of this multi-category classification, we evaluated 

the hypervolume under ROC manifold [42,43], which was 0.865 (95% CI: 0.800, 0.914) for 

the 41 transcript model, indicating good discrimination among the three stages.

4. Discussion

The ordinalbayes package is based on runjags and enables the user to easily fit 

penalized ordinal Bayesian cumulative logit models to high-dimensional datasets. The 

package includes methods for monitoring the mixing of chains (plot) and convergence 

(print). It also includes a summary function that permits the user to estimate the Bayes 

factor for testing an interval null hypothesis for βj and for testing the null that γj = 0 to assist 

the user with variable selection. The coef function uses the posterior distribution to return 

summary estimates of the penalized βj and the γj indicators. The predict (or equivalently, 

fitted) function can be used to obtain the estimated ordinal response probabilities as well 

as the predicted ordinal response level for each observation.

When applied to The Cancer Genome Atlas cervical cancer dataset, predictive performance 

was excellent. When restricting attention to only the 41 transcripts with a Bayes factor > 

4, predictive performance yielded an overall misclassification error of 11.6%, though the 

misclassification error increased from 0% for Stage I and III/VI in the full model to 3.2% 

and 14.0%, respectively, in the reduced model. Interestingly, transcripts that were identified 

have known associations with cervical cancer, cancers of the female reproductive system, 

and other cancer in general. The syntax we used to analyze this dataset appears in the 

Appendix B.
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Appendix A. Example

The ordinalbayes R package is available from CRAN and github (https://github.com/

kelliejarcher/ordinalbayes), where the latter includes installation instructions and the 

example code in this Appendix. For a toy example, subset data of the cervical cancer data 

are stored in the data.frame named cesc. This data.frame includes age_at_index, 

cigarettes_per_day, race, Stage, and expression of 41 transcripts. The regression-

based variable inclusion model with random prior to π can be fit after loading the 

ordinalbayes R package using the syntax:

library(“ordinalbayes”)

data(“cesc”)

fit <- ordinalbayes(Stage~1, data = cesc,

x = cesc[,5:45], model = “regressvi”,

gamma.ind = “random”, c.gamma = 0.01, d.gamma = 0.19,

seed = 26, adaptSteps=2000, burnInSteps=2000, numSavedSteps = 3000)

This took 2.93 min on a 13 inch MacBook Pro with four cores and 16GB RAM. To include 

age_at_index and cigarettes_per_day as unpenalized covariates while including the 

41 gene expression covariates as penalized covariates, the syntax is

fit.unpenalized <- ordinalbayes(Stage~age_at_index + cigarettes_per_day,

data = cesc, x = cesc[,5:45], model = “regressvi”,

gamma.ind = “random”, c.gamma = 0.01, d.gamma = 0.19,

seed = 26, adaptSteps=2000, burnInSteps=2000, numSavedSteps = 3000)

You can evaluate various aspects of the MCMC results of the ordinalbayes object by 

issuing the print command.

print(fit)

including the psrf to assess model convergence. Please note that to foster reproducibility 

of our output, we set the random seed. Subsequent runs using different seeds will produce 

different results due to the random nature of the MCMC sampling. To summarize the fitted 

model object,

summary.fit<-summary(fit)

To identify which transcripts had a Bayes factor > 4 when testing H0j : |γjβj| ≤ 0.1 versus 

Haj : |γjβj| > 0.1,
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names(which(summary.fit$Beta.BayesFactor>4))

Similarly, to identify which transcripts had a Bayes factor > 4 when testing H0j : γj = 0 

versus Haj : γj = 1,

names(which(summary.fit$gamma.BayesFactor>4))

To obtain the γ estimates we used the following code:

coefficients<-coef(fit)

coefficients$gamma[which(summary.fit$gamma.BayesFactor>4)]

To obtain model predictions,

phat<-predict(fit)

table(phat$class, cesc$Stage)

1 2 3

1 120 15 2

2 4 32 13

3 0 14 42

Appendix B. Reproducing CESC Results Using Bioconductor Objects

The data used in this example are stored in the finalSet object. Because this object was 

derived using the DESeq2 BioConductor package, we load it first. Please note that due to 

the use of the default parameters for the number of saved steps per chain (9999) and the 

large size of this dataset, the model took 3.2 days to run on a 13 inch MacBook Pro with 

four cores and 16GB RAM. For those interested in running examples using this package, a 

smaller version of these data, reducedSet, which includes the 41 transcripts, may be used 

instead. Alternatively, parameters related to the number of steps can be reduced.

The regression-based variable inclusion model with random prior to π was fit after loading 

the ordinalbayes R using the syntax:

library(“DESeq2”)

library(“ordinalbayes”)

data(finalSet)

fitted.regressvi.random<-ordinalbayes(Stage~1, data=colData(finalSet),
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x=t(assay(finalSet)), model=“regressvi”,

gamma.ind=“random”, c.gamma=0.01, d.gamma=0.19, seed=26)

Again note that to foster reproducibility of our output, we set the random seed. Subsequent 

runs using different seeds will produce different results due to the random nature of the 

MCMC sampling.

We then summarize the fitted model object and to identify which transcripts had a Bayes 

factor > 4 when testing H0j : |γjβj| ≤ 0.1 versus Haj : |γjβj| > 0.1,

summary.model.fit<-summary(fitted.regressvi.random)

names(which(summary.model.fit$Beta.BayesFactor>4))

Similarly, to identify which transcripts had a Bayes factor > 4 when testing H0j : γj = 0 

versus Haj : γj = 1,

names(which(summary.model.fit$gamma.BayesFactor>4))

To obtain the γ estimates, we used the following code:

coefficients<-coef(fitted.regressvi.random)

coefficients$gamma[which(summary.model.fit$gamma.BayesFactor>4)]

To obtain model predictions,

phat<-predict(fitted.regressvi.random)

table(phat$class, colData(finalSet)$Stage)

1 2 3

1 124 28 0

2 0 20 0

3 0 13 57

To determine the adequacy of a more parsimonious model, we then restricted attention to 

41 transcripts having gamma.BayesFactor>4. The reducedSet object is provided in the 

ordinalbayes package; however, due to the random nature of the MCMC sampling, the 

number of transcripts with a Bayes factor for γ could differ, so we demonstrate how we 

derived our object.

reducedSet<-finalSet[which(summary.model.fit$gamma.BayesFactor>4),]

fitted.regressvi.reduced<-ordinalbayes(Stage~1, data=colData(reducedSet),
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x=t(assay(reducedSet)), model=“regressvi”,

gamma.ind=“random”, c.gamma=100, d.gamma=1, seed=26)

Because we were using gamma.ind=“random”, we changed the parameter values for the 

variable inclusion indicator hyperprior to c.gamma=100, d.gamma=1 ensure virtually all 

transcripts would be included in each model. If fitting a model using gamma.ind=“fixed”, 

the hyperprior pi.fixed=0.99 would accomplish the same thing. This smaller model only 

took 9.1 min to complete.

phat.reduced<-predict(fitted.regressvi.reduced)

table(phat.reduced$class, colData(reducedSet)$Stage)

1 2 3

1 120 9 1

2 4 45 7

3 0 7 49

This more parsimonious model that included 41 transcripts had a misclassification rate of 

11.6%. The class-specific misclassification rates [Stage I (3.2%), Stage II (26.2%), Stage 

III/IV (14.0%)] may indicate that smaller classes are more difficult to predict. To obtain the 

hypervolume under the ROC manifold, we load the mcca R package [43] and use the hum 

function and estimate the 95% confidence interval using the bootstrap method.

library(“mcca”)

hum.fit <- hum(colData(reducedSet)$Stage, phat.reduced$predicted,

method = “prob”)

hum.fit

hum.ci <- ests(y = colData(reducedSet)$Stage, d = phat.reduced$predicted,

acc = “hum”, level = 0.95, method = “prob”)

hum.ci

$value

[1] 0.8645291

$se

[1] 0.02955225

$interval

[1] 0.7996765 0.9144449

The mcca R package additionally includes a plot function that can be used to explore the 

plot of the three-dimensional ROC surface.
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Appendix C. User-Defined Parameters in Ordinalbayes Function

Table A1.

ordinalbayes parameters available for all models.

Parameter Description and Default Values

alpha.var Variance for αk in the MCMC chain (default 10)

coerce.var Variance associated with any unpenalized predictors in the MCMC chain (default 10)

adaptSteps Number of iterations for adaptation (default 5000)

burnInSteps Number of iterations of the Markov chain to run (default 5000)

nChains Number of parallel chains to run (default 3)

numSavedSteps Number of saved steps for each chain (default 9999)

thinSteps The thinning interval for monitors (default 3)

parallel Run the MCMC on multiple processors (default TRUE)

model Specify which penalized ordinal model to fit (default regressvi)

center If TRUE (default), center the variables to be penalized in the model

scale If TRUE (default), scale the variables to be penalized in the model

seed An integer value for the random seed to ensure reproducibility

quiet If TRUE, suppress output of JAGS (or rjags) when updating models (default FALSE)

Table A2.

ordinalbayes parameters for each penalized ordinal Bayesian model.

Model Parameters in Ordinalbayes Call to 
Specify Description

lasso a, b
The penalty parameter λ ∼Gamma(a, b) (default a = 
0.1, b = 0.1)

normalss sigma2.0 The variance for the spike (set to some small positive value, 
e.g., 0.01)

sigma2.1 The variance for the slab (set to some large positive value, 
e.g., 10)

gamma.ind=“fixed”, 
pi.fixed

Use a constant prior for πj of pi.fixed (default 0.05)

gamma.ind=“random”, 
c.gamma, d.gamma

Use a random prior for πj ∼Beta(c.gamma, 
d.gamma), for example, c.gamma = 0.01, 
d.gamma = 0.19.

dess a, b
The penalty parameter λ ∼Gamma(a, b) (default a = 
0.1, b = 0.1)

lambda0 The parameter value for the spike, e.g., lambda0 = 20

gamma.ind=“fixed”, 
pi.fixed

Use a constant prior for πj of pi.fixed (default 0.05)

gamma.ind=“random”, 
c.gamma, d.gamma

Use a random prior for πj ∼Beta(c.gamma, 
d.gamma), for example, c.gamma = 0.01, 
d.gamma = 0.19.
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Model Parameters in Ordinalbayes Call to 
Specify Description

regressvi a, b
The penalty parameter λ ∼Gamma(a, b) (default a = 
0.1, b = 0.1)

gamma.ind=“fixed”, 
pi.fixed

Use a constant prior for πj of pi.fixed (default 0.05)

gamma.ind=“random”, 
c.gamma, d.gamma

Use a random prior for πj ∼Beta(c.gamma, 
d.gamma), for example, c.gamma = 0.01, 
d.gamma = 0.19.

Abbreviations

The following abbreviations are used in this manuscript:

MDPI Multidisciplinary Digital Publishing Institute

FIGO International Federation of Gynecology and Obstetrics

TCGA The Cancer Genome Atlas Project

CRAN Comprehensive R Archive Network

HPV Human Papilloma Virus

LASSO Least Absolute Shrinkage and Selection Operator

MCMC Markov Chain Monte Carlo

DE Double exponential

PSRF potential scale reduction factor

HTSeq High-throughput sequencing

FFPE Formalin-Fixed Paraffin-Embedded

FDR False discovery rate
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Table 1.

Transcripts significant from the regression-based variable inclusion indicator Bayesian ordinal model when 

testing H0j : γj = 0 versus Haj : γj = 1 using the Bayes factor and a threshold of 4. Annotation information 

obtained on 28 February 2022 from https://www.ncbi.nlm.nih.gov/gene, https://www.genecards.org, and 

https://lncipedia.org.

Ensemble ID Gene Symbol Chr γ

ENSG00000076344 RGS11 16 0.179

ENSG00000077274 CAPN6 X 0.264

ENSG00000101888 NXT2 X 0.194

ENSG00000115548 KDM3A 2 0.174

ENSG00000122884 P4HA1 10 0.186

ENSG00000125430 HS3ST3B1 17 0.286

ENSG00000131370 SH3BP5 3 0.175

ENSG00000135443 KRT85 12 0.334

ENSG00000136457 CHAD 17 0.179

ENSG00000138398 PPIG 2 0.240

ENSG00000150636 CCDC102B 18 0.281

ENSG00000161277 THAP8 19 0.283

ENSG00000163510 CWC22 2 0.301

ENSG00000164485 IL22RA2 6 0.196

ENSG00000164651 SP8 7 0.231

ENSG00000166091 CMTM5 14 0.215

ENSG00000166342 NETO1 18 0.197

ENSG00000171121 KCNMB3 3 0.186

ENSG00000177173 Pseudogene, parent NAP1L4P1 1 0.258

ENSG00000180229 HERC2P3 15 0.196

ENSG00000188817 SNTN 3 0.236

ENSG00000197360 ZNF98 19 0.214

ENSG00000203601 LINC00970 1 0.316

ENSG00000225449 RAB6C-AS1 2 0.235

ENSG00000230201 Pseudogene, parent ATP6V0CP1 17 0.286

ENSG00000233996 Pseudogene, parent KDM3AP1 2 0.248

ENSG00000236138 DUX4L26 3 0.247

ENSG00000236819 LINC01563 17 0.311

ENSG00000250602 lnc-ALDH7A1-1 5 0.246

ENSG00000253923 Pseudogene, parent HSPE1 8 0.302

ENSG00000256980 KHDC1L 6 0.207

ENSG00000259083 lnc-TRAPPC6B-1 14 0.263

ENSG00000259134 LINC00924 15 0.352

ENSG00000260484 lnc-OPRK1-2 8 0.263

ENSG00000263612 lnc-ZNF517-4 8 0.228

ENSG00000264049 MIR4737 17 0.266
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Ensemble ID Gene Symbol Chr γ

ENSG00000264954 PRR29-AS1 17 0.221

ENSG00000265579 lnc-CBLN2-1 18 0.227

ENSG00000271711 Pseudogene, parent SAP30 3 0.264

ENSG00000272071 lnc-PAPD7-2 5 0.279

ENSG00000276517 Lnc-TTC27-9 2 0.221
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