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Abstract

MiRNAs and proteins play important roles in different stages of breast tumor development

and serve as biomarkers for the early diagnosis of breast cancer. A new algorithm that com-

bines machine learning algorithms and multilayer complex network analysis is hereby pro-

posed to explore the potential diagnostic values of miRNAs and proteins. XGBoost and

random forest algorithms were employed to screen the most important miRNAs and pro-

teins. Maximal information coefficient was applied to assess intralayer and interlayer con-

nection. A multilayer complex network was constructed to identify miRNAs and proteins that

could serve as biomarkers for breast cancer. Proteins and miRNAs that are nodes in the net-

work were subsequently categorized into two network layers considering their distinct func-

tions. The betweenness centrality was used as the first measurement of the importance of

the nodes within each single layer. The degree of the nodes was chosen as the second mea-

surement to map their signalling pathways. By combining these two measurements into one

score and comparing the difference of the same candidate between normal tissue and can-

cer tissue, this novel multilayer network analysis could be applied to successfully identify

molecules associated with breast cancer.

Introduction

Breast cancer is the second leading cause of cancer death among women and results in millions

of new cases every year [1]. Often assuming regulatory roles in eukaryotic cells, miRNAs are

small, non-coding RNAs of roughly 20~22 nucleotides that can bind to and inhibit protein cod-

ing mRNAs [2]. The expression profiles of miRNAs are correlated with cancer type, stage, and

other clinical variables [3]. Therefore, miRNA expression profiling could be a useful tool for

cancer diagnosis and prognosis. MiRNAs play important roles in almost all aspects of cancer

biology, including proliferation, apoptosis, tissue invasion, metastasis, and angiogenesis [4].

miRNAs also play important roles in toxicogenomics and may explain the relationship between

toxicant exposure and tumorigenesis. Previous work has identified 63 miRNA genes shown to

be epigenetically regulated in association with 21 diseases, including 11 cancer types [4]. Many
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proteins have known oncogenic properties that contribute to tumorigenesis. Therefore, proteo-

mics data could also be used to study the characteristics and observe the presence of cancer [5].

In recent years, there is growing interest to investigate the role of mircoRNA (miRNA) in

normal and malignant cells. The expression profiling of miRNAs has already entered into can-

cer clinics as diagnostic and prognostic biomarkers to assess tumor initiation, progression and

response to treatment in cancer patients[6][7][8]. The peer-reviewed scientific literatures on

miRNAs in cancer are huge and their role in cancer is very diverse both in terms of the disease

and experimental approaches used by the investigators.

Increasing understanding of the molecular misregulation underlying carcinogenesis had

created opportunities to use miRNAs as diagnostic and prognostic indicators. Many signature

miRNAs have been identified and investigated in clinical trials. Such as miR-10b in Glioma[9];

miR-29 in Head and neck squamous cell carcinoma[10]; circulating miRNAs in Ovarian can-

cer[11], etc.

Binding of miRNAs to mRNAs leads to destabilization or translational repression of the tar-

get mRNA, which in turn regulates the expression of protein. Multiple miRNAs and proteins

known to be involved in different signalling pathways are deregulated in breast cancer. For

example, by targeting the NF-κB and TGF-β pathways, miR-520/373 family is a tumor sup-

pressor in estrogen receptor negative breast cancer [12]. Overexpression of miR-221/222 also

leads to deregulation of multiple oncogenic signalling pathways [13]. Claudin-5 is involved in

breast cancer cell motility through the N-WASP and ROCK signalling pathways [14]. Finally,

Piwil2 plays an important role in pathways involved in proliferation and anti-apoptosis in the

breast cancer stem cells [15].

MicroRNAs (miRNA) and proteins, frequently dysregulated in cancers, could serve as bio-

markers for breast cancer. Therefore, identifying these miRNAs and proteins could facilitate

early diagnosis of breast cancer. Machine learning plays increasingly important roles in cancer

diagnosis [5]. Algorithms such as Bayes, decision tree, and support vector machine, are widely

used in the classification of breast cancer [16]. Deep learning methods like convolutional neural

network are also prevalent in the analysis of biopsy images of cancer [17]. Previous studies have

compared the performance of various statistical methods in classifying cancer based on Mass

Spectrometry (MS) spectra. These methods encompass linear discriminant analysis, quadratic

discriminant analysis, k-nearest neighbour classifier, bagging and boosting classification trees,

support vector machine, and random forest (RF). It has been demonstrated that RF outperforms

other methods in the analysis of MS data [18]. As a result, the RF algorithm was adopted for fil-

tering miRNAs and proteins, thereby retaining the most relevant biomarkers. Furthermore, to

reduce the chance of missing important biomarkers, two established ensemble learning meth-

ods—random forests and XGBoost, were employed to complete the feature selection result.

Multilayer network, incorporating multiple channels of connectivity in a system, has been

studied extensively in multiple disciplines [19][20]. However, applying multilayer network to

study the biology complex systems is a recent development. Multilayer network analysis tech-

nique could integrate different layers of genomic information [21], facilitate understanding of

cancer complexome [22], and find the node that plays the most central roles in the whole

structure [23][24]. To improve understanding of interaction between miRNAs and cancer pro-

tein, multilayer networks consisting of protein and miRNA expression was constructed in this

study. In the multilayer network, miRNAs and proteins are regarded as nodes in each layer.

Both the Maximal information coefficient (MIC) values between nodes within each layer and

between two separate layers were computed to determine whether there exists intralayer and

interlayer edges between any two nodes under a specific threshold of MIC. This model consists

of multiple subsystems and multiple connectivity layers, allowing different dynamic processes

to be coupled and improving our visual understanding of multilayer systems. In particular,
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this biological multilayer network model exhibits the interrelationship between the miRNA

and protein, thereby studying their combined action on cancer at different scales and levels.

To better understand their roles in the context of biological networks, miRNA and protein

expression profile networks were constructed for both normal and breast tissues. Furthermore,

due to the large number of miRNAs and proteins, in order to prevent analysis process from

interference of unrelated variables, random forest model and XGBoost were applied to filter

miRNAs and proteins before establishing a multilayer network. The filtered molecules were

used as nodes in the network. Both threshold and MIC values between every two nodes deter-

mined the final structure of the multilayer network. Comparing the betweenness centrality of

the node between health control and patient samples could lead to the novel finding of miR-

NAs and proteins related to cancer.

Materials and methods

Data

Experimental data were collected from the Cancer Genome Atlas/TCGA (https://portal.gdc.

cancer.gov/projects/TCGA-BRCA). The cohort of TCGA study consists of 1097 patients.

Among then, 1085 are females and 12 are males. 757 are white, 183 are black or African Ameri-

can, 61 are Asians, 1 is American Indian or Alaska native and 95 are unreported. miRNA expres-

sion data consists of 1182 tissues samples exploring expression level of 1881 different miRNAs.

Among them, 1078 cases are tumor tissues and 104 cases are paracancerous normal tissues. Pro-

tein expression data consists of 925 tissues samples investigating expression level of 285 candi-

date proteins. 882 cases are tumor tissues and 43 cases are paracancerous normal tissues.

The miRNA expression data and protein expression data were obtained from the same

patient. By considering the bias raised by different studies, it is highly recommended to use the

data from the same study for the analysis. Other physiological factors in different individuals

will affect the accuracy of the analysis results. In order to avoid this effect, we selected paracan-

cerous normal tissues of the same individual as controls.

Expression data of primary solid tumor and normal tissues were categorized. For both pro-

teins and miRNAs, candidates with expression level with a value of zero are considered as

noise and then filtered in the further analysis. After filtering, the miRNA and protein expres-

sion data dimensions ultimately used for analysis were 1182×320 and 925×147 (the number of

miRNA tissue samples was 1182, and the number of miRNA species was 320; the number of

protein tissue samples was 925, and the number of protein species was 147).

Process overview

Schematic representation of data processing and analysis is shown (Fig 1). XGBoost and ran-

dom forest algorithms were employed for feature selection, and the results were used for the

subsequent processing step. Subsequently, MIC value for any two nodes was calculated, so that

the weight network of expression data can be obtained. By setting specific threshold, the MIC

values are then converted into Boolean variables, resulting in a complex network without

weights. Finally, score related to breast cancer of each node was computed and nodes were

ranked by scores.

Random forest algorithm and feature selection

Since random forest performed well on Mass Spectrometry spectra data, the same method was

used for miRNA and protein expression profiles data [18]. Random forest [25], as one kind of

ensemble learning method, in which each learning algorithm is a decision tree. Unlike in an
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ordinary decision tree, k attributes are first selected as candidate attributes, one of which is

selected to divide the tree node. Given the number of miRNAs and proteins is large, to reduce

computing costs, feature selection, one of the commonly data dimension reduction methods,

was applied. It is based on a criterion that selects parts of original features that can best separate

different types of samples. According to the feature evaluation strategy[26], feature selection

algorithm can be divided into Filter and Wrapper which are two complementary methods that

were combined to characterize the molecular expression levels of normal tissues and tumor tis-

sues. The Filter method is independent of the machine learning algorithm that was subsequently

adopted. This method calculates for each feature a statistic that can represent how well a feature

has distinguished the sample. On the other hand, the Wrapper method randomly selects a subset

of the feature set as a temporary feature set for the random forest model, wherein the set with

the smallest prediction error and fewer feature numbers serves as the final feature set.

XGBoost algorithm

XGBoost [27] is similar to Boosting for accurate classification through gradient iterations of

weak classifiers. In order to efficiently retrieve the best segmentation, the training data sets are

sorted before training. As both miRNA data and protein data are labeled, it belongs to super-

vised learning model. In XGBoost, the best model is selected by applying the accuracy rate

(or error rate) and the logistic loss as evaluation criterion. Then the best prediction is achieved

for the known training data set and the test data set under the optimized evaluation criterion.

Similar to random forests, each classifier is also a decision tree. Consider this similarity

between random forest and XGBoost, to avoid missing important cancer-associated molecules,

the results of feature selection of these two algorithms were merged into one set as the final fea-

ture set. The construction of the decision tree in the random forest algorithm is independent,

however, in the XGBoost algorithm, classifiers are not independent to each other, every latter

classifer is optimized based on the classifer result of the previous one. Formally, the mathemat-

ical model of XGBoost can be presented as the following formula:

ŷð0Þi ¼ 0

ŷð1Þi ¼ f1ðxiÞ ¼ ŷð0Þi þ f1ðxiÞ

ŷð2Þi ¼ f1ðxiÞ þ f2ðxiÞ ¼ ŷð1Þi þ f2ðxiÞ

. . .

ŷðtÞi ¼
Xt

k¼1

fkðxiÞ ¼ ŷðt� 1Þ

i þ ftðxiÞ;

ð1Þ

Fig 1. Schematic representation of data processing and analysis. Each icon denotes an analytical process. Icon 1 denotes

data containing miRNAs and proteins. Icon 2 shows the feature selection process, which includes XGBoost and random forest

algorithms. Icon 3 indicates calculation of the MIC value for every two nodes in the network, which represents the interaction

between nodes. Icon 4 is the process that generates edges in the network by setting a specific threshold of MIC. Icon 5

represents the construction of a multilayer network. Icon 6 is the final step of analysis process that gives each node an

importance score related to breast cancer.

https://doi.org/10.1371/journal.pone.0202311.g001
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where ŷðjÞi represents the classification result of the first j-th classifier. The XGBoost algorithm

adds a new function to the original model in each iteration. The reason to add a new function

is to minimize the loss of the objective function. By minimizing the following objective func-

tion Obj(Θ)(t) as follow:

ObjðYÞðtÞ ¼ LðYÞ þ OðYÞ ¼
Xn

i¼1

lðyi; ŷ
t
iÞ þ

Xt

i¼1

Oð fiÞ

¼
Xn

i¼1

lðyi; ŷ
ðt� 1Þ

i þ ftðxiÞÞ þ Oð ftÞ þ C

ð2Þ

where L(Θ) is the loss function to compute error of training set and O(Θ) is the regularization

term to control complexity of the base classifiers. We used the method of Taylor series expan-

sion to approximate the objective function:

ObjðYÞðtÞ ¼
Xn

i¼1

ðyi � ðŷ
ðt� 1Þ

i þ ftðxiÞÞÞ

2

þ OðftÞ þ C

¼
Xn

i¼1

ð2ðŷðt� 1Þ

i � yiÞftðxiÞ þ f 2

t ðxiÞÞ þ Oð ftÞ þ C

�
Xn

i¼1

lðyi; ŷðt� 1Þ

i Þ þ @ŷðt� 1Þ

i
lðyi; ŷðt� 1Þ

i ÞftðxiÞ

þ0:5� @2

ŷðt� 1Þ

i
lðyi; ŷðt� 1Þ

i Þf 2
t ðxiÞ

0

B
@

1

C
Aþ Oð ftÞ þ C

¼
Xn

i¼1

ðlðyi; ŷðt� 1Þ

i Þ þ gi ftðxiÞ þ 0:5� hi f
2

t ðxiÞÞ þ Oð ftÞ þ C

ð3Þ

Where gi represents the first derivative of the function lðyi; ŷ
ðt� 1Þ

i Þ, and hi represents the second

derivative of the function lðyi; ŷ
ðt� 1Þ

i Þ.

The breast cancer data used in this paper are all classified as two categories, one is tumor tis-

sue data and the other one is paracancerous normal tissue data. Logistic function was selected

as the loss function for the model. For tree structure splitting in the training, each miRNA and

protein representing a leaf node will split. The training samples on each leaf node will get a

probability value that is fed back through the model. The loss function is applied in the train-

ing, so the effective splitting features and optimal splitting points can be obtained by the loss

function before and after the leaf nodes are splitted. As long as the sample cumulative loss

function on each leaf node is minimized, the loss function of the overall sample set is mini-

mized. At the end, the final model with the smallest loss function can be obtained.

Maximal information coefficient

Mutual information has been widely used to find non-linear relationships between two vari-

ables. Reshef [28] proposed the method of Maximal Information Coefficient (MIC) based on

mutual information. The primary advantage of MIC is that a broad correlation analysis can be

captured on a sufficient number of statistical samples. M(X,Y) represents the population fea-

ture matrix of X,Y.

MðX;YÞs;t ¼
I�ððX;YÞ; s; tÞ
log minfs; tg

s; t > 1 ð4Þ

Multilayer network analysis of miRNAs and proteins
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where I(X,Y) is interactive information of X and Y, s,t are the number of divisions on the hori-

zontal and vertical axes, s t< n0.6 (empirical values), and n is the number of samples.

For the miRNAs and proteins screened by the algorithm above, each miRNA or protein is

treated as a node, and its expression level in different patients is the attribute of the node. In

this study, to measure the correlation between any two molecules in the network, the MIC val-

ues between any two nodes were calculated. The greater the MIC is, the stronger the correla-

tion is.

Multilayer network

Multilayer network is denoted by M = (G,C), where G = {Gα;α 2 {1,2,. . .,m}} is a set of single

layer networks which is denoted as Gα = (Xα,Eα). Xα and Eα is the set of nodes and edges

belongs to the layer Gα, respectively. C = {Eαβ�Xα × Xβ;α, β 2 {1,2,. . .,m}, α 6¼ β} represents

the set of edges that connects the nodes in different layers. Elements in C are called cross-layer

connected edges. Element in Eα is called the intra-layer node connection of M. The set of

nodes in layer Gα is denoted as: Xa ¼ fxa1; . . . ; xaNag, and the adjacency matrix in layer Gα is

denoted as:

A½a� ¼ ðaaijÞ 2 R
Na�Na ; aaij ¼

1; ðxai ; x
a
j Þ 2 Ea

0; ðxai ; x
a
j Þ =2 Ea

1 � i; j � Na; 1 � a � m:

(

ð5Þ

The adjacency matrix in cross-layer Eαβ is denoted as:

A½a;b� ¼ ðaabij Þ 2 R
Na�Nb ; aaij ¼

1; ðxai ; x
b
j Þ 2 Eab

0; ðxai ; x
b
j Þ =2 Eab

:

(

ð6Þ

In this study, a single layer network was established between miRNAs, and another single

layer network was composed of proteins, which together constituted a two-tier multilayer net-

work. The structure of a multi-layered network can sort out the internal interactions of the

same kind of molecules while also taking into account the interactions of different kinds of

molecules. Thanks to multilayer structure, in the process of cancer-associated biomarker rec-

ognition, the identification of a molecule will no longer be limited to the interaction of the

same kind of molecules.

Betweenness centrality

The betweenness centrality [29] can measure the importance of nodes in the network. If the

two network nodes, vi and vj are two non-adjacent nodes, the shortest path between them will

pass through some nodes. If the certains nodes exists in many of these paths, one can infer that

the node is relatively important. The betweenness centrality of node Bk is represented as:

IijðvkÞ ¼
1; vk appears in the shortest path of vi and vj

0; other

( )

; ð7Þ

Bk ¼

X

k6¼i6¼j

IijðvkÞ

N
; ð8Þ

where N represents the number of shortest paths. The betweenness centrality reflects the role

of the node in the entire network and has a strong practical significance. In different networks,

if the betweenness centrality of the same molecule is distinctly different, thereby indicating
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that this molecule (miRNA or protein) has played a significant role in the breast cancer. In this

study we adopted the centrality function of MatLab to calculate the betweenness centrality of

the nodes.

Importance score of nodes

To determine the importance score of nodes in the miRNA layer related to breast cancer,

BmiRNA
normal ¼ fB

miRNA
normal;kg and BmiRNA

cancer ¼ fB
miRNA
cancer;kg were used to represent betweenness centrality of

nodes of normal tissue and cancer tissue, respectively. In miRNA layer, difference in between-

ness centrality of the same miRNA belongs to different tissues is taken as importance score of

nodes related to breast cancer. We standardize BmiRNA
k as follows:

B�miRNA
k ¼

BmiRNA
k � EðBmiRNAÞ

sðBmiRNAÞ
; ð9Þ

Difference in betweenness centrality, denoted as BmiRNA ¼ fjBmiRNA
normal;k � BmiRNA

cancer;kjg ¼ fB
miRNA
k g,

σ(BmiRNA) represents the standard deviation of the BmiRNA set, and E(BmiRNA) represents the

mean of the BmiRNA set. DmiRNA
normal;k represents the degree of node k in the miRNA network of nor-

mal tissue. Note that the calculation of degree here only considers cross-layer connected edges:

DmiRNA
normal;k ¼

X

k6¼j

amiRNA�protein
kj ; amiRNA�protein

kj 2 A½miRNA;protein�: ð10Þ

Similarly, DmiRNA
cancer;k represents the same indicator of cancer tissue. Absolute value of differ-

ence of degree is DmiRNA ¼ fjDmiRNA
normal;k � DmiRNA

cancer;kjg ¼ fD
miRNA
k g. We standardize DmiRNA

k as fol-

lows:

D�miRNA
k ¼

DmiRNA
k � EðDmiRNAÞ

sðDmiRNAÞ
;DmiRNA ¼ DmiRNA

k

� �
: ð11Þ

Degree distribution is often power law distribution. However, by the Jarque-Bera test,

fBmiRNA
normal;k � BmiRNA

cancer;kg can be considered as normal distribution when the MIC threshold is 0.35

(alpha = 0.05, p = 0.1592). Finally, the importance score of node k in the miRNA network is:

SmiRNA
k ¼ jB�miRNA

k j þ jD�miRNA
k j: ð12Þ

In the same way, calculate the score of the protein molecule as Sprotein
k .

Results

Feature selection

XGBoost for feature selection. Because of the imbalance between positive and negative

samples of miRNA and protein expression data, up-sampling was used to amplify positive

samples. The leave-one-out method was used to train and validate the datasets. The error rate,

logic loss, Root Mean Squared Error (RMSE) of the training and testing datasets (Fig 2a) grad-

ually decrease in the model, and the Area under the Curve of ROC (AUC) (Fig 2a) gradually

increases and stabilizes after 35 iterations. The error rates are 0.0005, 0.005; logical loss values

0.0098, 0.0274; the AUC values close to 1, 1; and the RMSE values 0.0293, 0.0709 in the train-

ing and testing datasets, respectively. Similarly, the XGBoost algorithm has a high accuracy for

classification on miRNA expression data. Computation of importance scores (Fig 2b) through

the use of XGBoost algorithm suggests that mir.139, mir.21, mir.183, mir.96, mir.190b and

mir.6507 are significantly associated with breast cancer.

Multilayer network analysis of miRNAs and proteins
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Error rate logic loss and RMSE of the training and testing datasets decrease in the model,

whereas the AUC gradually increases then stabilizes after 30 iterations (Fig 3a). The error rates

are 0, 0.0118 in the training and testing datasets, respectively; logical loss values are 0.0074,

0.04; AUC values are 1, 0.999; and the RMSE values are 0.0126, 0.0941. Similarly, the XGBoost

algorithm is accurate in classifying protein expression data. Importance score as calculated by

XGBoost shows that Bax, GSK3.alpha.beta, E-cadherin, Rab11, Caveolin.1 and Collagen_VI
contribute to the high classification accuracy of tumor and normal tissue in breast cancer

(Fig 3b).

XGBoost classification algorithm further shows that some of the classified miRNA (mir.139
[30], mir.21 [31], mir.96 [32], mir.183 [33]), and protein (Bax [34], GSK3 [35] and mTOR [35],

E-cadherin [36], Rab11 [37], caveolin.1 [38]) functions are related to breast cancer.

Random forest for feature selection. To estimate the accuracy of the classification,

10-fold cross-validation method was used to assess the classification model (Table 1). When

the number of selected miRNAs is 50 in the breast cancer dataset, the cross-validation accuracy

rate is 98.50%.

The accuracy coefficient measures the correct rate of sample classification, and the Kappa

[39] coefficient is used for checking consistency and could also measure the effect of classifica-

tion accuracy. As accuracy and Kappa coefficients increase, their standard deviations decrease

(Table 1).

Fig 2. Analysis results of miRNAs based on XGBoost algorithm. (a) The trend of error rate, logistic loss, AUC and

RMSE in the training and testing of miRNA expression data. Iteration steps (x-axis) as well as error rate, logistic loss,

AUC and RMSE (y-axis in each of the four panels). Each panel has two lines representing the training set (blue) and

test set (red). (b) Ranking of important miRNA candidates. miRNA candidates (x-axis) and the importance score of

each miRNA candidate (y-axis), as determined through XGBoost algorithm, are shown.

https://doi.org/10.1371/journal.pone.0202311.g002

Fig 3. Analysis results of proteins based on XGBoost algorithm. (a) The trend of error rate, logistic loss, AUC and

RMSE in the training and testing of protein expression data. The x-axes represent iteration steps and y-axes represent

value of error rate, logistic loss, AUC and RMSE, respectively. Every subgraph has two lines represent the training set

and test set, respectively. (b) The ranking of important variables of protein. The x-axis represents the protein molecules

and y-axis represents the importance score of proteins computed by XGBoost algorithm which is different from the

score at the end in this study.

https://doi.org/10.1371/journal.pone.0202311.g003
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In this study, four cancer-associated miRNAs were screened by XGBoost algorithm, and

three of them, namely mir.21, mir.96, and mir.183, were screened out by random forests. A

comparison of the two miRNA datasets indicated that 28% of the feature selections are consis-

tent. Similar to the analysis miRNA datasets, a 10-fold cross-validation method was used to

assess the classification model to obtain protein classification (Table 2).

For breast cancer datasets, when the number selected proteins is 10, the cross-validation

accuracy is 94.76%. In the 10 selected proteins, Bax [34], GSK3 [35], E-cadherin [36], caveolin-
1 [38], PI3K [40], Collagen [41], XBP1 [42], Syk [43] were found to be significantly associated

with breast cancer.

Summary of feature selection. After obtaining two miRNA candidate sets and two pro-

tein candidate sets selected by two algorithms, the union of the two miRNA sets was taken as

the final miRNA candidate set, in the same manner, the final proteins candidate set was

obtained. The number of selected miRNA sets is 86, and the number of selected protein sets is

30.

Calculate MIC and threshold setting

As the MIC increases, the number of nodes and edges decreases. If the selected MIC threshold

is so small that the number of nodes and edges in both network becomes too large, identifica-

tion of nodes that have significant differences becomes more difficult. If the selected MIC

threshold is so large that the network becomes too sparse, many connections are missed,

which is not conducive to analyze the relationship between the nodes. MIC was calculated

between any two candidates in the miRNA and protein datasets obtained through feature

selection, and the threshold was set to 0.2, 0.35, and 0.5.

Under the MIC threshold of 0.5, miRNA network of cancer tissue and normal tissue was

plotted (Fig 4). The cancer network (Fig 4a) is sparser than the normal network (Fig 4b). This

finding indicates that the interaction of miRNA networks differs significantly by cell type and

Table 1. miRNA classification results by random forest algorithm.

Number of miRNAs Accuracy coefficient Kappa coefficient Accuracy coefficient SD Kappa coefficient SD

10 0.9605 0.9208 0.0314 0.06298

20 0.9800 0.9600 0.02582 0.05164

30 0.9755 0.9508 0.02582 0.05164

50 0.9850 0.9700 0.02415 0.04830

60 0.9850 0.9700 0.02415 0.04830

70 0.9800 0.9600 0.03496 0.06992

80 0.9850 0.9700 0.02415 0.04830

100 0.9850 0.9700 0.02415 0.04830

https://doi.org/10.1371/journal.pone.0202311.t001

Table 2. Protein classification results by random forest algorithm.

Number of Proteins Accuracy Kappa Accuracy SD Kappa SD

10 0.9476 0.8952 0.09024 0.1770

20 0.9342 0.8691 0.09068 0.1789

30 0.9342 0.8691 0.09068 0.1789

50 0.9231 0.8448 0.10284 0.2081

60 0.9231 0.8448 0.10284 0.2081

70 0.9231 0.8448 0.10284 0.2081

78 0.9231 0.8448 0.10284 0.2081

https://doi.org/10.1371/journal.pone.0202311.t002
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supports the use of complex networks for breast cancer analysis. Similarly, under the MIC

threshold of 0.5, protein network of cancer tissue and normal tissue was also plotted.

The protein network also shows the same characteristics as miRNAs, that the network of

cancerous tissue is much sparser than that of normal tissue (Fig 5). Because the miRNA net-

work of cancer cells has a small number of nodes at an MIC threshold of 0.5 and may miss

some important proteins, we decided not to use this MIC threshold to construct a complex

network.

Figure analysis was applied to determine which MIC threshold should be adopted. While

the number of nodes varies inappreciably when MIC threshold is set to 0.35, the number of

connections between nodes is significantly reduced, suggesting that these complex networks

are distinct.

Several principles were considered when selecting a threshold. Firstly, the MIC threshold

selected must not lead to the loss of too many nodes. For instance, in the analytical process

described, less than 5% of nodes are lost. Secondly, the number of edges of the network could

not be too small, and the number of edges of the two networks must be significantly different.

Number of edges in the miRNA network of normal tissue (Fig 6b) is about 1.59 times that in

the miRNA network of cancer tissue (Fig 6a).

Fig 4. miRNA network of cancer tissue and normal tissue. (a) miRNA network of cancer tissue containing

candidates with MIC greater than 0.5; (b) miRNA network of normal tissue containing MIC greater than 0.5. The size

of the node represents node degree which is the number of connections it has to other nodes and the color darkness of

the edge represents the size of the MIC value.

https://doi.org/10.1371/journal.pone.0202311.g004

Fig 5. Protein network of cancer tissue and normal tissue. (a) Protein network of cancer tissue containing

candidates with MIC greater than 0.5; (b) Protein network of normal tissue containing candidates with MIC greater

than 0.5. The size of the node represents the size of the degree, and the color depth of the edge represents the size of the

MIC value.

https://doi.org/10.1371/journal.pone.0202311.g005
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Through observing the difference in structure of network under different thresholds (Fig

7), it was be found that when the MIC threshold is 0.35, the decrease in the number of network

nodes is not obvious, effectively fulfilling the first principle of threshold selection. Difference

in the number of edges between the two networks is also kept at a relatively high level; that is,

this MIC threshold could effectively differentiate the two networks, which is in accordance

with the second principle of threshold selection. Therefore, we selected 0.35 as the MIC thresh-

old for analysis.

Multilayer network

Multilayer networks were generated after calculating MIC between nodes and setting MIC

thresholds to 0.2, 0.35, or 0.5 (Fig 8).

A multilayer network with a threshold of 0.2 had more edges than other multilayer network

with higher threshold, which causes the impact of key connections in the network become

Fig 6. Relationship between MIC threshold and the number of nodes and edges. Analyses of miRNA networks of

cancer tissue (a) and normal tissue (b), as well as protein networks of cancer tissue (c) and normal tissue (d) are shown.

The x-axes represent threshold of MIC, y-axis to the left of each figure represents number of nodes and y-axis to the

right represents number of edges in the network. Each figure shows the number of nodes or edges corresponding to a

threshold of 0.35.

https://doi.org/10.1371/journal.pone.0202311.g006

Fig 7. Relationship between MIC threshold and structure differences within the (a) miRNA network and (b) protein

network. Curve Y1, which is obtained by subtracting the number of edges of the normal tissue and the cancer tissue

network, represents the structural difference between the two networks. Curve Y2, which is obtained by selecting the

smaller values of the number of nodes of the normal tissue and the cancer tissue network, represents the richness of the

nodes of both networks. The x-axis of each figure denotes threshold of MIC and the y-axis indicates the value

corresponding to Y1 and Y2.

https://doi.org/10.1371/journal.pone.0202311.g007
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smaller. Hence, under the threshold of 0.2, two types of cells is difficult to be distinguished

well with this threshold. When the threshold is 0.5, there are obvious differences between the

two multi-layer networks, but the number of edges is sparse and some important relationships

may be mistakenly omitted. These problems are averted when the threshold of 0.35 is used,

which affirms the use of this threshold.

Node ranking

To better understand the details of the networks, the nodes representing different candidates

were ranked according to betweenness centrality and node degree (Figs 9 and 10).

Among the top 15 miRNAs, the relationships of 11 miRNAs with breast cancer in previ-

ously published studies were confirmed (Table 3).

Among the selected proteins, we were able to confirm the relationships of the top 10 pro-

teins with breast cancer using published literature (Table 4).

Discussion

The multilayer network analysis proposed helps identify miRNAs and proteins that could be

associated with breast cancer. While biomarkers were previously selected using machine learn-

ing, this study is novel in that a combination of machine learning and multilayer network

methods was used.

This combinatorial approach to identify cancer biomarkers could prevent missing critical

miRNA or protein candidates and ensure a more robust analysis. For example, the final rank-

ing of nodes generated from multilayer network method in combination with machine learn-

ing differs from that using machine learning alone. This finding suggests that the

combinatorial effect of multilayer network analysis and machine learning yields more compre-

hensive information. It also shows that the multilayer network analysis method could facilitate

the discovery of novel molecular candidates.

Fig 8. The multilayer network of cancer tissue and normal tissue. The multilayer networks were constructed for

cancer tissue (a, c, e) and normal tissue (b, d, f) with MIC greater than 0.2 (a & b), MIC greater than 0.35 (c & d), and

MIC greater than 0.5 (e & f). The red layer is the protein layer and the blue layer is the miRNA layer.

https://doi.org/10.1371/journal.pone.0202311.g008
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Fig 9. Score ranking of miRNAs. The horizontal axis represents each molecule (top 30 scores), and the vertical axis represents the magnitude of the importance score.

The x-axis represents miRNA molecule, and y-axis represents score of miRNAs. The scores of the intra-layer edges (node betweenness) are displayed in the lower parts

of the bars and the scores of the inter-layer edges (node degree) are displayed in the upper parts of the bars.

https://doi.org/10.1371/journal.pone.0202311.g009

Fig 10. Score ranking of protein. The horizontal axis represents each molecule, and the vertical axis represents the magnitude of the importance score. The x-axis

represents miRNA molecule and y-axes represents score of proteins. The scores of the intra-layer edges (node betweenness) are displayed in the lower parts of the bars

and the scores of the inter-layer edges (node degree) are displayed in the upper parts of the bars.

https://doi.org/10.1371/journal.pone.0202311.g010
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Although published work has described miRNA or protein networks of expression profiles

separately, interrelationships between two networks have not been thoroughly investigated. To

address this knowledge gap, the interrelationship between miRNA and protein networks was

studied through the MIC. The most suitable MIC threshold was determined by analyzing the

Table 3. Cancer-related miRNAs.

miRNA

Candidate

Description

mir-203a [44] Reconstitution of Runx2 in MDA-MB-231-luc cells delivered with miR-203 reverses the

inhibitory effect of the miRNAs on tumor growth and metastasis.

mir-141 [45] miR-141 has distinct profiles in EGF-dependent breast cancer cell invasion, proliferation, and

cell cycle progression.

mir-374a [46] The Wnt/β-catenin signaling is hyperactivated in metastatic breast cancer cells that express miR-
374a.

mir-28 [47] In breast cancer cells, miR-28 regulates Nrf2 expression at the posttranscriptional level by

binding to the 30UTR of Nrf2 mRNA and resulting in Nrf2 mRNA degradation.

mir-155 [48] miR-155 expression is upregulated in breast cancer cells, which reduces the levels of RAD51 and

affects the cellular response to ionizing radiation.

mir-193a [49] miR-193a expression is downregulated in breast cancer cell lines and tissues when compared

with the adjacent non-tumor tissues.

mir-365b [50] miR-365 expression levels are significantly higher in breast cancer tissues when compared with

adjacent non-tumor tissues.

mir-1301 [51] miR-1301 is overexpressed in breast cancer tissues and cell lines and cell tissues, whereas

downregulation of miR-1301 inhibits the proliferation of breast cancer cells in vitro.

mir-200c [52] For the claudin-low breast cancer, miR-200c has therapeutic effects in an in vivo model.

mir-10a [53] The median expression levels of miR-10b in tumor tissue when compared with adjacent non-

tumor tissue are significantly higher in relapsed patients than in relapse-free patients.

mir-148b [54] miR148b is a major coordinator of breast cancer progression in a relapse-associated microRNA

signature.

https://doi.org/10.1371/journal.pone.0202311.t003

Table 4. Cancer-related Proteins.

Protein Candidate Description

E-Cadherin-R-V
[36]

E-cadherin is regulated epigenetically via methylation of the promoter in most intraductal

breast carcinomas.

Caveolin-1-R-V [38] Caveolin-1 expression is significantly decreased in breast cancer-associated fibroblasts

compared to normal fibroblasts and is associated with increased invasion-promoting

capacity.

PI3K-p85-R-V [40] The inhibition of PI3K promotes ER activity, as manifested by increases in ER binding to

target promoters and ER target gene expression.

Collagen_VI-R-V
[41]

Collagen VI are upregulated in breast cancer, generating a microenvironment that promotes

tumour progression and metastasis.

Rictor-R-C [55] Rictor expression is upregulated significantly as compared with nonmalignant tissues in

invasive breast cancer specimens.

Rab11-R-E [56] Rab coupling protein (FIP1C), an effector of the Rab11 GTPases, is amplified and

overexpressed in 10% to 25% of primary breast cancers.

c-Myc-R-C [57] In the AhR/HDAC6/c-Myc signaling pathway, phthalates induce proliferation and

invasiveness of estrogen receptor-negative breast cancer.

CDK1-R-V [58] Combined inhibition of Cdk1 and PARP in BRCA–wild-type cancer cells (breast cancer–

associated cell) results in reduced colony formation, delayed growth of human tumor

xenografts.

14-3-3_zeta-R-V
[59]

ErbB2 and 14-3-3 overexpression promotes cell migration and antagonizes cell adhesion.

mTOR-R-V [60] The PI3K/Akt/mTOR pathway results in cell growth and tumor proliferation, and it plays a

significant role in endocrine resistance in breast cancer.

https://doi.org/10.1371/journal.pone.0202311.t004
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interrelationship between the MIC threshold and the number of nodes and edges of the net-

work. By using the most optimized MIC threshold to construct the multilayer networks, miR-

NAs and proteins associated with breast cancer were identified. Although the top-ranked

candidates for protein biomarkers were previously identified, the combinatorial approach pro-

posed reveals potentially novel miRNAs associated with breast cancer, such as mir-331, mir-

486-2, mir-1307 and mir-1287. Roles of these miRNA candidates in breast cancer will be con-

firmed through molecular means.

A minor drawback associated with the multilayer network analysis is that the optimized

threshold value must be determined through analysis of the distribution map (Figs 6 and 7)

measuring the number of edges and nodes in network under different thresholds. The approx-

imate range can be selected but the optimal value cannot be obtained automatically. This

shortcoming could be overcome by establishing algorithms that facilitate selection of opti-

mized threshold values.

Because single network analysis provides limited information, the proposed combinatorial

approach will allow for a deeper understanding of multiple networks and signaling pathway in

cancer. The regulatory architecture of miRNA and protein in breast cancer patients analyzed

in multiple network-wide will potentially enable novel cancer biomarker discovery.

Supporting information

S1 File. miRNA expression data of breast cancer. The first column of the data is the name of

miRNAs, and first row of the data is the code of the corresponding cases of samples in TCGA,

where the fields ending with ‘-11’ is normal samples and the rest are cancer tissues.

(CSV)

S2 File. Protein expression data of breast cancer. The first column of the data represent cell

type of the miRNAs, where ‘0’ means cancer samples and ‘1’ means normal tissues. The second

column of the data is the code of the corresponding cases of samples in TCGA, and first row of

the data is the name of proteins.

(CSV)
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