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In metabolomics studies, independent analyses or replicating the metabolite concentration measurements are 
often performed to anticipate errors. On the other hand, the size of the dataset is increasing. For clustering 
purposes, obtaining representative information chemically from independent analyses is needed. The objective 
of this study is to develop a data reduction method such that a dataset that represents chemical information is 
obtained. Overall a proper data reduction method would simplify the clustering of metabolite data. We propose 
the modified Weiszfeld algorithm (MWA) to reduce independent analyses. To obtain comprehensive results, 
we compare MWA with some other well-known reduction methods, including PCA, CMDS, LE, and LLE. Then 
reduced datasets are clustered using the fuzzy c-means (FCM) algorithm with the Tang Sun Sun (TSS) index 
and silhouette index as the cluster validity indices. The results show that MWA, together with PCA, present the 
optimal number of clusters, namely four clusters. This result aligns with the optimal number of clusters before 
dimensionality reduction. The present results show that MWA is robust to perform dimensionality reduction of 
independent analyses while maintaining chemical information on the reduced dataset. Therefore, we recommend 
the reliability of MWA as one of the chemometric techniques, and the present finding has enriched chemometric 
techniques in metabolomics studies.
1. Introduction

The term metabolomics was introduced about 20 years ago. Since 
then, metabolomics has seen a tremendous increase in analytics plat-

forms and data analysis [2, 11, 14]. Metabolomics is a comprehen-

sive study related to identifying and quantifying all metabolites (small 
molecules) in a biological system [16, 38]. A complete picture of an or-

ganism’s metabolic status and biochemical processes can be obtained 
by analyzing metabolites in a biological sample [42].

Mass spectrometry (MS) and nuclear magnetic resonance (NMR) 
are two instruments in metabolomics that have been widely utilized 
to record the status or metabolic state of biological systems [1, 26, 
34, 57]. MS comes in different versions and settings, as stand-alone 
instruments and in combination with chromatographic separation in-

struments such as gas chromatography (GC) and liquid chromatography 
(LC). GC-MS and LC-MS are combinations of MS with chromatographic 
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separation instruments. Using the GC-MS instrument makes it possible 
to characterize natural product plant compounds with high chemical 
diversity [21, 53]. Likewise, detailed chromatogram profiles of biolog-

ical samples can be obtained using GC-MS characterization [18, 21]. 
Metabolomic data in natural product plants generally consist of large 
amounts of metabolite, multidimensional, and noisy measurements. A 
multivariate analysis known as chemometric techniques is necessary 
to interpret metabolomics data or to obtain meaningful information 
from a metabolite dataset of a natural product plant. Chemometric is 
a sub-discipline of chemistry that utilizes mathematics, statistics, and 
computer science to maximize the information of the measured metabo-

lite dataset [41].

In this research, a metabolomic study is carried out on one of 
the natural plantation commodities originating from Indonesia, namely 
the clove buds [28]. Clove buds harvested from different regions are 
reported to have a specific flavor that may correspond to different 
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metabolic profiles of the clove buds. Differentiating clove buds is 
needed by manufacturers of cosmetics and foodstuffs that use cloves as a 
mixture of their products to maintain the quality, particularly the taste, 
of the product. The method to distinguish the types of clove buds up to 
present is the conventional qualitative method, namely utilizing the ser-

vices of a flavorist who tastes and smells buds to identify the aroma and 
taste of clove buds. The development of metabolic methods will serve as 
an essential basis to develop an automatic instrument to distinguish dif-

ferent types of clove buds. However, the complexity of the clove buds 
metabolite dataset hinders the direct clustering of clove buds based on 
their metabolite compositions. The appropriate technique is needed to 
handle this complexity. This paper presents a preprocessing method to 
reduce the size of the metabolite dataset to decrease the complexity of 
the metabolite dataset.

The typical metabolite dataset has a wide range of metabolite con-

centrations, namely from 10−4 to 10. Logarithmic transformations are 
employed to obtain reliable numerical data. On the other hand, some 
metabolic have zero concentrations that the logarithmic transforma-

tions cannot be directly applied. Metabolites having zero concentration 
are not removed or omitted from the dataset because the zero concen-

tration could be caused by the limitations of the tools used to detect 
metabolites with small concentrations (less than 10−4). However, these 
metabolites may function as biomarkers of a particular origin [45]. 
Therefore, we replaced the zero concentration metabolite with one or-

der less than the detected concentration of the smallest metabolite. The 
metabolite with a zero concentration is replaced 10−5. Variations be-

tween samples may also be high, among others, due to measurement 
errors. Independent analyses were normally conducted to overcome this 
problem. Overall these describe the characteristics of the metabolite 
dataset. Conducting the clustering process directly on the metabolite 
dataset may lead to meaningless results. For example, independent anal-

yses or replicates of a sample may result in different clusters.

This research aims to search for representative data points (data 
vector) from independent analyses. In the previous research [44], we 
have reduced independent analyses using the median. The reduction 
was performed by finding the median of each metabolite. However, 
this method is not suitable for the independent analyses carried out in 
the laboratory. Independent analyses in each region should be viewed 
as multivariate data, not univariate data, where each metabolite can be 
reduced using the median. So, the reduction technique of independent 
analyses by finding the median of each metabolite is less precise.

The recent developments in dimensional reduction techniques on 
metabolomics data are many of them based on PCA technique [27, 31] 
and various other machine learning applications [23, 33, 35, 36]. In 
metabolomics studies, independent analyses are always performed to 
prevent errors in measuring metabolite concentrations. In this study, 
the independent analysis was in the metabolite data vector. A region 
consists of some independent analyses or vectors of metabolite data 
(see Fig. 1). These some independent analyses need to be reduced to 
a single vector of metabolite data for clustering purposes. The need to 
reduce some independent analyses to a single data vector avoids unin-

formative cluster results. The uninformative cluster results are caused 
by several independent analyses from the same region, leaving other 
independent analyses and joining clusters whose independent analyses 
come from other regions. The independent analysis from the same re-

gion will not differ in a cluster from other independent analyses because 
the independent analysis is only a repetition of experiments in a region. 
Therefore, a reliable data dimension reduction technique is needed to 
reduce some independent analyses of metabolite data vectors in each 
region into one metabolite data vector. In this study, we propose the 
modified Weiszfeld algorithm (MWA) to deal with this problem. MWA 
will represent some independent analyses into single data vector. MWA 
will search for a data vector that minimizes the total distance to all 
existing data vectors.

To get more comprehensive results, we compared the reduced data 
clustering results using our proposed MWA with several well-known di-
2

mensionality reduction methods. They were principal component anal-

ysis (PCA) [17, 24, 51], classical multidimensional scaling (CMDS) [9, 
13, 56], laplacian eigenmaps (LE) [10, 48, 49], and locally linear em-

bedding (LLE) [20, 54, 58]. The main objective of this paper is to 
evaluate the reliability of MWA as a data dimensionality reduction tech-

nique, specifically for metabolite data. Our focus is to compare it with 
several other well-known dimensionality reduction techniques. This pa-

per does not present a comparison of clustering techniques and cluster 
validity indexes. So, for clustering needed, we only use the fuzzy c-

means (FCM) algorithm, and for the cluster validity index, we use the 
Tang Sun Sun (TSS) index.

The rest of this paper is organized as follows. In Section 2, we 
described the real-world dataset used in this study. Furthermore, this 
section described the modified Weiszfeld algorithm (MWA) as a data 
dimensionality reduction technique, fuzzy c means (FCM) as a cluster-

ing technique, and the Tang Sun Sun (TSS) index and the silhouette 
index as a cluster validity indices. In Section 3, we described the results 
obtained and discussed them. In this section, we present a comparison 
of the results of clustering of reduced data using MWA with PCA, CMDS, 
LE, and LLE reduction techniques. Finally, in Section 4, we summarized 
the findings of this study.

2. Materials and methods

2.1. Dataset

This research employed a case study on the Indonesian clove buds 
which metabolite dataset was obtained from the research of Kresnowati 
et al. [28]. The dataset contained GC-MS analysis results from clove 
buds samples obtained from four different origins in Indonesia. Three 
independent clove buds samples were taken from each origin, repre-

senting different clove hubs or suppliers in that origin. We call this 
independent clove bud sample as region. Overall, there were twelve 
independent clove buds samples (region) that were extracted and an-

alyzed to obtain the clove buds metabolite dataset. Six to eight inde-

pendent analyses were performed on each of the twelve independent 
clove buds samples. A high number of replications were performed to 
anticipate errors and noise in measurements. On average, 47 metabo-

lites were detected in each GC-MS measurement. The structure of the 
Indonesian clove buds metabolite dataset is shown in Fig. 1.

2.2. The modified Weiszfeld algorithm

In this research, the modified Weiszfeld algorithm is proposed to re-

duce six or eight independent analyses (data vectors) to one data vector. 
It means the data matrix that was originally [47 × 8] or [47 × 6] in each 
region be reduced to [47 × 1] (see Fig. 1 and Fig. 2). This problem can 
be formulated mathematically, namely finding 𝐲 ∈ℝ𝑑 which solves

min
𝐲

{
𝐶(𝐲) =

𝑛∑
𝑖=1

𝜂𝑖
‖‖𝐲 − 𝐱𝑖‖‖

}
(1)

where 𝐲 explained the representative data point searched for each re-

gion, 𝐱𝑖 ∈ℝ𝑑 stated independent analyses in each region, 𝑑 represented 
the number of metabolites in each independent analysis, ‖‖𝐲 − 𝐱𝑖‖‖ ex-

plained the Euclidean distance between 𝐲 and 𝐱𝑖 in ℝ𝑑 , and 𝜂𝑖 expresses 
the weight associated with the Euclidean distance between 𝐱𝑖 and 𝐲. 
The Weiszfeld algorithm is to find a data point in ℝ𝑑 that minimizes 
the weighted sum of Euclidean distances from the 𝑛 given data points. 
Therefore, we have to find the solution of the unconstrained optimiza-

tion problem in Equation (1).

The partial derivative of the objective function 𝐶(𝐲) with respect to 
𝐲 is:

𝜕𝐶(𝐲)
𝜕𝐲 =

𝑛∑
𝜂𝑖

𝐲 − 𝐱𝑖‖𝐲 − 𝐱 ‖ ,𝐲 ∉𝐗

𝑖=1 ‖ 𝑖‖



Rustam, A.Y. Gunawan and M.T.A.P. Kresnowati Heliyon 8 (2022) e09715

Fig. 1. The structure of the clove bud metabolite dataset, used in this research.

Fig. 2. The structure of the clove bud metabolite dataset, after dimensionality reduction.
where 𝐗 = {𝐱1, 𝐱𝑖, ⋯ , 𝐱𝑛} ⊂ℝ𝑑 . Suppose that 𝐲∗ ∉ 𝐗 is the optimal solu-

tion of the objective function 𝐶(𝐲), then we acquire

𝜕𝐶(𝐲∗)
𝜕𝐲∗

=
𝑛∑
𝑖=1

𝜂𝑖
𝐲∗ − 𝐱𝑖‖‖𝐲∗ − 𝐱𝑖‖‖ = 0. (2)

From (2), we obtain

𝐲∗ =

∑𝑛
𝑖=1 𝜂𝑖

𝐱𝑖‖‖𝐲∗ − 𝐱𝑖‖‖∑𝑛
𝑖=1

𝜂𝑖‖‖𝐲∗ − 𝐱𝑖‖‖
,

or 𝐲∗ = 𝑇 (𝐲∗), where the operator 𝑇 ∶ℝ𝑑 →ℝ𝑑 is defined by

𝑇 (𝐲) =

∑𝑛
𝑖=1 𝜂𝑖

𝐱𝑖‖‖𝐲 − 𝐱𝑖‖‖∑𝑛
𝑖=1

𝜂𝑖‖‖𝐲 − 𝐱𝑖‖‖
.

The Weiszfeld algorithm is described as follows.

Step 1: Initiate 𝐲(0) ∉𝐗, 𝜂𝑖 > 0, and 𝜀 > 0. Then in the 𝑡-iteration, for 
𝑡 = 0, 1, 2, 3, ⋯
3

Step 2: Calculate 𝑇0(𝐲(𝑡)) using

𝑇0(𝐲(𝑡)) =

∑𝑛
𝑖=1 𝜂𝑖

𝐱𝑖‖‖𝐲(𝑡) − 𝐱𝑖‖‖∑𝑛
𝑖=1

𝜂𝑖‖‖𝐲(𝑡) − 𝐱𝑖‖‖
. (3)

Step 3: Update the value of 𝐲 using

𝐲(𝑡+1) =
{
𝑇0(𝐲(𝑡)), if 𝐲 ∉𝐗

𝐱𝑖, if 𝐲 ∈𝐗 (4)

Step 4: If 𝐲 never coincides with 𝐱𝑖 at each iteration, then compare 
𝐲(𝑡) to 𝐲(𝑡+1) using ‖‖‖𝐲(𝑡+1) − 𝐲(𝑡)‖‖‖ < 𝜀. If true, then stop. Otherwise, set 
𝑡 = 𝑡 + 1 and return to Step 2. If 𝐲 = 𝐱𝑖 occurs, stopping the iterations is 
performed when 𝐲 = 𝐱𝑖 or 𝐲 ∈𝐗. The Weiszfeld algorithm finds 𝐲 ∈ℝ𝑑 .

The Weiszfeld algorithms get stuck when 𝐲 = 𝐱𝑖, it is due to divi-

sion by zero in (3). So, Vardi and Zhang [52] modified the Weiszfeld 
algorithm to deal with the conditions 𝐲 = 𝐱𝑖 or 𝐲 ∈𝐗.

Given 𝐲 ∈ℝ𝑑 , it is convenient to write 𝐲 ∈𝐗 and define multiplicity 
at 𝐲 as

𝜂(𝐲) =
{
𝜂𝑘, if 𝐲 ∈𝐗
0, if 𝐲 ∉𝐗.



Rustam, A.Y. Gunawan and M.T.A.P. Kresnowati Heliyon 8 (2022) e09715
The modification of Equation (4) for 𝐲 ∈ 𝐗 is based on the following 
observation. For 𝐲 ∉𝐗, the vector 𝐱 = 𝑇 (𝐲) in the following equation

𝑇 ∶ 𝐲→ 𝑇 (𝐲) =

∑𝑛
𝑖=1

𝜂𝑖𝐱𝑖‖‖𝐲 − 𝐱𝑖‖‖∑𝑛
𝑖=1

𝜂𝑖‖‖𝐲 − 𝐱𝑖‖‖
(5)

is unique minimizer of

𝑓 (𝐱;𝐲) =
𝑛∑
𝑖=1

𝜂𝑖
‖‖𝐱 − 𝐱𝑖‖‖2
2𝑑𝑖(𝐲)

. (6)

So, the problem of arg minx𝐶(𝐱) in the Weiszfeld algorithm is re-

placed by arg minx𝑓 (𝐱, 𝐲) in each iteration. The argument for the use of 
𝑓 (𝐱; 𝐲) is

𝜕

𝜕𝐱
𝑓 (𝐱;𝐲)|𝐱=𝐲 = 𝜕

𝜕𝐱
𝐶(𝐱)|𝐱=𝐲 ,𝐲 ∉𝐗. (7)

The two minimization problems are similar in all sufficiently small 
neighborhoods of 𝐲, 𝐲 ∉ 𝐗 [52]. It shows that in Equation (4), if 𝐲 ∈ 𝐗, 
then we should iterate with

𝐱(𝑡) → arg min
𝐱

𝑓 (𝐱,𝐱(𝑡)). (8)

For this to have meaning, we need to expand the definition of 𝑓 in 
Equation (6) to cover 𝐲 ∈𝐗. We need to defined

𝑓 (𝐱,𝐲) = 𝜂(𝐲)‖𝐱 − 𝐲‖+ ∑
𝐱𝑖≠𝐲

𝜂𝑖
‖‖𝐱 − 𝐱𝑖‖‖2 ∕(2𝑑𝑖(𝐲))

=

{ ∑𝑛
𝑖=1 𝜂𝑖

‖‖𝐱 − 𝐱𝑖‖‖2 ∕(2𝑑𝑖(𝐲)), if 𝐲 ∉𝐗,
𝜂𝑘 ‖𝐱 − 𝐲‖+∑

𝑖≠𝑘 𝜂𝑖
‖‖𝐱 − 𝐱𝑖‖‖2 ∕(2𝑑𝑖(𝐲)), if 𝐲 ∈𝐗.

Although 𝐶(𝐱) is not differentiable at 𝐱𝑘, Equation (7) is extended 
for 𝐲 ∈𝐗 in the sense

lim
𝐱→𝐱𝑘,𝐱≠𝐱𝑘

{
𝜕

𝜕𝐱 𝑓 (𝐱,𝐱𝑘) −
𝜕

𝜕𝐱𝐶(𝐱)
}
= 0.

The modification (8) of (4) at data vectors 𝐲 ∈ 𝐗 resulting the fol-

lowing equation.

𝐲→ 𝑇 (𝐲) =
(
1 −

𝜂(𝐲)
𝑟(𝐲)

)
𝑇 (𝐲) + min

(
1,
𝜂(𝐲)
𝑟(𝐲)

)
𝐲, (9)

with the convention 0∕0 = 0 in the computation of 𝜂(𝐲)∕𝑟(𝐲) where 𝑇 is 
as in (5),

𝑟(𝐲) = ‖‖‖𝑅(𝐲)‖‖‖ , 𝑅(𝐲) = ∑
𝐱𝑖≠𝐲

𝜂𝑖
𝐱𝑖 − 𝐲‖‖𝐱𝑖 − 𝐲‖‖ . (10)

For 𝐲 ∉ 𝐗, we get 𝑇 (𝐲) = 𝑇 (𝐲), by Equation (9) with 𝜂(𝐲) = 0, as in 
Weiszfeld algorithm. For 𝐲 ∈ 𝐗, 𝑇 (𝐲) is between 𝑇 (𝐱𝑘) and 𝐱𝑘, so that 
by (5), 𝑇 (𝐲) is also a weighted average of 𝐗. Moreover, for 𝐲 ∉ 𝐗, 𝑅(𝐲)
of Equation (10) is the negative of the gradient of 𝐶(𝐲). It follows from 
Equation (5) that

𝑅(𝐲) =
(
𝑇 (𝐲) − 𝐲

) 𝜂𝑖

𝑑𝑖𝐲
. (11)

Equations (11) and (10) imply that 𝑇 (𝐲) = (𝐲) = 𝑇 (𝐲) when 𝑟(𝐲) =‖‖‖𝑅(𝐲)‖‖‖ = 0. The modified Weiszfeld algorithm is described as follows.

Step 1: Initiate 𝐲(0) ∉𝐗, 𝜂𝑖 > 0, and 𝜀 > 0. Then in the 𝑡-iteration, for 
𝑡 = 0, 1, 2, 3, ⋯

Step 2: Calculate 𝑇0(𝐲(𝑡)) using

𝑇 (𝐲(𝑡)) =

∑
𝐲≠𝐱𝑖 𝜂𝑖

𝐱𝑖‖‖𝐲(𝑡) − 𝐱𝑖‖‖∑
𝐲≠𝐱𝑖

𝜂𝑖‖‖𝐲(𝑡) − 𝐱𝑖‖‖
. (12)

Step 3: Determine the weights

𝜂(𝐲) =
{

1, if 𝐲 ∉𝐗
0, if 𝐲 ∈𝐗
4

Step 4: Calculate

𝑅(𝐲(𝑡)) =
∑

𝐲(𝑡)≠𝐱𝑖

𝜂𝑖
𝐲(𝑡) − 𝐱𝑖‖‖𝐲(𝑡) − 𝐱𝑖‖‖

and

𝜓(𝐲(𝑡)) = min
{
1,

𝜂(𝐲(𝑡))‖𝑅(𝐲(𝑡))‖
}

Step 5: Update the value of 𝐲 using

𝐲(𝑡+1) = (1 −𝜓(𝐲(𝑡)))𝑇 (𝐲(𝑡)) +𝜓(𝐲(𝑡))𝐲(𝑡)) (13)

Step 6: Compare 𝐲(𝑡) to 𝐲(𝑡+1) using ‖‖‖𝐲(𝑡+1) − 𝐲(𝑡)‖‖‖ < 𝜀. If true, then 
stop. Otherwise, set 𝑡 = 𝑡 + 1 and return to Step 2.

The condition 𝐲 ∉ 𝐗 implied 𝜓(𝐲(𝑡)) = 0 and the modified Weiszfeld 
algorithm behave exactly as the Weiszfeld algorithm. Also, if 𝐲 ∉𝐗 the 
sum of (3) is calculated as in (12) which is only for 𝐲 ∉ 𝐗. As for the 
condition 𝐲 ∈𝐗 is added afterwards as in (13), namely by applying the 
weight 𝜓(𝐲(𝑡)) [19].

2.3. Fuzzy c means (FCM) algorithm

Conventional clustering means clustering the given observations as 
exclusive clusters. We can clearly distinguish whether an data point be-

longs to a cluster or not. However, such a partition is not sufficient 
to represent many realistic situations. Therefore, the fuzzy clustering 
method is offered to build clusters with uncertain boundaries. This 
method allows one data vector (data point) to be part of several clus-

ters that overlap to a certain degree. In other words, the essence of 
fuzzy clustering is to consider the belonging status of the cluster and 
the extent to which objects belong to the cluster [47].

Suppose 𝐙 = {𝐳1, 𝐳2, ⋯ , 𝐳𝑛} ⊂ ℝ𝑑 is the set of 𝑛 data points with 𝑑
dimension to be clustered. In the case of Indonesian clove buds metabo-

lite dataset, 𝐳𝑘 ∈ ℝ𝑑 (𝑘 = 1, 2, ⋯ , 𝑛) is data point that resulted from the 
dimensionality reduction of independent analyses in each region. Fur-

thermore, 𝐯𝑖 ∈ ℝ𝑑 (𝑖 = 1, 2, ⋯ , 𝑐) is the cluster center vector of reduced 
dataset 𝐙 and 𝑐(1 < 𝑐 < 𝑛) in the number of clusters of the reduced 
dataset. The degree of membership of the data point 𝐳𝑘 to the cluster 
center 𝐯𝑖 can be expressed as 𝑢𝑖𝑘 = 𝜇𝑣𝑖 (𝐳𝑘) ∈ [0, 1]. The degree of mem-

bership 𝑢𝑖𝑘 represents the probability of the data point 𝐳𝑘 to become a
member of the cluster 𝐯𝑖.

The matrix 𝐔 = [𝑢𝑖𝑘] ⊂ℝ𝑐×𝑛 is referred to as the fuzzy partition which 
filling

𝑢𝑖𝑘 ∈ [0,1],1 ≤ 𝑖 ≤ 𝑐; 1 ≤ 𝑘 ≤ 𝑛, (14)
𝑛∑
𝑘=1

𝑢𝑖𝑘 > 0,∀𝑖 ∈ {1,2,⋯ , 𝑐}, (15)

and
𝑐∑
𝑖=1

𝑢𝑖𝑘 = 1,∀𝑘 ∈ {1,2,⋯ , 𝑛}. (16)

The set of all matrices satisfying (14) - (16) is denoted as 𝑀𝑓𝑐𝑛. 
Equation (15) guarantees that no cluster is left empty without members. 
The clustering process may cause some clusters to have no members. 
Therefore, to avoid this, (15) is needed. Equation (16) ensures that the 
number of degrees of membership for each data point is equal to 1. 
This means that each data has a degree of membership in each cluster, 
but with varying degrees of membership. As a consequence of (15) and 
(16), no cluster can contain the full membership of all data points.

One of the most widely used fuzzy clustering techniques is the fuzzy 
c-means algorithm [5, 8, 12, 15, 22, 29, 32]. The purpose of clustering 
the dataset into c fuzzy clusters is achieved by minimizing the following 
objective function [6].

𝐽𝑚(𝐔,𝐕;𝐙) =
𝑛∑ 𝑐∑

𝑢𝑚
𝑖𝑘
𝑑2
𝑖𝑘
, (17)
𝑘=1 𝑖=1
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where 𝐕 = {𝐯1, 𝐯2, ⋯ , 𝐯𝑐} ⊂ ℝ𝑑 is set of cluster center, 𝑚 > 1 is a fuzzy 
parameter, and 𝑑2

𝑖𝑘
is the Euclidean distance between 𝐳𝑘 with 𝐯𝑖. More-

over, 𝑢𝑖𝑘 on the objective function 𝐽𝑚 shows membership degree of data 
vector (data point) 𝐳𝑘 to the cluster 𝐯𝑖. From the objective function 
𝐽𝑚, we see that the FCM is the method that minimizes the weighted 
within-class sum of squares. Aside from assigning a data point to a clus-

ter, membership degrees can also express how ambiguous a data point 
should belong to a cluster. The concept of these membership degrees 
is substantiated by Zadeh’s definition of fuzzy set in 1965. Thus, fuzzy 
clustering allows solution spaces in fuzzy partitions of the dataset given. 
The fuzzy clustering approach with the objective function 𝐽𝑚 under con-

straints (15) dan (16) is also called probabilistic clustering, since due to 
the constraint (15), the membership degree 𝑢𝑖𝑘 can be interpreted as the 
probability that data vector 𝐳𝑘 belongs to cluster 𝐯𝑖.

The optimal partition of dataset 𝐙 can be obtained by finding 𝐔 and 
𝐕 which minimize the objective function 𝐽𝑚. The objective function 𝐽𝑚
reaches a local minimum when its partial derivative concerning 𝑢𝑖𝑘 and 
𝐯𝑖 is equal to zero and satisfies the constraints on (15) and (16). So we 
get [6]

𝑢𝑖𝑘 =
⎛⎜⎜⎝
𝑐∑
𝑗=1

(
𝑑2
𝑖𝑘

𝑑2
𝑗𝑘

) 1
𝑚−1 ⎞⎟⎟⎠

−1

,1 ≤ 𝑖, 𝑗 ≤ 𝑐; 1 ≤ 𝑘 ≤ 𝑛 (18)

and

𝐯𝑖 =
∑𝑛
𝑘=1 𝑢

𝑚
𝑖𝑘
𝐳𝑘∑𝑛

𝑘=1 𝑢
𝑚
𝑖𝑘

,1 ≤ 𝑖 ≤ 𝑐. (19)

Picard iteration is one of the popular algorithms for solutions (17) 
through (18) and (19). This type of iteration is often called alternat-

ing optimization because it only repeats through one cycle, namely 
𝐕(𝑡−1) ⇒𝐔(𝑡) ⇒𝐕(𝑡) and checks the stopping condition ‖‖‖𝐕(𝑡−1) −𝐕(𝑡)‖‖‖ < 𝜀. 
This point is described in detail in [4] and [7]. Furthermore, the deter-

mination 𝑢𝑖𝑘 and 𝐯𝑖 should be done simultaneously. However, we choose 
to initiate 𝐯𝑖 to counting 𝑢𝑖𝑘 [46]. There are several advantages with 
initializing and terminating in 𝐯𝑖 in terms of convenience, convergence 
speed, and storage [40]. The fuzzy c-means algorithm is described as 
follows.

Step 1: Fix 𝑚 > 1, 1 < 𝑐 < 𝑛, and 𝜀 > 0. Initiate 𝐯(0) ∈ ℝ𝑑 , 𝐯(0) can be 
selected randomly from 𝐙 ⊂ℝ𝑑 . Then in the 𝑡-iteration, 𝑡 = 0, 1, 2, ⋯

Step 2: Calculate 𝑢𝑖𝑘 using

𝑢
(𝑡+1)
𝑖𝑘

=
⎛⎜⎜⎝
𝑐∑
𝑗=1

(
𝑑2
𝑖𝑘

𝑑2
𝑗𝑘

) 1
𝑚−1 ⎞⎟⎟⎠

−1

,1 ≤ 𝑖 ≤ 𝑐; 1 ≤ 𝑘 ≤ 𝑛

where 𝑑2
𝑖𝑘
= ‖‖‖𝐳𝑘 − 𝐯(𝑡)

𝑖

‖‖‖2.
Step 3: Update 𝐯𝑖 using

𝐯(𝑡+1)
𝑖

=

∑𝑛
𝑘=1

(
𝑢
(𝑡+1)
𝑖𝑘

)𝑚
𝐳𝑘∑𝑛

𝑘=1

(
𝑢
(𝑡+1)
𝑖𝑘

)𝑚 ,1 ≤ 𝑖 ≤ 𝑐.

Step 4: Compare 𝐯(𝑡)
𝑖

to 𝐯(𝑡+1)
𝑖

using ‖‖‖𝐯(𝑡+1) − 𝐯(𝑡)‖‖‖ < 𝜀. If true, then 
stop. Otherwise, set 𝑡 = 𝑡 + 1 and return to Step 2.

2.4. Cluster validity index

In the clustering process, it is necessary to know the optimal number 
of clusters from a dataset. The cluster validity index was employed to 
determine the optimal number of clusters from the dataset.

2.4.1. The Tang Sun Sun (TSS) index

The idea of this cluster validity index is to measure geometrical 
compactness in each cluster [25]. The Xie-Beni index [55] is widely 
employed to determine the number of optimal clusters. However, due 
to the monotone tendency to zero for 𝑐 → 𝑛, the Xie-Beni index can 
5

provide a biased optimal number of clusters. The monotony nature of 
the Xie-Beni index has been extensively studied and discussed in var-

ious literature including [30, 39, 50]. Xie and Beni also mentioned in 
their paper that their cluster validity index decreased monotonically 
for 𝑐 → 𝑛. On the other hand, the optimal number of clusters on the 
Xie-Beni index is indicated by the smallest value of all existing clus-

ters 1 < 𝑐 < 𝑛. With the descending monotone property that converges 
to zero, it is possible to obtain the smallest Xie-Beni index value in the 
𝑐 = 𝑛 − 1 clusters. Therefore, to avoid the occurrence of biased cluster 
results, we used the Tang Sun Sun index as the cluster validity index. 
The Tang Sun Sun (TSS) index [50] does not converge to zero for 𝑐→ 𝑛. 
The Tang Sun Sun Index is defined as follows

𝑇𝑆𝑆(𝐔,𝐕;𝐙) =
∑𝑐
𝑖=1

∑𝑛
𝑘=1 𝑢

2
𝑖𝑘
‖‖𝐳𝑘 − 𝐯𝑖‖‖2

min
1≤𝑖,𝑗≤𝑐,𝑖≠𝑗

‖‖‖𝐯𝑖 − 𝐯𝑗
‖‖‖2 + 1

𝑐

+
1

𝑐(𝑐−1)
∑𝑐
𝑖=1

∑𝑐
𝑗=1,𝑗≠𝑖

‖‖‖𝐯𝑖 − 𝐯𝑗
‖‖‖2

min
1≤𝑖,𝑗≤𝑐,𝑖≠𝑗

‖‖‖𝐯𝑖 − 𝐯𝑗
‖‖‖2 + 1

𝑐

.

The punishing ad hoc function on the numerator of the Tang Sun Sun 
index effectively eliminates the descending monotony tendency for as 
shown below [50].

lim
𝑐→𝑛

𝑇𝑆𝑆(𝐔,𝐕;𝐙) = lim
𝑐→𝑛

∑𝑐
𝑖=1

∑𝑛
𝑘=1 𝑢

2
𝑖𝑘
‖‖𝐳𝑘 − 𝐯𝑖‖‖2

min
1≤𝑖,𝑗≤𝑐,𝑖≠𝑗

‖‖‖𝐯𝑖 − 𝐯𝑗
‖‖‖2 + 1

𝑐

+ lim
𝑐→𝑛

1
𝑐(𝑐−1)

∑𝑐
𝑖=1

∑𝑐
𝑗=1,𝑗≠𝑖

‖‖‖𝐯𝑖 − 𝐯𝑗
‖‖‖2

min
1≤𝑖,𝑗≤𝑐,𝑖≠𝑗

‖‖‖𝐯𝑖 − 𝐯𝑗
‖‖‖2 + 1

𝑐

= 0 +
1

𝑛(𝑛−1)
∑𝑛
𝑖=1

∑𝑛
𝑗=1

‖‖‖𝐳𝑖 − 𝐳𝑗
‖‖‖2

min
𝑖≠𝑗

‖‖‖𝐳𝑖 − 𝐳𝑗
‖‖‖2 + 1

𝑛

=

∑𝑛
𝑖=1

∑𝑛
𝑗=1,𝑗≠𝑖

‖‖‖𝐳𝑖 − 𝐳𝑗
‖‖‖2

𝑛(𝑛− 1)min
𝑖≠𝑗

‖‖‖𝐳𝑖 − 𝐳𝑗
‖‖‖2 + (𝑛− 1)

(20)

Equation (20) indicates the Tang Sun Sun index does not converge to 
zero for 𝑐 → 𝑛. The optimal number of clusters on the Tang Sun Sun 
index is indicated by the smallest value of all existing clusters (1 < 𝑐 <
𝑛).

2.4.2. The silhouette index

To obtain a more comprehensive result, we also used the silhouette 
index [43] to compare the TSS index as cluster validity used to de-

termine the optimal number of clusters. In constructing the silhouette 
index, two things are needed. First, partition the datasets obtained us-

ing the clustering technique (we use the FCM algorithm) in this study. 
Second is the collection of similarities between data vectors. The sim-

ilarity between data vectors is represented in the Euclidean distance 
between data vectors.

In the context of fuzzy clustering, the data vector 𝑧𝑘 is closer to the 
cluster center 𝑣𝑖 than the other data vectors, meaning that the member-

ship degree 𝑢𝑖𝑘 is greater than 𝑢𝑗𝑘, namely 𝑢𝑖𝑘 > 𝑢𝑗𝑘 for every 𝑗, where 
𝑗 ∈ {1, … , 𝑐}, 𝑖 ≠ 𝑗. Suppose that the average distance of the data vec-

tor 𝑧𝑘 to all data vectors in its cluster (𝑣𝑖) is denoted as 𝑎𝑖𝑘. Let also 
the minimum distance of data vector 𝑧𝑘 to all data vectors belonging 
to other clusters 𝑣𝑗 , 𝑖 ≠ 𝑗 is denoted as 𝑎𝑗𝑘. Then, the silhouette index of 
the data vector 𝑧𝑘 is defined as [43]

𝑠𝑘 =
𝑎𝑗𝑘 − 𝑎𝑖𝑘

max{𝑎𝑖𝑘, 𝑎𝑗𝑘}
.

The highest index value indicates the optimal number of clusters in 
the silhouette index.

3. Results and discussions

In the modified Weiszfeld (MWA) algorithm, weight 𝜂𝑖 is set equal 
to 1. It is important to note that the Weiszfeld algorithm did not analyze 



Rustam, A.Y. Gunawan and M.T.A.P. Kresnowati Heliyon 8 (2022) e09715
Fig. 3. The Tang Sun Sun index values without dimensionality reduction.

Fig. 4. The silhouette index values without dimensionality reduction.

the weighted problem but assumed that all the weights were equal to 
1. It is in line with Neumayer et al. [37] and Beck et al. [3]. Initial 
vector of 𝐲 is zero vector (𝐲(0) = 𝟎). It is in line with the research of Fritz 
et al. [19] that uses zero vector as the initial vector. In both MWA and 
FCM, we employed an experimental condition of 𝜀 = 10−5 and maximum 
number of iterations = 100. While the fuzzy parameter (𝑚) in FCM, Pal 
and Bezdek [39] suggested the fuzzy parameter value ranging from 1.5 
to 2.5. In this study, we employed the median of that values, namely 
𝑚 = 2.

Euclid’s norm is squared in clustering to tighten the clustering pro-

cess. Meanwhile, using Euclid’s norm in dimension reduction tends to 
be looser than the clustering process. We target only one data vector 
to represent six or eight independent analyses in each region in dimen-

sional reduction. Meanwhile, the reduced dataset clustering process was 
carried out more thoroughly using the squared Euclid’s norm. Reduced 
datasets to clusters are assigned more strictly by applying the squared 
Euclid’s norm.

In this study, we first replaced the zero-concentrated metabolites 
with 10−5. Furthermore, the dataset is transformed using logarithmic 
transformation. The results of the transformation are immediately clus-

tered without any dimensional reduction on each region. The TSS and 
silhouette indices values for each cluster are given in Fig. 3 and Fig. 4, 
respectively.

Fig. 3 shows the smallest value of the TSS index on four clusters. 
It means the optimal number of clusters is four clusters. Meanwhile, 
Fig. 4 shows the highest index value for the silhouette index, namely 
four clusters, which means the optimal number of clusters is four. Both 
cluster validity indices provide the same optimal number of clusters, 
6

Table 1. Clustering result without 
dimensionality reduction.

Cluster Member of Cluster

I M11, M12, M13, 
M14, M15, M16, 
M17, M18, M21, 
M22, M23, M24, 
M25, M26, M27, 
M28, M31, M32, 
M33, M34, M35, 
M36, M37, M38, T22, 
T33

II B11, B12, B13, B14, 
B15, B16, B17, B18, 
B21, B22, B23, B24, 
B25, B26, B27, B28, 
B31, B32, B33, B34, 
B35, B36, B37, B38

III J11, J12, J13, J14, 
J15, J16, J21, J22, 
J23, J24, J25, J26, 
J27, J22, J31, J32, 
J33, J34, J35, J36, 
J37, J38

IV T11, T12, T13, T14, 
T15, T16, T17, T18, 
T21, T23, T24, T25, 
T26, T27, T28, T31, 
T32, T34, T35, T36, 
T37, T38

namely four clusters. Details of cluster members from each cluster are 
shown in Table 1.

M12 in Table 1 means the second independent analysis of the first 
region at the Manado origin. T35 means the fifth independent analysis 
of the third region at the Toli-Toli origin (see Fig. 1).

In general, Table 1 provides information that each origin of Indone-

sian clove buds has a unique or distinctive taste and aroma character-

istics. It is based on the results of clustering, which show independent 
analyses from the same origin spreading in the same cluster. Each clus-

ter consists of independent analyses from the same origin of the four 
existing clusters. However, Table 1 shows the independent analyses T22 
and T33 are included in the first cluster that commonly contains in-

dependent analyses from Manado origin. This result provides biased 
information because two independent analyses (T22 and T33) from 
Toli-Toli origin become one cluster with independent analyses from 
Manado origin. We suspect that there are some errors in the measure-

ment of metabolite concentrations in the independent analyses of T22 
and T33, causing T22 and T33 to abandon other independent analyses 
from Toli-Toli origin and become one cluster with independent ana-

lyzes from Manado origin. Therefore, to obtain a more informative and 
meaningful clustering result, we propose dimensionality reduction of 
independent analyses in each region to become one representation data 
point (one data vector). Independent analyses are reduced in each re-

gion. The dataset that initially has six or eight independent analyses 
(data points/data vectors) in each region is reduced to one data point 
(see Figs. 1 and 2). It was done twelve times because, overall, there 
were twelve regions. Twelve data vectors resulting from dimensional-

ity reduction are clustered using the fuzzy c-means (FCM) algorithm. 
The TSS and the silhouette indices are used to determine the number of 
optimal clusters.

Clustering is performed on a reduced dataset whose reduction uses 
PCA, CMDS, LE, LLE, and MWA. The obtained TSS and silhouette in-

dices values are presented in Tables 2 and 3. The bold numbers in 
Table 2 show the smallest TSS index value for each dimension reduction 
technique. Meanwhile, the bold numbers in Table 3 show the high-

est silhouette index value for each dimension reduction technique. The 
bold numbers in Tables 2 and 3 respectively show the optimal number 
of clusters for each dimensionality reduction technique used.
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Table 2. The Tang Sun Sun index values after dimensionality 
reduction.

Number of clusters PCA CMDS LE LLE MWA

2 2.69 1.48 1.90 2.11 2.76

3 2.59 3.80 1.82 3.44 2.45

4 1.99 3.17 2.39 5.11 1.87

5 4.65 4.08 2.02 2.70 3.78

6 5.21 4.01 2.13 2.73 2.98

7 4.82 12.07 2.09 4.63 4.90

8 6.17 12.23 2.16 4.98 5.54

9 8.38 11.19 2.33 4.85 9.14

10 8.37 18.57 2.31 4.64 8.62

11 7.21 21.42 2.30 4.63 8.15

Table 3. The silhouette index values after dimensionality re-

duction.

Number of clusters PCA CMDS LE LLE MWA

2 0.66 0.82 0.53 0.58 0.66

3 0.73 0.73 0.45 0.49 0.75

4 0.78 0.79 0.61 0.56 0.78

5 0.77 0.75 0.65 0.69 0.80

6 0.79 0.83 0.72 0.64 0.85

7 0.74 0.87 0.76 0.70 0.80

8 0.76 0.89 0.78 0.81 0.72

9 0.84 0.85 0.74 0.85 0.89

10 0.92 0.94 0.84 0.94 0.94

11 0.98 0.99 0.89 0.99 0.98

Table 4. Clustering result by 
using PCA as dimensionality 
reduction technique.

Cluster Member of Cluster

I M1, M2, M3

II T1, T2, T3

III B1, B2, B3

IV J1, J2, J3

We will first analyze and interpret the results obtained in Table 2, 
using the TSS index as the cluster validity index. Based on Table 2, the 
optimal number of clusters obtained using PCA as a dimension reduc-

tion technique is four clusters. At the same time, the optimal number 
of clusters with dimension reduction using CMDS is two clusters. The 
optimal number of clusters using LE dimension reduction is three clus-

ters. In comparison, the optimal number of clusters with dimension 
reduction using LLE is two clusters. Dimensional reduction using our 
proposed MWA gives the optimal number of clusters, namely four clus-

ters. Details of cluster members from each obtained optimal number of 
clusters are shown in Tables 4, 5, 6, 7, and 8.

Table 4 shows the members of each cluster from the four optimal 
clusters obtained by dimension reduction using PCA. The smallest TSS 
index value is 1.99. It shows that the optimal number of clusters is 
four clusters. The results of this clustering present regions originating 
from the same origin, including in the same cluster. If we compare the 
results of the cluster before the dimension reduction in Table 1, then 
we find that the results of clustering with dimension reduction using 
PCA give the same cluster results. In general, Table 1 presents informa-

tion that the independent analyses contained in each region with the 
same origin have the same characteristics and properties because the 
independent analyses are spread out in the same cluster. Likewise, af-

ter dimensional reduction using PCA, regions originating from the same 
origin are also in the same cluster. So, it can be concluded that PCA can 
perfectly reduce six or eight independent analyses in each region into 
one representative data vector. PCA can absorb maximum chemical in-

formation in each region without changing the chemical information in 
each region.

Table 5 shows the members of each cluster from the two optimal 
clusters obtained by dimension reduction using CMDS. The smallest TSS 
7

Table 5. Clustering result by 
using CMDS as dimensionality 
reduction technique.

Cluster Member of Cluster

I J2, J3, T2

B1, B2, B3

M1, M2, M3

II J1, T1, T3

Table 6. Clustering result by 
using LE as dimensionality re-

duction technique.

Cluster Member of Cluster

I B1, B3, M1

II J1, J2, J3

M2, T1

III B2, M3, T2, T3

Table 7. Clustering result by 
using LLE as dimensionality 
reduction technique.

Cluster Member of Cluster

I B2, B3, T1

M1, M2, M3

II J1, J2, J3

B1, T2, T3

Table 8. Clustering result by 
using the proposed MWA di-

mensionality reduction tech-

nique.

Cluster Member of Cluster

I M1, M2, M3

II B1, B2, B3

III J1, J2, J3

IV T1, T2, T3

index value is 1.48. It means the optimal number of clusters is two. 
Table 5 provides information that the origin of Jawa, Bali, and Manado 
has the same chemical properties. Except for the region of Jawa 1 (J1) 
is in a different cluster, namely being one cluster with the Toli-Toli 1 
(T1) and Toli-Toli 3 (T3) regions. The reduction results using CMDS 
provide a clustering result; the Java 1 (J1) region is separated from 
other regions in the origin of Jawa. Likewise, the Toli-Toli 2 (T2) region 
separated from other regions at the origin of Toli-Toli. It is contrary to 
the results shown in Table 1 that the taste and aroma of cloves from 
the same origin are not significantly different. So it can be concluded 
that dimensional reduction using CMDS cannot represent or maintain 
chemical information in each region as before dimensional reduction 
was carried out.

Table 2 shows the LE dimension reduction technique presents the 
smallest TSS index value of 1.82, meaning the optimal number of clus-

ters is three. Meanwhile, LLE presents the smallest TSS index value, 
2.11, which means the optimal number of clusters is two clusters. 
The clustering results with dimension reduction using LE and LLE pre-

sented in Tables 6, and 7 indicate that these two-dimensional reduction 
methods cannot maintain chemical information in each region. It is ev-

idenced by the results of the clustering presented in Tables 6 and 7
which are mixed in one cluster of regions originating from different 
origins. Besides that, the results of the cluster do not reflect the distri-

bution of the data before the dimension reduction of the independent 
analyses is carried out as presented in Table 2. So, LE and LLE are not 
good enough for dimensionality reduction of independent analysis in 
each region.

Furthermore, we present the results obtained by the reduction tech-

nique using MWA. Our MWA proposal presents the smallest TSS index 
value of 1.87, which means the optimal number of clusters is four clus-
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Table 9. Clustering result by 
using the silhouette index as 
cluster validity index.

Cluster Member of Cluster

I B1

II B3

III J2, J3

IV T2

V B2

VI T1

VII M3

VIII M1

IX J1

X T3

XI M2

ters. Table 8 shows the results of data clustering with reduction of 
independent analyses in each region using MWA. These results indi-

cate that the optimal number of clusters obtained in four clusters. Each 
cluster consists of regions from the same origin. These results align with 
the clustering results with reduced dimensions of independent analyses 
using PCA. PCA and MWA both present four optimal clusters, each clus-

ter consisting of regions with the same origin. Our proposed MWA can 
consistently represent six or eight independent analyses in each region 
into one representative while maintaining chemical information in each 
region. MWA presents the results of clustering, which are in line with 
the results obtained in Table 1 before the dimension reduction was car-

ried out. Based on these results, we confirm that our proposed MWA 
is robust for dimensionality reduction of independent analyses. Six or 
eight independent analyses in each region can be well represented into 
a single data vector while maintaining chemical information in each 
region.

Chemically, it can be interpreted that the data clustering of clove 
metabolites with dimension reduction of independent analyses using 
MWA indicates each clove origin has a unique chemical composition 
or, in other words, each clove origin has a distinctive taste and aroma. 
Therefore, if the production stock of a clove origin is not available, then 
the other available clove origin cannot be used to replace it because it 
has a different taste and aroma. In terms of producers who use cloves 
as an ingredient in their product mix, cloves from different origins will 
provide different product quality because each clove origin has a unique 
taste and aroma based on the results of this clustering.

Here, we analyze the optimal number of clusters obtained with the 
cluster validity index using the silhouette index. Table 3 shows the op-

timal number of clusters with dimension reduction techniques using 
PCA, CMDS, LE, LLE, and MWA are 11 clusters. It is based on the high-

est silhouette index value obtained for each reduction technique at the 
position of 11 clusters. Based on Table 9, the silhouette index does not 
reflect the optimal number of clusters before the independent analyses 
are reduced. The optimal number of clusters with the silhouette index as 
the cluster validity index before the reduction of independent analyses 
are four clusters. Meanwhile, after independent analysis reduction, each 
reduction technique provides an optimal number of 11 clusters with the 
silhouette index as the cluster validity index. The results of this cluster-

ing show that each region is in a different cluster, except for the Jawa 2 
(J2) and Jawa 3 (J3) regions in the same cluster. This result means that 
each region has unique characteristics except for J2 and J3, which have 
the same characteristics. These regions come from the same origin; for 
example, the Manado 1 (M1), Manado 2 (M2), and Manado 3 (M3) re-

gions come from the origin of Manado, which is still in the same area. 
So, there is no significant difference in climate, environmental condi-

tions, and soil conditions. Therefore, regions of the same origin should 
also not be significantly different. However, this fact is different from 
the cluster results obtained with the silhouette index as the cluster va-

lidity index. So, we conclude that the silhouette index is not suitable for 
evaluating the optimal number of clusters after reducing independent 
analyses. The uniform optimal number of clusters, namely 11 clusters 
8

Fig. 5. The convergence of the FCM objective function with dimension reduc-

tion using MWA.

for each dimension reduction technique, also indicates the inaccuracy of 
the silhouette index in evaluating the optimal number of clusters after 
the reduction of independent analyses. Therefore, we confirm that the 
TSS index is more suitable because it can maintain the chemical infor-

mation contained in each region before independent analysis reduction 
by the reduction technique using PCA and MWA that we propose.

Finally, based on the results, we confirm the reliability of our pro-

posed MWA as a chemometric technique in metabolomics studies.

Furthermore, the plot of the value of the objective function of the 
FCM algorithm for dimension reduction using MWA is shown in Fig. 5. 
Fig. 5 shows the convergence of the FCM objective function with di-

mension reduction using our proposed MWA. The value of the objective 
function decreases drastically from the first to the second iteration and 
starts to slope from the third to the eighth iteration. It appears that the 
objective function starts to converge to a value of 0.72 from the tenth to 
the sixteenth iteration. It means that the objective function has reached 
its minimum value since the tenth iteration. In this study, we used one 
of two iteration termination criteria. The first criterion is the iteration 
will stop when the difference in the value of the objective function in 
the previous and subsequent iterations is less than the specified error 
tolerance. In this case, the error tolerance set is 𝜀 = 10−5. If the first cri-

terion is not met, the iteration will stop when the specified maximum 
iteration is reached. Here, we used a maximum number of iterations of 
100. The plot of the objective function values in Fig. 5 shows that the 
iteration stops at the sixteenth iteration because it meets the first cri-

terion. The objective function reaches a minimum value by obtaining 
four fuzzy clusters for the Indonesian clove buds metabolite dataset.

4. Conclusions

In this paper, we have presented the performance of the modified 
Weiszfeld algorithm (MWA) for dimensionality reduction of indepen-

dent analyses in each region. We compared MWA with some other 
well-known dimensionality reduction methods to obtain more complete 
results, including PCA, CMDS, LE, and LLE. The results revealed that 
MWA, together with PCA, could provide dimensionality reduction of 
independent analyses in each region, consisting of six or eight inde-

pendent analyses into one data point (data vector) while maintaining 
the chemical information of each region. The clustering results are rele-

vant to the clustering results of the clove buds metabolite dataset before 
dimensionality reduction. Therefore, we recommended that MWA is re-

liable for dimensionality reduction of metabolite datasets consisting of 
independent analyses to anticipate errors in measuring metabolite con-
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centrations. In addition, we have also presented a clove differentiation 
technique based on its metabolite composition, which so far has only 
been carried out using conventional qualitative methods utilizing the 
services of a taste expert (flavorist). Based on the cluster results ob-

tained by dimensional reduction using MWA, we concluded that of the 
four Indonesian clove buds origins clustered, the optimal number of 
clusters is four clusters. It means each clove bud’s origin has unique 
characteristics or has a distinctive taste and aroma. Finally, we recom-

mended the reliability of MWA as one of the chemometric techniques 
whose use can be used more widely in metabolomics studies. This paper 
has enriched chemometric techniques in metabolomics studies.
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