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ABSTRACT: Transition metal (such as Fe, Co, and Ni) oxides are
excellent systems in the oxygen evolution reaction (OER) for the
development of non-noble-metal-based catalysts. However, direct
experimental evidence and the physical mechanism of a quantitative
relationship between physical factors and oxygen evolution activity
are still lacking, which makes it difficult to theoretically and
accurately predict the oxygen evolution activity. In this work, a data-
driven method for the prediction of overpotential (OP) for (Ni-Fe-
Co)Ox catalysts is proposed via machine learning. The physical
features that are more related to the OP for the OER have been
constructed and analyzed. The random forest regression model
works exceedingly well on OP prediction with a mean relative error
of 1.20%. The features based on first ionization energies (FIEs) and
outermost d-orbital electron numbers (DEs) are the principal factors
and their variances (δFIE and δDE) exhibit a linearly decreasing correlation with OP, which gives direct guidance for an OP-oriented
component design. This method provides novel and promising insights for the prediction of oxygen evolution activity and physical
factor analysis in (Ni-Fe-Co)Ox catalysts.

Catalysts play a critical role in oxygen electrochemical
processes for renewable energy storage and conversion

devices such as fuel cells, artificial photosynthesis, and metal−
air batteries.1−6 For example, the oxygen evolution reaction
(OER) involves a four-electron (4e−) transfer, and such a
complicated process results in sluggish reaction kinetics.7−9

Therefore, the OER is considered as the main bottleneck
toward the practical implementation of polymer electrolyte
membrane (PEM) electrolysis and water splitting. Noble-metal
(Ru and Ir) catalysts exhibit high OER activity and can reduce
the required overpotential; however, their scarcity and high
cost limit their wide application.10−12 Transition metal (such
as Fe, Co, and Ni) oxides are excellent systems in the OER for
the development of non-noble-metal-based catalysts.13 The
quantitative prediction of OER activity is critical for transition
metal oxide catalyst design.14 Due to fact that direct
experimental evidence and the mechanism of the quantitative
relationship between physical factors and oxygen evolution
activity from physical insights are not yet clear, OER activity
prediction remains an unsolved challenge.13 Usually, scientists
calculate the adsorption energetics of different chemical
structures by density functional theory and indirectly infer
the OER activity, which is more suitable for rationalizing
observed activity trends and facts rather than predicting them
in advance from the large potential chemical space.
Consequently, a predictive method as the function of latent
influencing factors needs to be captured for OER activity.

Machine-learning (ML) approaches are transforming
materials research by changing the paradigm from “trial and
error” to a data-driven methodology, thereby accelerating the
discovery of new materials.15−25 Recently, the catalyst
community has begun to utilize ML tools to accelerate the
overpotential prediction of the oxygen evolution reaction for
single atoms,26 forecast Ni-Co-Fe-Ce water oxidation cata-
lysts20 and evaluate the perovskite chemistry factors of OER
activity.14 Various factors of oxide perovskite catalysts have
been demonstrated over the past 60 years, such as the reaction
free energy and eg occupancy, which were obtained by DFT
calculations. A simple factor, μ/t, was derived from symbolic
regression for perovskite catalysts.27 A good factor should be
simple and yet provide physical insight to therefore guide and
accelerate the discovery of new oxide OER catalysts. Despite
the great potential, its use has been notably absent in transition
metal oxide systems, such as (Ni-Fe-Co)Ox catalysts.
In this work, we introduce a data-driven method to predict

the overpotential (OP) for (Ni-Fe-Co)Ox catalysts using a
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machine-learning algorithm. The relationship between multiple
physical features and OP properties was successfully
determined, by considering valence electron number, relative
atomic mass, atomic number, atomic radius (nonbonded),
covalent radius, ionization energies (first), electron affinity,
electronegativity (Pauling scale), and outermost d-orbital
electron number. The random forest regression model works
exceedingly well with a mean relative error of 1.20% evaluated
on a hold-out set. The importance of physical features has been
further analyzed. The first ionization energies (FIEs) and
outermost d-orbital electron numbers (DE) are the principal
factors, and their variances (δFIE and δDE) exhibit a linearly
decreasing correlation with OP. They give a direct guidance for
an OP-oriented component design for (Ni-Fe-Co)Ox catalysts.
Our work aims to provide novel and promising physical insight
for OER activity of (Ni-Fe-Co)Ox catalysts.
All of the data used in this work were collected and screened

from the published studies of Haber by a high-throughput
experiment.27 We consider the oxide catalysts that belong to
the NixCoyFez system, where the mole fractions of each
element of x, y, and z is constrained by x + y + z = 100%. The
data set consists of 496 entries (see the Supporting
Information for details), covering the elemental composition
in percent representing different (Ni-Fe-Co)Ox materials and
characterizing their overpotential (OPs) using a 10 s
chronopotentiometry measurement at 10 mA/cm2 in O2-
saturated 1.0 M NaOH(aq).27 The overall data set therefore
possesses three features (input variables) represented by
composition with respect to the elements and one target OP
(output variable). Figure 1 gives the whole data visualization

carried out with the Python programming language28 and the
statistical data visualization library Seaborn.29 The composition
for each of Ni, Co, and Fe ranges from 0 to 1 by even steps of
3.33 atom % and covers the whole composition space that may
be formed. As the composition for each of Ni, Co, and Fe
increases, the OP shows an overall trend of first decreasing and
then increasing. This method can obviously show the optimal

composition combination that minimizes the OPs of metal
oxide catalysts. Complete and comprehensive data provide a
reliable basis for a prediction model and physical fact analysis.
Physical features are critical for representing the intrinsic

relationship between the latent fact and OP property. From the
perspective of the atom level, nine accessible primary physical
features by empirical experience given in Table 1 are used,
including the valence electron number, relative atomic mass,
atomic number, nonbonded atomic radius, covalent radius, first
ionization energy, electron affinity, Pauling scale electro-
negativity, and outermost d-orbital electron number. For Ni,
Co, and Fe elements, their physical properties corresponding
with these features are collected from The Royal Society of
Chemistry’s interactive periodic table database.30 The
composition (Ci) and the associated elemental properties
were adopted to numerically represent each catalyst sample
with the featured transformation functions of eqs 1 and 2 for
the purpose of converting the original chemical element space
to a primary physical features space. For each catalyst sample
in the 496 entries, X̅ calculates the weighted average of the
element content corresponding to each physical feature, and δX
produces the variance for each physical feature reflecting the
physical difference of chemical element. In eqs 1 and 2, Ci is
the mole fraction of each element and Pi corresponds to the
properties of each element, respectively. Thus, 18 descriptive
features that may be physically relevant to the OP are
constructed by X̅ and δX. The original data set is transformed
into a new data set with 496 × 18 shape (see the Supporting
Information for details).
In order to remove the linear correlation between two

variables, Pearson correlation coefficients were then calculated
before machine learning. Pearson correlation coefficients can
be described as

R
C

C Cij
ij

ii jj
=

(3)

where R is the correlation coefficient matrix, C is the
covariance matrix. Covariance indicates the level to which
two variables vary together, and it belongs to [-1,1]. The closer
the |Rij| value is to 1, the higher the linear correlation between
the two variables is. The heatmap of Pearson correlation
coefficients for the physical features and OP are shown in
Figure 2. Features with an absolute value of correlation
coefficient greater than 0.95 were considered highly correlated
(the boxes in dark blue and dark red in Figure 2). In the highly
correlated feature pairs, one can be linearly expressed and
replaced by the other. For example, the correlation coefficient
between VEN and EA is 1; thus, EA is retained instead of
VEN. Therefore, VEN, AN, EA , δVEN, δRAM, δAN, δRA, and δEA
are excluded. Finally, the data set contains 496 entries with 10
features (RAM, RA , RC, FIE, EP, DE, δRC, δFIE, δEP and δDE)
and 1 target property.
The OP is plotted as a function of RAM, RA , RC, FIE, EP,

DE, δRC, δFIE, δEP and δDE, respectively, as shown in Figure 3. It
is obvious that OP decreases first and then rises with the
increase of FIE and DE. The optimal values of FIE and DE
may be set at around 750 and 7 to achieve the lowest OP. As
δRC, δFIE, δEP, and δDE increase, OP decreases, and the
phenomenon is more obvious for δFIE and δDE.
Machine-learning algorithms can fit a data-driven over-

potential model with the selected physical features as the input
and the target property OP as the output. Before model

Figure 1. Original data set visualization by categorical plots of Ni, Co,
Fe, and overpotential.
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construction, model selection and parameter optimization
ensure which algorithm together with the suitable parameters
would perform the best and be considered. The data set with
10 features and 1 target property was split by 80% (397 data
entries) as the training set and 20% (99 data entries) left as the
testing set (hold-out set). Several well-known machine-learning
algorithms were used, such as stochastic gradient descent
regression (SGDR) with penalties of L1 and L2, lasso
regression (Lasso), elastic net regression (ElasticNet), multi-

layer proceptron (MLP), tree regression (TreeR), Adaboost
regression (AdaBR), gradient boosting regression (GBR),
random forest regression (RFR), logistic regression (Logis-
ticR), kernel ridge regression (KernelRidge), Bayesian Ridge
regression (BayesRidge), support vector regression (SVR) with
radial basis function kernel, and k-nearest neighbor regression
(KNR). Parameter tuning was performed by a grid search on
the training set by 5-fold cross validation for each machine-
learning model, and the parameter with the best average mean
squared error was determined. Then, the model was trained
with the best parameter on the training set. Figure 4 shows the
mean squared errors (MSE) and the standard deviations for
different models during model selection. GBR, RFR,
KernelRidge and KNR models exhibit excellent MSEs and
uncertainties, and among them RFR has the lowest MSE of
40.6.
Then, we retrained the RFR model with the optimized

parameters on the training set and evaluated the metrics of
MSE and mean relative error (MRE) on 20% testing set,
respectively. Figure 5a shows the diagonal scatter plot for the
predicted OP and the ground truth by the RFR model during
training and testing on the basis of the transformed and
selected data set. RFR performs the best with an MRE value of
1.20% and an MSE value of 49.79. Figure 5b shows the
contour map of the predicted overpotential by the RFR model
under different compositions. The RFR model performs well
on the “unseen” hold-out data set, whose MSE value is only
9.19 higher than that in training process, illustrating that this

Table 1. Material Physical Features, Abbreviations, Units and the Transformation Formulas

features abbreviation unit formula

valence electron number VEN
relative atomic mass RAM
atomic number AN

atomic radius, nonbonded RA Å X C Pi i
i Ni,Co,Fe

∑̅ =
ϵ{ } (1)

covalent radius RC Å

first Ionization energy FIE kJ mol−1 P X CX i i
i Ni,Co,Fe

2∑δ = [ − ̅]
ϵ{ } (2)

electron affinity EA kJ mol−1

electronegativity (Pauling scale) EP -
outermost d-orbital electron number DE -

Figure 2. Heat map of Pearson correlation coefficients for the physical
features and OP.

Figure 3. OP as a function of RAM, RA , RC, FIE, EP, DE, δRC, δFIE, δEP, and δDE.
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model can be used for OP prediction with generalization
capability in (Ni-Fe-Co)Ox catalysts.
Next the contributions each physical feature makes to the

high-precision OP prediction model will be revealed. On the
basis of the trained RFR model, the 10 physical features are
ranked by their feature importance in Figure 5c. The greater
contribution to high-precision OP prediction one feature
makes, the higher the importance index is. δFIE and δDE are the
most critical factors supported by the RFR model, and from
the perspective of model precision, δFIE is more important than
δDE. The importance indices of DE and FIE are relatively lower
than that of δFIE and δDE but higher than the others. When the
trends of the physical features (δFIE, δDE, DE and FIE) in
Figures 3 and 5 are combined, the δFIE and δDE values can be
used to give direct guidance to design an optimal component
for Ni, Co, and Fe for excellent OP, by adjusting the contents
of different elements to make the two simple factors δFIE and
δDE greater.
In summary, a data-driven approach to predict the OP for

(Ni-Fe-Co)Ox catalysts is proposed via machine learning. The
physical features that are more related to the catalyst
overpotential for the OER are constructed, covering valence
electron number, relative atomic mass, atomic number, atomic
radius (nonbonded), covalent radius, first ionization energy,
electron affinity, electronegativity (Pauling scale), and outer-
most d-orbital electron number. The random forest regression

model works exceedingly well with a mean relative error of
1.20%. The simple and easily accessed factors (δFIE and δDE) by
the variances of first ionization energies (FIE) and outermost
d-orbital electron number (DE) importance are captured,
exhibiting a linearly decreasing correlation with OP. They give
direct guidance for the OP-oriented component design for
(Ni-Fe-Co)Ox catalysts. Our work aims to provide novel and
promising physical insights into the OER activity of (Ni-Fe-
Co)Ox catalysts.
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