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High-frequency oscillations (HFOs) are a promising biomarker for
localizing epileptogenic brain and guiding successful neurosur-
gery. However, the utility and translation of noninvasive HFOs,
although highly desirable, is impeded by the difficulty in differen-
tiating pathological HFOs from nonepileptiform high-frequency
activities and localizing the epileptic tissue using noninvasive scalp
recordings, which are typically contaminated with high noise lev-
els. Here, we show that the consistent concurrence of HFOs with
epileptiform spikes (pHFOs) provides a tractable means to identify
pathological HFOs automatically, and this in turn demarks an ep-
ileptiform spike subgroup with higher epileptic relevance than the
other spikes in a cohort of 25 temporal epilepsy patients (including
a total of 2,967 interictal spikes and 1,477 HFO events). We found
significant morphological distinctions of HFOs and spikes in the
presence/absence of this concurrent status. We also demonstrated
that the proposed pHFO source imaging enhanced localization of
epileptogenic tissue by 162% (∼5.36 mm) for concordance with
surgical resection and by 186% (∼12.48 mm) with seizure-onset
zone determined by invasive studies, compared to conventional
spike imaging, and demonstrated superior congruence with the
surgical outcomes. Strikingly, the performance of spike imaging
was selectively boosted by the presence of spikes with pHFOs,
especially in patients with multitype spikes. Our findings suggest
that concurrent HFOs and spikes reciprocally discriminate patho-
logical activities, providing a translational tool for noninvasive
presurgical diagnosis and postsurgical evaluation in vulnerable
patients.
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Epilepsy affects around 70 million people globally (1). About
one-third of the patients have medically refractory epilepsy

and may undergo surgical resection to control or stop seizures (2,
3) if the epileptogenic zone (EZ, the brain area and connections
required for seizure generation) can be accurately localized. The
current clinical gold standard is to use seizure-onset zone (SOZ),
which is routinely determined by the intracranial electroen-
cephalography (iEEG) during multiple-day invasive monitoring
for the occurrence of spontaneous seizures (2), as an approxi-
mation of the EZ. Although successful in many patients, iEEG is
limited to regional sampling and typically involves extreme dis-
comfort and increased deleterious risk associated with chroni-
cally implanted electrodes due to its invasive nature (4, 5). It is
therefore highly desirable to seek noninvasive approaches to lo-
calize and image the EZ, particularly from widely accessible scalp
EEG recordings.
High-frequency oscillations (HFOs), including ripples (80 to

250 Hz) and fast ripples (250 to 500 Hz), have been widely pro-
posed as a promising electrophysiological biomarker of the EZ (6,
7) and SOZ (8, 9). Originally observed in human hippocampal
recordings (10), subsequently in neocortex recordings (8), and
most recently in scalp EEG recordings (11, 12), HFOs are defined
as spontaneous oscillatory activities (above 80 Hz) standing out
from the background and persisting for at least four oscillation

cycles (13). In the epileptogenic brain, HFOs has been correlated
with ictogenesis (14), and the removal of brain areas containing
HFOs is found to improve surgical outcomes (15–17), which may
be more accurate than the irritative zone (IZ, also known as spike-
generating zone) (18) or even the SOZ (19).
However, the clinical translation of noninvasively recorded

HFOs has been impeded by several challenges (7, 20). First of all,
there are physiological HFOs (21) and spurious artifacts (13, 22)
that could mimic the presence of pathological HFOs and share the
same frequency range (23, 24), which complicates the distinction
of clinically relevant HFOs from artifactual or normal ones (25).
When defined only by the occurrence rate, physiological HFOs
cannot be disentangled from the pathological ones, which might
reduce the specificity of HFOs to epileptic areas (26, 27) or even
result in conflicting findings (28, 29). Recent studies have shown
significant spatiotemporal overlap between HFOs and interictal
epileptiform spikes (20), with a higher association to the epilep-
togenic regions compared to spikes or HFOs alone, promising an
improved biomarker to epileptogenicity (12, 30, 31). These con-
current activities are reported to have good prediction of seizure
risk (32–34) and postsurgical cognitive improvement (35). How-
ever, to identify this biomarker, visual marking is still commonly
adopted, which is highly time and labor consuming and prone to
subjective biases (36, 37). While several scalp HFO detectors have
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been proposed (38–40), these approaches are semiautomated
and require expert review to achieve optimal performance. On
the other hand, electrophysiological source imaging (ESI) is an
approach to estimate the underlying brain electrical activity from
scalp electromagnetic measurements (41, 42). It is highly desir-
able to localize the epileptic brain and delineate the EZ using
scalp-recorded HFOs via ESI, while it is also challenging due to
the high noise level existing in the high-frequency band in scalp
recordings (20).
What remains to be achieved in the current clinical practice is

a tractable and robust means to identify pathological HFOs from
noninvasive EEG and localize the underlying epileptic tissue
from scalp recordings at the individual patient level. Recently,
invasive studies have suggested that epileptic HFOs are highly
associated with repetitive and morphological patterns in both
low- and high-frequency bands (43, 44). On the other hand,
renewed interest has been given to subgroups of spikes concep-
tualized as “green” and “red” spikes, classifying those less and
more likely to index epileptogenic tissue (45), since spikes gen-
erally have low specificity to the EZ and are nonunitary in nature
(24, 46). In line with this notion, we introduce an approach for

automatic identification of pathological HFOs by integrating two
premises of epileptiform pathology, 1) concurrence with interictal
spikes and 2) repetitive appearance, to assist the discrimination of
epileptic from nonepileptic activities. The central hypothesis of
this study is that the concurrence of HFOs on spikes identifies a
subtype of pathological HFOs by which the EZ can be delineated,
and, in turn, it demarks a spike subgroup which may account for
the higher degree of epileptic significance than the general pop-
ulation of spikes (Fig. 1).
In the present study, we have developed an approach to auto-

matically identify the scalp-recorded HFOs consistently co-occurring
with epileptiform spikes and image the corresponding cortical
sources generating these events using ESI techniques (Fig. 1 A
and B), and we investigated the morphological characteristics of
HFOs and spikes in the presence or absence of this concurrent
phenomenon. We further validated the clinical value of using the
identified HFOs in determining the underlying epileptogenicity
against the clinical findings defined by epileptologists and the
surgical outcomes with comparison to the conventional spike-
imaging method (Fig. 1 B and C).

Fig. 1. Conceptual diagram of data analysis and hypothesis. (A) EEG data analysis workflow. Spike epochs are collected from high-density (76-channel) EEG in
each patient, and HFOs are identified through a detection and clustering process to determine pHFOs and nHFOs, which in turn separates spike population into
three subgroups (p/n/rSpikes). Examples of clustered p/nHFOs in a representative patient (P1) are illustrated with scalp topology, raw and filtered (>80 Hz) signals,
and time-frequency representations (see also examples in Fig. 2). (B) Clinical evidence and modeling. Presurgical MRI is used to build a realistic head model for
individual patients using boundary element model (BEM), postsurgical MRI is for modeling the surgical resection zone (green), and computed tomography (CT)
images are used to localize the iEEG implantation (black) from which the SOZ (pink) is defined by the clinicians. (C) Hypothesized reciprocity between HFOs and
spikes. We hypothesize that the pHFOs with concurrent pSpikes are pathological activities by which the underlying tissue epileptogenicity can be delineated via
ESI techniques, and in turn the pSpikes, selected by pHFOs, are more specific to the epileptic tissue than the general population of spikes.
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Results
Identification of Interictal Spikes and HFOs. We recorded high-
density (76-channel) EEG from 25 patients with temporal lobe
epilepsy (TLE) during long-term presurgical monitoring. For
each patient, typical forms of interictal spikes were identified by
a board-certified epileptologist and later verified by another with
consensus on the occurrence, spatial location, and morphology
of the spikes. We also applied a commonly adopted and well-
validated commercial software, Persyst 13 (Persyst Development
Corporation) (47), for automated spike detection to optimize
identification of spikes in each patient. Upon the spike detec-
tions from Persyst, we manually screened all these events, dis-
carded the spurious ones, and grouped the remaining into spike
types according to distinct spatiotemporal patterns of the typical
spike forms for each patient. Across all patients, a total of 2,967
spikes were identified. The average number of distinct spike
types per patient was 2.2 ± 1.2 (mean ± SD, n = 25) for all
patients and 2.7 ± 1.1 for patients with multiple (more than one)
spike types (MST, n = 18). Patients with MST accounted for 67%
of the seizure-free cohort (n = 18) and 86% of the non–seizure-
free cohort (n = 7). Moreover, the number of spike types in the
non–seizure-free cohort was significantly higher compared to the
seizure-free cohort ( P = 0.015, d = 1.1, two-sided Student’s
t test), suggesting a correlation between the severity of epileptic
disorder and the range of spike foci (48). In addition, we
recorded four patients with extratemporal lobe epilepsy (ETLE)
for case studies, and the same analysis approach was applied in
line with the TLE patients. Detailed patient information and
surgical outcome can be found in Materials and Methods and
SI Appendix, Tables S1 and S2.
All identified spikes were extracted as 1 s epochs for automatic

detection of HFOs (Materials and Methods and SI Appendix, Fig.
S1). The adopted approach was designed to capture and distin-
guish stereotyped HFOs with consistent and repetitive patterns
(i.e., ripples riding on spikes, also known as spike ripples) based
on the commonly accepted concepts in clinical studies about
pathological HFOs (11, 13). The efficacy of the proposed de-
tector in successfully identifying HFOs from various artifactual
and noisy high-frequency activities (HFAs) was evaluated through
a Monte Carlo simulation with realistic EEG signals and brain
models derived from clinical data in human subjects (49), and
the proposed method was compared against a well-established
benchmark detector (32, 39) (SI Appendix, Text S2 and Figs. S2
and S3). In total, 1,477 high-frequency events were identified
(from 1,065 spike epochs) across all patients, and in each patient,
about 18.1 ± 12.0% (mean ± SD, n = 25) are positive HFOs
(pHFOs, events with repetitive patterns and riding on spikes or
spike ripples), and 81.9 ± 12.0% are negative HFOs (nHFOs,
events without consistency on spikes). Examples of clustered HFO
detections are shown in Fig. 2, and SI Appendix, Fig. S6A depicts
results for ETLE.

Morphological Characteristics of HFOs. We investigated whether
consistent spatiotemporal distinctions exist between pHFOs of
putative pathology and nHFOs across all patients. First, we ob-
served that the spatial distribution of electrodes containing pHFOs
was focal and constrained on the scalp (50, 51), and the waveforms
of pHFOs in both raw and high-pass filtered signals were uniform
and stereotypical, while nHFOs were spatially widespread with
the irregular waveforms (43) (Fig. 2). Note that pHFOs were
highly associated with the spike profile, while nHFOs were
generally discordant with the spike either temporally or spatially.
To quantify such differences, corresponding temporal analysis
demonstrated that pHFOs had a significantly higher peak in the
amplitude of z-scored power compared to nHFOs (n = 25; P =
0.0062, d = 0.84, two-sided Mann–Whitney U test; Fig. 3 A–C),
indicating a prominent burst around the pHFO peak relative to a

clear background, while nHFOs have less separation from the
elevated background (Fig. 3 A and B) (44, 52). The spectral
analysis revealed that the median frequency of pHFOs was sig-
nificantly lower than that of nHFOs (n = 25; P = 0.0054, d =
0.38, two-sided Wilcoxon signed-rank test; Fig. 3C) (53–55). In
addition, we assessed the group-level power spectral density
(PSD) of both groups of pHFOs and nHFOs by measuring the
full width at half maximum of the PSD peak, which represents the
frequency range where spectral power exceeds half of its peak.
Overall, pHFOs comprised a notably smaller spectral range of
power augmentation than nHFOs (pHFOs: 61.4 ± 42.6 Hz, nHFOs:
86.8 ± 46.6 Hz, mean ± SD; n = 25; P = 0.0137, d = 0.56, two-sided
Mann–Whitney U test; Fig. 3 B and C), suggesting that pHFOs are
more narrow banded (44).
Furthermore, we explored the cross-frequency relationship

(51, 56) between the low (4 to 30 Hz, peri-ripple band associated
with interictal spikes) and high (>80 Hz, ripple band) frequency
bands (SI Appendix, Text S3). First, we measured the time of
occurrence for p/nHFO relative to the spike peak, showing that
the pHFOs were highly concentrated prior to the spike peak, while
nHFOs were more uniformly distributed (SI Appendix, Fig. S4A).
Furthermore, we examined the riding phase of the HFO events
on the peri-ripple signal. In Fig. 3A, the examples illustrated that
a typical pHFO appears before the peak of the peri-ripple signal,
while nHFOs tend to distribute widely around the peak. Group-
level analysis showed clear nonuniform phase distributions pre-
sent for both groups (n = 229 pHFOs, n = 1,248 nHFOs; both
P < 10−4, Rayleigh test for circular nonuniformity), indicating
strong preferred phase on the low-frequency activity. However,
the mean phase differed significantly (pHFOs: [−33.2°, − 13.0°],
95% CI, compared to nHFOs: [−3.2°, 13.7°]; P < 10−4, d = 20,
Kruskal–Wallis equivalent test for circular population; Fig. 3D),
which suggests that the activity of pHFOs are coupled with the
rising flank of the peri-ripple signal, while nHFOs are more
aligned at the peak.

Categorization of HFO-Informed Spikes. The next question we asked
was whether those interictal spikes associating with different
groups of HFOs (i.e., p/nHFOs) present distinct and concordant
characteristics as well. According to the grouping of HFOs, the
spike population of each patient was categorized into three groups,
namely, pSpikes (spikes with pHFOs, 9.4 ± 11.6%, mean ± SD, n =
25), nSpikes (spikes with nHFOs, 30.0 ± 14.2%), and rSpikes (the
remaining spikes without any form of concurrent detections, 60.6 ±
19.3%; Figs. 1A and 4A), which is consistent with the previous
noninvasive studies (12, 39, 57). Furthermore, in patients who had
SOZ information available (n = 8, SI Appendix, Table S1), we found
higher, but unremarkable, percent of pSpikes in the patients with
lateral onsets (8.44 ± 7.93%, n = 3) compared to the patients in-
volving mesial onsets (5.98 ± 1.84%, n = 5, P = 0.79, two-sided
Mann–Whitney U test).
Across all patients, we found a significant difference in the

amplitude of the spikes (defined as the relative voltage between
the main peak and trough of a spike) (51) among groups (n = 25,
P < 10−4, Kruskal–Wallis test). pSpikes especially had the
highest amplitude compared to nSpikes (n = 25; P = 0.0081, d =
0.63, false discovery rate (FDR) corrected) and rSpikes (P =
0.00029, d = 1.30), and the amplitude of nSpikes was also higher
than rSpikes (P = 0.0081, d = 0.86; Fig. 4 B and D). However, the
width of the main peak yielded no remarkable difference among
groups (n = 25; P = 0.54, Kruskal–Wallis test). Additionally,
spectral analysis yielded a notable difference in the median fre-
quency of spikes in the ripple band among groups (n = 25; P =
0.016, Friedman’s test), which further indicated that pSpikes had
the lowest median frequency compared to nSpikes (P = 0.019,
d = 0.32, FDR corrected) and rSpikes (P = 0.016, d = 0.37),
while no clear difference was found between n/rSpikes (P = 0.48,
d = 0.05; Fig. 4 B and D). In addition, pSpikes had higher
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spectral heterogeneity [measured by the Kullback-Leibler di-
vergence of the observed spectral distribution from the uniform
distribution (58)] in the ripple band than nSpikes and rSpikes

(n = 25; P = 0.019, d = 0.82 and P = 0.040, d = 0.70, respectively,
Kruskal–Wallis test with FDR correction; Fig. 4 B and D), while
the n/rSpikes were comparable (P = 0.73, d = 0.08), suggesting a

Fig. 2. Clustered HFOs in three-dimensional space and spatiotemporal profiles of p/nHFOs in two patients. (A) HFOs are clustered in the high-dimensional
feature space and shown in the three largest principal component (PC) spaces, with pHFOs in red and other nHFO groups in blue/yellow/gray. Scalp distri-
butions of channels, where events from each group are detected, are shown correspondingly. Note the spread/focality of the scalp map in each group. (B) HFO
events in each group are displayed with raw data, the high-pass filtered (>80 Hz) data, and the time-frequency representations. The signal traces are piled
with the mean in bold, and colors correspond to each group in A. Note that pHFOs are highly associated with the spike profile, while nHFOs are generally
discordant with the spike either temporally or spatially; thus, spike traces are usually not visible in the nHFOs.

Fig. 3. Temporal and spectral characteristics of p/nHFOs. (A) Examples of p/nHFOs in P1 with raw signals in blue, high-pass filtered (>80 Hz) signals in orange,
and time-frequency maps with power color coded. The interval where the HFA was detected is marked with dashed vertical lines. (B) Averaged power time
course (z-scored) and averaged PSD (normalized by total spectral energy) in high-frequency band for p/nHFOs in all patients. The full width at half maximum is
marked in dashed vertical lines with colored areas (pHFO in red and nHFO in blue). Note the elevated side lobes in nHFOs, while pHFOs are clearly discernable
from the background. (C) Box plots of comparison in power peak, median frequency, and spectral width in all patients (n = 25). Note that pHFOs, in general,
are events standing out from a flat background activity within a narrowband compared to nHFOs. The horizontal black line indicates the median, the light
gray diamond denotes the mean, the vertical bars indicate the interquartile range (IQR), and the whiskers indicate the 1.5 IQR. (D) Riding phase of HFOs on
the low-frequency signal (4 to 30 Hz, peri-ripple band) with the mean phase vector shown in a solid line (n = 229 pHFOs, n = 1,248 nHFOs). Note that both
groups are nonuniformly distributed (P < 10−4, Rayleigh test for circular nonuniformity); however, the pHFOs mainly distributed prior to the peak (0°) of the
peri-ripple signal, while the nHFOs are averaged around the peak (P < 10−4, d = 0.20, Kruskal–Wallis equivalent test for circular population). *P < 0.05, **P <
0.01, †d > 0.2, ‡d > 0.5, and †‡d > 0.8.
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more uniform distribution of spectral energy above 80 Hz in
n/rSpikes compared with pSpikes in which the energy is less dis-
tributed (Fig. 4 A and B).
Next, we examined the hypothesis that pSpikes have the most

prominent cross-frequency coupling (CFC) compared to the
other two groups (SI Appendix, Text S3). First, we assessed the
phase locking between the low- and high-frequency activities in
spikes by constructing ripple phasor (55), which describes the
distribution of phase angles in the peri-ripple band correspond-
ing to the occurrence of a ripple activity when associated with an
epileptiform spike (Fig. 4E). The preferred phase of coupling in
nSpikes and rSpikes was similarly toward the peak of the spike
(n = 2,326 nSpike phases, n = 5,742 rSpike phases; P = 0.29, d =
0.18, circular Kruskal–Wallis test with FDR correction), whereas
pSpikes (n = 554 pSpike phases) were significantly aligned at the
negative phase before the peak of the spike comparing to nSpikes
(P < 10−4, d = 0.53) and rSpikes (P < 10−4, d = 0.48). Next, to

verify the strength of coupling indicated by the ripple phasor
analysis, we performed the oscillation-triggered coupling analysis
(55, 59) to compute the modulatory signal and the corresponding
modulation strength. First, we found that the time of occurrence
for prominent ripple band activities was relatively concentrated
before the spike peak time in pSpikes while more uniformly
distributed along the n/rSpike signals (SI Appendix, Fig. S4B),
which is also aligned with the results of ripple phasor analysis.
Furthermore, in Fig. 4C, we gave examples of oscillation-triggered
comodulograms for p/n/rSpikes in P3, showing clear modulation
in pSpikes of the peri-ripple activity with ripple band from 80 to
100 Hz in comparison with n/rSpikes. Further group-level analysis
revealed significant difference in modulatory strength (n = 25; P <
10−4, Kruskal–Wallis test; Fig. 4 B and F), where pSpikes had re-
markably higher modulation strength than nSpikes (P = 0.0019, d =
1.04, FDR corrected) and rSpikes (P< 10−4, d= 1.39); in contrast, no
notable difference was found between n/rSpikes (P = 0.06, d = 0.45).

Fig. 4. Temporal and spectral characteristics of spikes categories—p/n/rSpikes. (A) Examples of spike groups in P3 with raw signals (Top), high-pass filtered
(>80 Hz) signals (Middle), and time-frequency maps with power color coded (Bottom). The raw and filtered signal traces are piled, and the bold trace is the
mean. (B) Averaged MGFP (mean global field power), broadband PSD, and averaged oscillation-triggered modulatory signal for p/n/rSpikes in P3. (C)
Oscillation-triggered comodulograms (OTCG) for p/n/rSpikes in P3, representing the modulatory signals that are averaged at the peak of the narrowband
oscillation for frequencies above 80 Hz. The color encodes the amplitude of the modulation. Note the strong modulation in the range from 80 to 120 Hz in
pSpikes, while not in n/rSpikes. (D) Boxplot of group-level comparison for spike amplitude, median frequency in the ripple band, and spectral heterogeneity in
all patients (n = 25). Note that pSpikes in general have higher amplitude and carry large spectral variability compared to n/rSpikes. The horizontal black line
indicates the median, the light gray diamond denotes the mean, the vertical bars indicate the interquartile range (IQR), and the whiskers indicate the 1.5 IQR.
(E) Ripple-phasor distributions of p/n/rSpikes (n = 554 pSpike phases, n = 2,326 nSpike phases, n = 5,742 rSpike phases), representing the coupling between
spike phase and ripple amplitude, with color representing the density of ripple-phasor. The preferred phase of coupling in pSpikes is on the rising phase of the
spike, prior to the peak of the spike, which is significantly different from that of n/rSpikes (P < 10−4, d = 0.53 and 0.48, respectively, circular Kruskal–Wallis test
with FDR correction), while the ripple-phasor of n/rSpikes comparably distributed around the peak of the spike (P = 0.29, d = 0.18). Note that the preferred
phase of ripples on pSpikes is consistent with the riding phase of pHFOs. (F) Boxplot of modulatory strength for p/n/rSpikes across patients (n = 25). *P < 0.05,
**P < 0.01, ***P < 0.001, †d > 0.2, ‡d > 0.5, †‡d > 0.8, and n.s. indicates not significant.
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These results indicate that strong and consistent CFC are pre-
sent between HFO and spike in pSpike signals.

Imaging Performance of pHFOs Compared to Conventional Spike
Imaging. Given the morphological distinctions of the pHFOs
(events of putative pathology) from the other HFA detections,
we asked whether these identified pHFOs reveal and image the
underlying EZ and, if so, how accurate they are compared to the
conventional spike imaging method (60). To this end, we first
extracted the multichannel EEG data of pHFO activities for
each patient using a linear decomposition method on the basis of
spatiospectral information of the oscillatory signal with a char-
acteristic “peaky” spectral profile to optimize the signal-to-noise
ratio (SNR) of the extracted activity (61, 62). Then, the electrical
activity on the cortex was estimated from the extracted EEG data
via ESI techniques to localize the underlying sources of the cor-
responding scalp-recorded pHFO activity (41, 63, 64). For spike
imaging, the multichannel spike epochs identified in each patient
were averaged to enhance the SNR of the spike activity and
projected onto the cortex using the same source imaging method
(60). The estimated EZs of both pHFOs and averaged spikes were
compared to the clinical evidence—surgical resection (n = 26)
and/or intracranial electrodes denoted as SOZ (n = 11) by epi-
leptologists (Fig. 5A)—to evaluate the performance of the two
imaging modalities in terms of localization error, normalized
overlap ratio, and spatial dispersion for each patient (42, 64–67).
Clinically, the true EZ can be approximated by the surgical re-
section in patients who become seizure free postsurgically (2);
however, since the surgical resection is often conducted large enough
to ensure that all epileptogenic tissue is removed, taking surgical
area as EZ would most probably be an overestimate. Details
about source imaging are reported in Materials and Methods and
SI Appendix, Texts S4 and S5.
By estimating the current density distribution over the cortex

using pHFOs and spikes, overall, the estimated EZ of pHFOs
demonstrated constricted spatial activation, while spikes tended
to have more spreading distributions (two examples depicted in
Fig. 5A validated with resection area and SOZ, respectively). In
the 24 patients with resection information available, 18 of them
became seizure free; therefore, in these patients, the resection
volume was used as an approximate of the true EZ. In this cohort,
we found that the localization error to resection was remarkably
lower in pHFOs compared to spike imaging (n = 18, pHFOs:
3.52 ± 1.42 mm, mean ± SD, compared to spikes: 9.57 ± 5.29 mm;
P = 0.0002, d = 1.53, two-sided Wilcoxon signed-rank test; Fig. 5B),
displaying a 162% (∼5.36 mm) improvement. Additionally, in eight
patients with SOZ labeled, the localization error between the
estimated EZ and the SOZ was 10.05 ± 7.10 mm for pHFOs
compared to 18.50 ± 6.41 mm for spikes, indicating a significant
reduction of 186% (∼12.48 mm) (P = 0.0078, d = 1.18, two-sided
Wilcoxon signed-rank test; Fig. 5C). In addition, we found sim-
ilar results in patients with ETLE (SI Appendix, Fig. S6 B and C).
Subsequently, in order to assess the spatial concordance of the

imaging results to the clinical evidence, we adopted two other
metrics, normalized overlap ratio and spatial dispersion (65–67),
evaluating the spatial distribution of the estimated EZ based on
the spread of resection area or SOZ (SI Appendix, Text S5). We
first examined the precision of overlap between the estimated
EZ and resection and found that the concordance is significantly
higher in pHFOs (n = 18, 76 ± 23%, mean ± SD) than spikes
(38 ± 17%; P = 0.0002, d = 1.80, two-sided Wilcoxon signed-rank
test; Fig. 5B). Meanwhile, pHFOs had a conversely lower recall
of overlap with the resection (77 ± 20%) compared to spikes
(90 ± 15%; P = 0.013, d = 0.75, two-sided Wilcoxon signed-rank
test; Fig. 5B). Likewise, we found a similar trend in the precision
of overlap on the basis of SOZ, showing a notably higher pre-
cision using pHFOs than spikes (n = 8; P = 0.023, d = 0.97, two-
sided Wilcoxon signed-rank test); however, the recall with SOZ

was comparable in these two modalities, though the mean recall
in pHFOs was slightly higher than that in spikes (P > 0.5, d =
0.13, two-sided Wilcoxon signed-rank test; Fig. 5C). These re-
sults indicate that the estimated EZ of pHFOs is spatially more
focal and specific, while spikes are often widespread over areas
beyond the EZ. By combining the precision and recall in the
sense of geometric mean (or simply normalized overlap ratio), which
represents the overall concordance between the estimation and the
ground truth, we found higher normalized overlap ratio in pHFOs
compared to spike imaging when validated by resection (n = 18; P =
0.00028, d = 1.31, two-sided Wilcoxon signed-rank test; Fig. 5B) and
SOZ (n = 8; P = 0.039, d = 0.92, two-sided Wilcoxon signed-rank
test; Fig. 5C). Furthermore, the measurement of spatial dispersion
strongly affirmed our findings in overlap ratio, which shows signifi-
cantly smaller spreading in pHFOs than spikes, validated based on
both resection (n = 18; P = 0.0002, d = 1.94, two-sided Wilcoxon
signed-rank test; Fig. 5B) and SOZ (n = 8; P = 0.0078, d = 1.13, two-
sided Wilcoxon signed-rank test; Fig. 5C). Moreover, we observed
concordant results in patients with ETLE (SI Appendix, Fig. S6 B and
C). Additionally, we examined the imaging performance in patients
with deep foci (mesial temporal onsets, n = 5, SI Appendix, Table S1)
and found that the pHFOs were consistently better in localizing the
SOZ than spikes (SI Appendix, Fig. S9). These results suggest that
pHFOs in general are more spatially concordant with the clinically
defined EZ, in contrast to spikes which are spatially more spread.

Association of Estimated EZ with Surgical Outcomes. Once we evalu-
ated the imaging performance of the two modalities—pHFOs and
spikes—in the seizure-free cohort, we sought to investigate two
main questions. The first was whether the estimated EZ of these
biomarkers is concordant with the resection area in non–seizure-
free patients. The second was to inspect the relation between
imaging performance and surgical outcomes (i.e., seizure free or
non–seizure free). To answer the first question, we conducted the
same imaging procedure as before in a cohort of six non–seizure-free
patients with surgical information and calculated the corresponding
imaging performance in terms of localization error, normalized
overlap ratio, and spatial dispersion. By comparing these metrics
between the seizure-free and non–seizure-free groups for pHFOs, we
found dramatic degradation of localization error in the non–seizure-
free group (n = 6, 9.19 ± 4.81 mm, mean ± SD) compared to the
seizure-free group (n = 18, 3.52 ± 1.42 mm; P = 0.00097, d = 2.10,
two-sided Mann–Whitney U test; Fig. 5D). Moreover, the nor-
malized overlap ratio was significantly declined from 74 ± 11%
(n = 18) in the seizure-free group to 53 ± 18% (n = 6) for the
non–seizure-free group (P = 0.0085, d = 1.54, two-sided
Mann–Whitney U test; Fig. 5D), and the comparison of spatial
dispersion was consistent, giving an over 215% increment in the
non–seizure-free cohort compared with the seizure-free cohort
(P = 0.015, d = 1.56, two-sided Mann–Whitney U test; Fig. 5D),
indicating more spatial discordance between the estimated EZ
and the surgical resection in the non–seizure-free group. In
contrast, the metrics for spike imaging were not discriminable for
surgical outcomes (P > 0.5, d = 0.22 to ∼0.52, two-sided Mann–
Whitney U test), though a weak degradation was observed in the
non–seizure-free cohort (Fig. 5D).
Furthermore, we examined the association of imaging per-

formance (based on resection) to the corresponding surgical
outcomes for pHFO imaging. To do so, we constructed a gen-
eralized linear model (GLM) with a binomial distribution for the
response variable, which is the surgical outcomes (i.e., seizure
free or non–seizure free), and a linear predictor of measures in
imaging performance (i.e., localization error, normalized overlap
ratio, and spatial dispersion) via a logistic link function (68).
Given that the source imaging results were consistent across the
TLE and ETLE cohorts, we therefore combined all patients for
GLM analysis, including 20 seizure-free patients and 6 non–seizure-
free patients. In these patients, all three measures yielded significant
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predictors of the surgical outcomes (P < 0.01, χ2 test; SI Ap-
pendix, Fig. S5), among which the localization error was found to
be the optimal predictor (P < 10−4, χ2 test) with an odds ratio of
3.8 (95% CI: 1.07 to 13.53) for the non–seizure-free outcome per
unit (1 mm) increase in localization error (SI Appendix, Fig. S5).
These findings suggest that an inverse relationship exists between
the imaging performance measures—from the estimated EZ to
the surgical resection—and the clinical outcomes; in other words,
the more spatially concordant the imaging results for pHFOs are,
the higher the probability of seizure freedom in patients.

Improved Imaging Performance of HFO-Informed Spikes. The ob-
servation that spikes are separable by the co-occurrence of HFOs
into p/n/rSpike categories which demonstrated notable differ-
ences in morphology raised the question of whether the presence
of HFOs on the spikes leads to high concordance to the un-
derlying epileptogenicity or, alternatively, whether pSpikes pro-
vide better localization of the true EZ compared to the other two
groups. To address this, we used a randomized spike imaging test
based on bootstrapping to control the number of spikes averaged
in the imaging process for fair comparison among groups (Materials
and Methods). In the seizure-free patients who had resection

information available (n = 18), by comparing the imaging per-
formance among groups of spikes, we found significant difference
in the metrics of localization error (P = 0.045, Kruskal–Wallis test;
Fig. 6 A and B). More specifically, pSpikes achieved significantly
lower localization error compared to nSpikes and rSpikes (n = 18,
P < 0.05, d = 0.41, FDR corrected), while no difference was found
between nSpikes and rSpikes (P > 0.5, d = 0.02). Although there
was no remarkable difference in the measures of normalized
overlap ratio and spatial dispersion, the overall trends were con-
sistent with the localization error, showing a better performance in
pSpikes compared to n/rSpikes (n = 18, P = 0.056 to ∼0.079, d =
0.40 to ∼0.42, FDR corrected). Moreover, weak but not notable
imaging improvement was observed for pSpikes in the cohort of
patients in whom the SOZ was used for validation (n = 8, P > 0.05,
Kruskal–Wallis test; SI Appendix, Fig. S7A).
The notion of “red” and “green” spikes has been proposed in

the literature, referring to those more likely to correlate with
epileptogenicity and those not (45). Later studies confirmed that
spikes might be separable in their capability of indicating the
actual or latent EZ (69). Therefore, given that collected spikes
could come from bilateral or multiple foci in some patients, we
asked whether the co-occurrence with pHFOs leads to better

Fig. 5. Source imaging of pHFOs and spikes and association with clinical outcomes. (A) Examples of estimated EZ (color coded in strength of source activation) on the
individual cortex model (derived from preoperational MRI) in P18 and P12 with validation against resection area (green) or SOZ (pink) labeled from intracranial EEG
electrodes (black). (B) Imaging performance metrics measuring localization error, spatial overlap normalized by either estimated EZ (precision) or resection (recall),
geometric mean of precision and recall, and spatial dispersion in a cohort of seizure-free (SF) patients with resection information available (n = 18). Note that the
conventional spike imaging gives concordant but overestimated results, while the estimation of pHFOs has higher concordance and specificity. Each gray circle
corresponds to individual patient’s data. The horizontal black line indicates the median, the light gray diamond denotes the mean, the vertical bars indicate the
interquartile range (IQR), and the whiskers indicate the 1.5 IQR. In the bar graphs, the height denotes the median and the error bar indicates the SEM. (C) Imaging
performance validated by SOZ in patients who had intracranial information (n = 8). (D) Comparison of imaging performance between SF (n = 18) and nonseizure-
free (NSF) (n = 6) patients for pHFOs and spike in comparison to surgical resection. There is a clear degradation of imaging performance from SF to NSF cohort in
pHFO imaging but no significant difference in spike imaging. *P < 0.05, **P < 0.01, ***P < 0.001, †d > 0.2, ‡d > 0.5, †‡d > 0.8, and n.s. indicates not significant.
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selection of those “red” spikes highly correlated with the true
EZ. From the previous analysis, we found that 80% of patients in
which pSpikes outperformed n/rSpikes in localization error had
MST and, likewise, around 91% in normalized overlap ratio and
80% in spatial dispersion. Therefore, we compared the imaging
performance of p/n/rSpikes in subcohorts of patients with MST
(n = 12) or single spike type (SST, n = 6). Interestingly, we
discovered remarkably better concordance in pSpike imaging in
the MST cohort compared to the other two groups in all perfor-
mance metrics (n = 12, P = 0.0011 to ∼0.0275, d = 0.48 to ∼0.85,
Kruskal–Wallis test with FDR correction; Fig. 6C). In contrast,
the imaging results in SST patients were comparable among spike
groups (n = 6, P > 0.1, Kruskal–Wallis test; SI Appendix, Fig. S7B).
Hence, these results indicate that the spikes co-occurring with
pHFOs (pSpikes) better indicate the underlying epileptogenicity
and can be used as a criterion to objectively select more epilep-
tically relevant spike type(s) out of multiple available spike types.
In addition, we explored the association of the concordance in
pSpike imaging (to the resection) with the surgical outcomes;
however, none of the imaging metrics of pSpikes gave a notable
fitting for the GLM (n = 24, P > 0.05, χ2 test).
Last, we asked whether pHFOs or pSpikes are more effective

biomarkers in localizing the underlying EZ. For this, we normalized
the imaging results of the two modalities to those achieved by the
conventional spike imaging (aSpikes) as a baseline for comparison.
In the seizure-free patients who had MST, we found significant
differences among the three imaging modalities (i.e., pHFOs,
pSpikes, and aSpikes) in all performance metrics (n = 12, P <

0.0005, Kruskal–Wallis test; Fig. 6D). In detail, pSpikes pro-
duced lower localization error than aSpikes, as validated by the
surgical resection (P = 0.0034, d = 0.51, FDR corrected); mean-
while, the localization error was further reduced in pHFO imaging
compared to pSpikes (P = 0.0034, d = 1.38) and aSpikes (P < 10−4,
d = 4.11). Additionally, similar trends were found in the perfor-
mance of normalized overlap ratio and spatial dispersion, where
pSpikes and pHFOs both depicted higher overlap ratio and lower
spatial dispersion compared to aSpikes (n =12, P < 0.01, d = 0.56
to ∼3.34, Kruskal–Wallis test with FDR correction); furthermore,
pHFOs outperformed pSpikes in both normalized overlap ratio
(P = 0.04, d = 0.52) and spatial dispersion (P = 0.002, d = 1.81,
Fig. 6D). Likewise, we compared the source imaging results of
pHFOs and pSpikes in the patients who had SOZ identified (n =
8) and found consistent findings that pHFOs in general are
better localized to the presumed EZ compared to pSpikes (SI
Appendix, Fig. S7C).

Discussion
This study aimed to establish a tractable means using noninva-
sive HFOs for accurate localization of focal epileptogenic tissue
and delineation of the underlying epileptogenicity based on the
hypothesis that the co-occurrence of HFOs and spikes with
repetitive patterns provides a robust signature to discriminate
pathological HFOs and delineate the underlying EZ in nonin-
vasive EEG recordings, which, in turn, demarks the spikes of
higher epileptic significance compared to the general spike pop-
ulation. The research objectives were addressed by 1) developing a

Fig. 6. Improved source imaging performance of HFO-informed spikes—pSpikes. (A) Examples of estimated EZ for conventional spike imaging, pSpike imaging, and
pHFO imaging in P17. In this case, interictal spikes have bilateral origins, so the conventional spike imaging captures both sides, while pSpike and pHFO imaging
selectively colocalizes to the right temporal area. (B) Imaging performance of pSpikes in seizure-free (SF) cohort with resection validation (n = 18). In the bar
graphs, the height denotes the median and the error bar indicates the SEM. (C) Imaging performance of pSpikes in a cohort of 12 patients with MST. Note that
imaging performance is further boosted in this cohort with MST, suggesting the co-occurrence of HFOs on spikes as a discriminator of spikes with higher epileptic
significance. (D) Comparison of imaging performance among pHFOs, pSpikes, and conventional spike imaging (aSpikes) as baseline (green dashed line) in the
cohort of SF-MST patients (n = 12). RT = right temporal, LT = left temporal, SF = seizure-free. *P < 0.05, **P < 0.01, ***P < 0.001, †d > 0.2, ‡d > 0.5, and †‡d > 0.8.
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noninvasive and automatic approach to identify HFOs riding on
spikes in scalp EEGs of patients with medically refractory epi-
lepsy, 2) investigating the characteristics of HFOs and spikes in the
presence or absence of the co-occurrence status, and 3) demon-
strating the utility of the identified HFOs in delineating the cor-
tical regions of epileptic abnormality validated by clinical evidence
of surgical resection and SOZ.
Together, our results can be summarized as follows. First, we

identified a subtype of HFOs concurrent with epileptiform spikes
as a potential epileptic biomarker which is easy to observe and
discriminate in noisy scalp EEG recordings. Second, we found
that these pHFOs are distinctive from the nHFOs (events without
consistency on spikes) in various temporal, spectral, and CFC
patterns across patients. Moreover, similar discriminability was
observed in diverse morphological characteristics among the sub-
groups of spikes (i.e., pSpikes, nSpikes, and rSpikes), corresponding
to the presence of p/nHFOs. Third, our findings in source analysis
revealed that the identified pHFOs are highly concordant to the EZ
defined by the clinical resection and the SOZ in the cortical source
domain compared to conventional spike imaging. In addition, we
demonstrated that the congruence between the surgical resection
and the pHFO sources is correlated with the surgical outcomes.
Furthermore, we learned that the concurrence between HFOs and
spikes not only identifies a subtype of epileptic HFOs but also se-
lects a spike subgroup, which in turn outperforms the subgroups of
spike imaging, suggesting that pHFOs can serve as a discriminator
for identifying “red” spikes that are of high significance to deter-
mine the EZ.
Previous studies have proposed computational methods to-

ward the detection of HFOs in scalp recordings (32, 38–40);
however, such semiautomated approaches rely heavily on visual
inspection to ensure optimal performance, and the successful
discrimination of pathological from nonepileptic activates is still
challenging and hinders the clinical utility. In the present study, we
introduced an approach for automatic identification of putative
HFOs combining an established architecture consisting of detec-
tion and discrimination components in invasive studies (70, 71)
and discriminative features tailored to tackle the challenging con-
ditions in scalp recordings based on two premises—concurrence
with interictal spikes (7, 11, 46) and repetitive patterns (43)—to
assist with the identification of epileptic activities. The proposed
method was shown to outperform a well-established benchmark
detector (39) in various simulation scenarios, which is attributed
to the integration of high sensitivity detection and unsupervised
learning techniques; however, due to the intrinsic differences and
design strategy (e.g., semiautomated versus automated approach),
direct comparison might be difficult and future investigation in
both large-scale simulation and clinical study in comparing these
detection approaches would be necessary. Also note that the pre-
sent approach is independent of the spike detection procedure and
operates on both segmented spike epochs and continuous record-
ings. In this study, spike epochs were collected, using Persyst and
expert review, to investigate the characteristics of spikes with and
without the concurrent HFOs based on the hypothesis that the
concurrence between HFOs and spikes reciprocally identifies ac-
tivities of higher degree of epileptic significance.
Subsequently, we showed distinctive spatiotemporal difference

of pHFOs coexisting with interictal spikes, also known as spike
ripples in previous studies (32, 39), from other HFAs without
such concurrent patterns (nHFOs). Our results are aligned with
previous studies showing pathological HFOs tend to have con-
strained distribution in the sensor level (50, 51) with regular and
repetitive waveforms (43, 70), in contrast to the nHFOs which
have widely distributed scalp topology and irregular shapes (43),
from which we speculate that these nHFOs are a collection of
HFAs originating from eloquent areas (21, 30, 43), biological
(13, 21) and filtering artifacts (13, 22), or probably even inde-
pendent epileptic HFOs (18, 44). Additionally, our study lends

support to the published findings that epileptic HFOs are burst-
like activities with clear separation from the background, while
the nonepileptiform HFAs are broadband and embedded in
oscillatory background without a clear-cut (44, 52, 54).
Cross-frequency interaction is of particular interest in epilepsy

research (7), which might potentially distinguish pathological
and physiological HFOs. Invasive studies have shown that the
superimposed HFO on spike may indicate high association of
epileptogenicity (30), with increased phase-amplitude coupling
within SOZ (55). Our analysis is consistent with the previous
findings by documenting strong modulation between low- and
high-frequency bands in the pSpikes that are indexed by pHFOs
compared to n/rSpikes. Furthermore, consistent phase locking
was affirmed by pHFOs and pSpikes, indicating that putative
HFOs tend to appear preferably prior to the peak of the spike
signal coincidently on the rising phase, which is in line with the
previous studies in both human and animal models (51, 72). More-
over, the preferred phase of coupling also suggests that pHFOs are
unlikely to result from filtering spikes (51), unlike n/rSpikes, because
artifactual events generated by ringing effect are often centered at the
peak of sharp waves (22).
We found that pHFOs in the cortical source domain are highly

concordant with the clinical evidence modeled by the surgical
resection and SOZ, surpassing the conventional spike imaging
method, which might owe to the spatial focality and selectivity of
pHFOs (Fig. 2A), while spikes are less specific in general. This is
consistent with the previous studies that note the specificity of
HFOs to the epileptogenic area (12, 57) with a smaller extent
than the IZ (73). We also observed the efficacy of pHFOs in lo-
calizing the SOZ even when deep foci were present, which might
attribute partly to the capability of identifying HFOs in high-density
EEG, which has been shown to allow better observability of the
HFOs (74). Furthermore, in cases with mesial temporal onsets, we
found that the occurrence and amplitude of pHFOs was relatively
lower than the lateral onset cases (statistically not significant),
whereas the pHFOs could still be stably identified from the scalp
EEG. Therefore, the present approach could be potentially trans-
lated to cases where stereo-electroencephalography (SEEG) is used
and the SOZ involves deep sources, especially when visual inspec-
tion of HFOs is excessively difficult in high-density EEG. Further-
more, given that the spatial sampling of SEEG is relatively limited
(6), our approach to study the scalp-recorded pHFOs would be a
good complement to SEEG investigations. However, since pHFOs
could be less observable in cases with deep sources and the intra-
cranial investigation of the studied cohort is limited to subdural
grids and depth electrodes, future research in patients with SEEG
involving superficial and deep onsets is necessary to further evaluate
the proposed approach.
Several research groups have been exploring the possibility of

localizing HFO sources from scalp EEG/MEG recordings (75–77);
however, these studies have not fully addressed two issues: first,
there lacks an objective means to distinguish pathological from
physiological and artifactual HFAs (12, 78); second, the practicality
and translational efficacy of such approaches is further hindered by
manual review of HFOs in isolated short data segments (29). Our
present work built a link between the automatic identification
and source imaging of epileptic HFOs with a tractable means to
study and delineate pathological generators in epilepsy patients
from the scalp. In addition, we surprisingly found that the pSpikes
selected by pHFOs in turn demonstrated distinctive morphological
properties (51, 55) and elevated specificity in localizing the EZ
compared to the other spikes without pHFOs. Further analysis also
depicted that pHFOs are superior to pSpikes in localization per-
formance. These findings in spike analysis might suggest a potential
pathological meaning of the concurrence between the HFOs and
spikes, which implies that the identified pHFOs are of epileptic
significance. This bidirectional evidence might indicate the se-
lectivity of pHFOs in separating “red” spikes (18, 30, 45) and
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suggests a possible mechanistic network of mutual pathology
underlying co-occurrence of HFOs and spikes.
It is commonly accepted that HFOs and spikes might repre-

sent similar neuronal networks but independent neurophysio-
logical mechanisms (7, 18). Accordingly, spikes are considered as
summated postsynaptic potentials from hyperexcitable and
hypersynchronous pyramidal cells, but disrupted connectivity could
lead out-of-phase firing and produce HFOs (23, 79, 80), which
might result from neural loss (81) or altered GABAergic inter-
neuron inhibition (82, 83). Moreover, HFOs tend to behave more
similar to seizures than spikes (84); therefore, the concurrence of
HFOs with spikes could potentially index the critical brain area
of highly pathological nature, which might contribute to the high
specificity of pHFOs to epileptic zones and the selectivity of
pSpikes. Furthermore, recent advances suggested that epileptic
tissue is transiently impaired instead of fully dysfunctional (44)
and that the activation of HFOs is correlated differently with the
postspike inhibition across ictogenesis (14, 85, 86). Therefore, we
speculate that the transient impairment of epileptic tissue pre-
sents varying pathophysiological status, leading to different levels
of network disruption, thus possibly explaining the distinct
presence of coupling between HFOs and spikes within the same
epileptic foci. There is also evidence that the alternation of
excitation–inhibition balance in the epileptic network has rele-
vance for the development of interictal activities and evolvement
into seizures (87, 88). Therefore, the concurrent HFOs and
spikes might share a mutual underlying pathological relationship
and could reciprocally serve as a crucially important signature of
epileptic status and therapeutic progress.
In this study, we provide a systematic and tractable approach

to study pathological HFOs in scalp recordings for the delinea-
tion of underlying EZ. Our results also suggest potential means
to examine artifactual HFOs, such as by phase-coupling mea-
sures. Moreover, we provide evidence that the reciprocal con-
currence of pHFOs potentially selects the “red” spikes with high
pathophysiological relevance from general spike populations,
which helps delineate subareas of the IZ. This could be impor-
tant in understanding the structure or formation of the epileptic
network and possibly leads to deeper insights of the evolution and
role of the various epileptic biomarkers. Clinically, our findings
have three potential implications. First, the identified pHFOs
could reveal or lateralize the potential epileptic foci and demark
the “red” spike subgroups, which can assist for presurgical plan-
ning or invasive investigation. Second, the source imaging analysis
of pHFOs can provide estimation of the underlying EZ in indi-
vidual patients with focal epilepsy, which could further facilitate in
planning for surgical intervention, such as resection or neuro-
modulation, and provide evaluation of the treatment outcomes.
Third, our results raise the possibility of accurately investigating
epilepsy without having to record seizures, which is resource
consuming and prone to induce additional risks of secondary
generalization due to medication reduction or cessation for pro-
longed video-monitoring prior to neurosurgery (89). Together, our
findings suggest that the utility of concurrent HFOs with spikes in
scalp recordings is highly desirable, which might be a critical re-
source for clinical translation in numerous patients and extend the
application from presurgical diagnosis to monitoring of disease
severity, tracking therapeutic progress, and providing postsurgical
evaluation in vulnerable patient populations.
This study was designed to objectively investigate pathological

HFOs in scalp recordings for focal epilepsy, especially for TLE;
however, this disease population may have facilitated the iden-
tification of HFOs and spikes, which consequently makes it
useful to investigate other epilepsy types such as absence seizure,
in which spike and wave is a marked characteristic (86) and ictal
mechanisms and origins are still being investigated (90). Like-
wise, although we included four patients involving extratemporal
foci as case studies and found highly consistent results in line

with the TLE cohort, the sample size is barely enough to draw
strong conclusions. Further studies in patients with ETLE would
be needed to confirm the findings in this study. Furthermore,
there also exist HFOs independent of spike but of pathological
value (18, 44) that are not being detected with our approach.
Although it is still unclear how such independent HFOs are to be
distinguished from other HFAs, in the absence of discriminators
such as epileptiform spikes, the exploration of these HFOs is an
interesting topic for a future study. Moreover, research on the
neurophysiological basis of the formation and evolution of HFOs
and spikes and their relevant role in the epileptic network remains
to be done. More importantly, clinical translation of scalp HFOs
and their associated spikes in various applications is a crucial move
to potentially improve clinical practice and hugely benefit patients
with epilepsy.

Materials and Methods
Patient Population and Data Collection. In total, 25 patients (14 females, aged
19 to 60 y; SI Appendix, Table S1) with TLE and 4 patients with ETLE (two
females, aged 21 to 47 y; SI Appendix, Table S2) were included in this study.
All patients were recruited and evaluated by trained epileptologists at Mayo
Clinic. The criteria of inclusion were as follows: 1) patients who underwent
presurgical investigations, including high-density video EEG, high-resolution
MRI, and neuropsychological assessment; 2) patients eligible for resective
surgery and/or intracranial EEG monitoring; 3) patients whose scalp EEG
recordings contained clear and frequent interictal spikes identified by the
clinicians; and 4) patients who had at least 1 y of follow up with postsurgical
evaluation and/or iEEG study available to define the resection and/or SOZ
location. The main investigations were based on the temporal cohort, and
the extratemporal patients were included as case studies.

All patients underwent long-term presurgical monitoring using a
76-channel EEG system (Xltek, Natus Medical Incorporated). Each electrode
was glued over the scalp according to a 10-10 montage with the reference
electrode at CPz. The EEG signals were recorded with a sampling rate of
500 Hz and high pass filtered above 1 Hz to remove spurious slow activity and
DC drifts. The outcomes of surgical intervention were determined by the cli-
nicians following the International League Against Epilepsy (ILAE) criteria (91)
during the follow-up period (n = 29, 19 ± 6.8 mo, mean ± SD). Among all
patients, 21 patients were scored as ILAE 1 to 2 (seizure free; 12 females), and 8
were scored ILAE 3 to 6 (non–seizure free; 4 females). The study was approved
by the Institutional Review Boards of Carnegie Mellon University and Mayo
Clinic, and all patients gave informed consent to participate in this study.

Overview of HFO Detection and Discrimination. All identified spikes were
extracted in the temporal window from −500 to +500 ms surrounding the
predominant peak, and it was ensured that no obvious artifacts existed during
this interval. In each patient, the extracted epochs were manually examined in
Matlab (The MathWorks, Inc.) using EEGLab toolbox, and independent com-
ponent analysis was conducted to eliminate common artifacts, such as eye
blinks, which have distinct spatiotemporal features (i.e., high/sharp activity in
the anterior electrodes). Then, all spike epochs were used for automatic de-
tection of HFOs independently on each channel using our proposed approach,
which is constructed based on a previously established structure, consisting of
detection and discrimination components, in invasive studies (70, 71). The
proposed method integrates the concurrence of interictal spikes (7, 11, 46)
with repetitive patterns (43) of HFOs to disentangle pathological activities
from other HFAs. For each patient, spike epochs were first filtered using a
zero-phase finite impulse response (FIR) band-pass filter (64th order) from 80
to 240 Hz and screened by an energy detector to discover all possible candi-
dates of HFAs distinguishable from the background. Specifically, in each
channel, the distribution of SD for the signal amplitude was computed with a
100 ms moving window. Then, a baseline threshold was set at two times the
median of the SD distribution, and all samples in the filtered signal with an
absolute amplitude exceeding this level were stored as the initial detection of
candidates. In general, a low baseline could warrant high sensitivity in this
initial phase. Each of the detected candidates was extracted as a segment of
128 ms before and after its peak, within which the background envelope of
the filtered epoch in the first and last 80 ms was calculated using Hilbert
transform, and a baseline was set at two times the median of the envelope
distribution. Then, the number of crossing relative to this baseline was coun-
ted for the central 80 ms for each detected event, and those with a crossing
number exceeding eight (two per each of the four cycles) were sieved from the
initial detections, which aligns with the clinical definition of typical HFOs (11,
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13). Furthermore, the number of zero-crossing in the unfiltered signal was also
counted, and those events with a zero-crossing over 10 were discarded as noisy
activities (70).

To discriminate the putative HFOswith high precision, we designed a set of
representative features, combining various temporal, spectral, and spectro-
grammeasures, extracted from each of the survived events in both unfiltered
and filtered (>80 Hz) data (SI Appendix, Text S1). Next, upon the extracted
features, the detected events were separated into several clusters using
Gaussian Mixture Model in an unsupervised manner, which was initialized
by k-means clustering with the optimal number of clusters determined by
the elbow method (92). The clusters of pHFOs were identified by the spa-
tiotemporal association co-occurring with spikes. Specifically, once the
clusters were formed, the activities within each cluster were displayed by the
piled waveforms of unfiltered and filtered data as well as the spatial dis-
tribution of the channels where these events were detected, as shown in
Fig. 2. The morphology of the unfiltered and filtered traces could easily
distinguish the clustered putative pHFOs riding on spikes (pHFOs), and the
repeatability of the clustered events could affirm whether these events oc-
curred consistently or occasionally from the piled signals and their spatial
distribution. Then, the remaining events not consistently co-occurring with
spikes were labeled as nHFOs. A diagram of the adopted algorithm is provided
in SI Appendix, Fig. S1. In addition, the proposed identification method was
compared to a well-established benchmark detector (32, 39) using a Monte
Carlo simulation as detailed in SI Appendix, Text S2 and Figs. S1 and S2.

Electrophysiological Source Imaging. Upon the identification of pHFOs, the
multichannel EEG were filtered above 80 Hz and transferred into time-
frequency spectrogram (TFS) using short-time Fourier transform. The
power within each TFS map was examined to find the most prominent peak
and its temporal and spectral ranges (93). The multichannel epochs of pHFOs
were concatenated along the temporal dimension. Given the estimated in-
formation of the time and frequency ranges of the pHFOs, the spatio-
spectral decomposition (SSD) method (61, 62) was used to decompose the
original multichannel data into orthogonal temporal basis functions, which
assemble the oscillatory activities at specified temporal and spectral range
and are paired with topological scalp maps representing the spatial activa-
tion of the basis. By projecting the original signal domain onto the prom-
inent basis (62), the denoised pHFO data were extracted out of the noisy EEG
signals (SI Appendix, Text S4).

Subsequently, we estimated the cortical source distribution of the
extracted EEG data to image the underlying activities of pHFOs via ESI
techniques, which is the process of estimating cortical activity from scalp
recordings using the electrophysiological properties and geometry of the
head to counter the effects of volume conduction (41). Since many estab-
lished methods can be used to solve this inverse projection problem (41), for
simplicity and reproducibility, the standardized low-resolution brain elec-
tromagnetic tomography (63) was employed. For spike imaging, the spike
epochs were first band-pass filtered from 1 to 35 Hz to extract the main
spectral power representing the spike activity, and then the filtered epochs
were averaged to denoise the signals. The same ESI procedure was applied
on the averaged spikes to estimate the underlying sources generating spike
activities. In patients with MST, individual ESI analysis was performed on
each spike type, but the performance measures, that is, localization error,
normalized overlap ratio, and spatial dispersion, were averaged across all
spike types in each individual patient (SI Appendix, Text S5). The estimated

cortical source distributions for both pHFOs and averaged spikes were
thresholded above the level of background activities using Otsu’s method
(94, 95). Moreover, the receiver operating characteristic curve was used to
examine the possible effect of varying thresholds on the evaluation of im-
aging performance between pHFOs and spikes (SI Appendix, Fig. S8).

Randomized Spike Imaging Analysis. We separately performed imaging
analysis in each subgroup of spikes (i.e., p/n/rSpikes) for each patient to assess
the relative concordance of each subgroup with the clinical evidence. Due to
the fact that the number of spikes in each subgroup was mostly unequal,
simple averaging within each group might result in varying SNR across
subgroups, as noise level is generally inversely correlated with the number of
spikes averaged, thus leading to a biased imaging evaluation and an unfair
comparison. Therefore, to address this issue, we deployed a randomized
imaging test based on bootstrapping. Basically, for each patient, we pooled
and resampled the spikes within the two subgroups with a larger sample size
to withdraw a certain number of spikes according to the size of the minimum
subgroup. Across all patients, the average number of resampled spikes was
about 6 ± 4 (mean ± SD), and the pooled size was about 34 ± 23. The ESI
analysis was performed on the averaged spike epoch from every surrogate
trial to estimate the current source density and compute imaging perfor-
mance, which we call an observation. This procedure was repeated
1,000 times to generate a distribution of imaging observations in the sub-
groups with a larger size, while for the minimum subgroup, ESI was evalu-
ated only once. For group-level comparison, the imaging performance was
averaged across surrogate trials for each spike subgroup and normalized to
the best performance across subgroups within each patient.

Statistical Analysis. Statistical details are provided in the Results and corre-
sponding figure legends. Descriptive statistics are shown as mean ± SD or
95% CI, as indicated. Statistical significance was set for P < 0.05, and the
effect size was quantified using Cohen’s d. All Statistical analysis and visu-
alization were conducted in Matlab.

Data Availability. The analysis codes with sample data are available at GitHub,
https://github.com/bfinl/HFOs-Identification-Imaging. The developed scripts
and codes were written and tested using Matlab 2018a. We employed Curry 7
(Compumedics) and the EEGLab toolbox (version 13.6.5b) for visualization
and preprocessing analyses (https://sccn.ucsd.edu/eeglab/index.php), as well
as Persyst 13 for automated spike detection. Additionally, some open source
Matlab plugins were used for signal processing and statistical analysis pur-
poses, including the SSD toolbox (61) (https://github.com/svendaehne/matlab_
SSD), the FDR toolbox (https://www.mathworks.com/matlabcentral/fileexchange/
27418-fdr_bh), the MES toolbox (96) (https://www.mathworks.com/matlabcen-
tral/fileexchange/32398-hhentschke-measures-of-effect-size-toolbox), and the
CircStat toolbox (97) (https://www.mathworks.com/matlabcentral/fileexchange/
10676-circular-statistics-toolbox-directional-statistics).
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