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Abstract: Spatiotemporal models are a popular tool for urban traffic forecasting, and their correct
specification is a challenging task. Temporal aggregation of traffic sensor data series is a critical
component of model specification, which determines the spatial structure and affects models’
forecasting accuracy. Through extensive experiments with real-world data, we investigated the effects
of the selected temporal aggregation level for forecasting performance of different spatiotemporal
model specifications. A set of analysed models include travel-time-based and correlation-based
spatially restricted vector autoregressive models, compared to classical univariate and multivariate
time series models. Research experiments are executed in several dimensions: temporal aggregation
levels, forecasting horizons (one-step and multi-step forecasts), spatial complexity (sequential and
complex spatial structures), the spatial restriction approach (unrestricted, travel-time-based and
correlation-based), and series transformation (original and detrended traffic volumes). The obtained
results demonstrate the crucial role of the temporal aggregation level for identification of the
spatiotemporal traffic flow structure and selection of the best model specification. We conclude that
the common research practice of an arbitrary selection of the temporal aggregation level could lead
to incorrect conclusions on optimal model specification. Thus, we recommend extending the traffic
forecasting methodology by validation of existing and newly developed model specifications for
different temporal aggregation levels. Additionally, we provide empirical results on the selection
of the optimal temporal aggregation level for the discussed spatiotemporal models for different
forecasting horizons.

Keywords: spatiotemporal models; temporal aggregation; forecasting accuracy; big data; urban
traffic modelling

1. Introduction

Traffic flow forecasting is a classic problem of transportation engineering. Recent developments
in intelligent urban transportation systems led to the availability of an overwhelming amount of
geospatial data, collected in modern cities by a wide network of distributed traffic sensors and tracking
devices [1]. Thus, the mainstream of academic research into traffic flows shifted from univariate
modelling of spatially disconnected road segments to spatiotemporal analysis, which utilizes potential
dependencies between different locations [2].

Spatiotemporal traffic analysis requires careful identification of the spatial structure—a set
of dependencies between traffic characteristics at neighbour or remote road segments [3].
Although modern spatiotemporal models provide various treatments for the incorporation of spatial
information, the problem is still emerging for dynamic spatial environments. Since Okutani and
Stephanedes [4] directed attention to spatial dependencies between traffic flows and practical utility
of this information for traffic forecasting, many researchers utilized information about the spatial
structure in their methodologies. Applied methodologies could be tentatively classified into two
approaches, as is classical for spatial econometrics—specific-to-general and general-to-specific.
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The specific-to-general approach is based on the gradual extension of univariate traffic flow models
with carefully selected spatial dependencies (e.g., dependencies between the target and upstream road
segments). Stathopoulos and Karlaftis [5] and Vlahogianni et al. [6] successfully utilized a spatial
dependency between the target road segment and its immediate upstream neighbour for improvement
of the model forecasting accuracy (time series models and neural networks respectively). This type of
spatial dependency directly follows from the kinematic traffic flow theory and its discovered utility is
natural. Further studies include downstream [7] or bi-directional [8] spatial dependencies between
neighbour road segments. Downstream dependencies are also well theoretically supported by the
back propagation of traffic congestions. The next methodological step in this direction is application of
spatial econometric advances. A set of spatial dependencies is generalized in a form of a matrix of
spatial weights, which contains inverse spatial dependencies between every pair observed locations.
Usually, this matrix is constructed exogenously and based on geographical distances or travel times
between the locations. The space–time autoregressive model (STAR), introduced by Cliff et al. [9],
and its direct generalization to the space–time autoregressive integrated moving average model
(STARIMA) [10], are based on exogenously provided spatial weight matrices and widely used for traffic
flow forecasting [11,12] (see Elhorst [13] for a comprehensive discussion of STAR-based models and
their applications). One of the main challenges for STAR-based models is a proper specification of the
spatial weight matrix: spatial dependencies are naturally unstable over time in a dynamic traffic flow
environment, and so spatial weights should be considered as dynamic. This issue can be solved by the
application of threshold or regime-switching models [14] or models with dynamic speed-dependent
spatial weights [12].

Studies that utilize the second, general-to-specific, approach start from the most general model,
where spatial dependencies could potentially exist between any road segments, and gradually reduce
the number of spatial links. The presence of spatial relationships between remote road segments is
usually explained [2] by common traffic patterns (for example, event-specific traffic flows to the city
centre from outskirts) or by the complementary nature of road segments (thus negative spatial links
are also possible). The most widely used statistical implementation of this approach is the popular
vector autoregressive (VAR) model [15] and its generalization to the vector autoregressive moving
average (VARMA) model [16]. Several recent studies utilize the VAR model and its modifications for
identification of spatial relationships in the traffic flow [11,14,17–21]. Despite the obvious advantages
of this data-driven approach, highly dimensional VAR models suffer from an extremely large number
of parameters and the overfitting problem. Overfitting is especially critical for spatial traffic flow
modelling, where data series come from thousands of spatial locations (sensors).

One of emerging approaches to overcome overfitting problems of highly dimensional VAR models
is limiting the number of possible dependencies using additional exogenous information or statistical
techniques (regularization). VAR models, where the number of parameters is significantly limited by
introduced restrictions, are called sparse. Clements and Hendry [22] showed that the forecast accuracy
can be improved by imposing zero restrictions on coefficients that are close to zero even if the true data
generating process has none of these restrictions. Statistical regularization (such as lasso, least absolute
shrinkage and selection operator, or the elastic net) is the most widely used technique for increasing the
sparsity of VAR models (for example, Kamarianakis et al. [14] applied lasso regularization to discover
significant spatial links between road segments and to increase model forecasting performance).
Statistical regularization can be implemented in two steps, where the first step is a correlation-based
identification of spatial dependencies and the second one is the estimation of the sparse VAR model
with the most significant features and lags (see [23] for a possible implementation of this approach).
Recent studies [21,24,25] provided empirical evidence of the successful utilization of correlation-based
sparsity for traffic flow modelling. Although statistical regularization was successfully applied in
practice, direct introduction of a spatial structure looks like a more information-thrifty approach.
Spatially restricted VAR models introduce zero restrictions on coefficients on the basis of an exogenously
provided spatial structure. Spatial restrictions can be implemented using the same principles as spatial
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weights—using the distance- or travel-time-based road network topology [19,20]. Note that spatially
restricted VAR models can be considered as a “softer” and more flexible way to introduce spatial
dependencies—in contrast to classical spatial econometric models, where the spatial structure should
be strictly defined via spatial weights, spatially restricted models define only spatial links, where a
dependency could be (but is not necessary to be) discovered.

The spatiotemporal structure also plays an important role in modern deep learning models
of traffic flows [26,27]. Recently developed deep learning model specifications [28–31] utilize the
graph convolution technique: the models are trained for a spatiotemporal graph of relationships that
appear between road segments with different temporal lags. Although identification of the most
important relationships can be implemented internally (for example, using the spatiotemporal attention
mechanism [32]), these advanced models also require external definition of the spatiotemporal structure.

Regardless of the learning approach chosen, the resulting spatial structure of traffic flows is
complex and includes both static and dynamic components—it strongly depends on the road network
configuration and current traffic conditions. In addition, the spatial structure highly depends on the
temporal aggregation level (for example, sets of spatially linked locations are completely different
for 1 min and for 5 min time intervals). Within the scope of this research, we stress that the structure
of spatial dependencies strongly depends on a selected temporal aggregation level. For example,
if we consider travel times between road segments as a metric for spatial weights’ construction,
first-order neighbour segments will be completely different for 1 and 5 min temporal aggregation
levels. Thus, the problem of temporal aggregation plays a critical role for introducing the spatial
structure into traffic flow models. The importance of temporal resolution for traffic flow modelling is
repeatedly accentuated by Vlahogianni et al. [33–35]. Analysis of temporal aggregation effects has a
long history in the literature on forecasting methodology, but is still emerging [36]. Early [37–40] and
recent [41,42] methodological studies provided treatments for temporal aggregation of univariate time
series models. Temporal aggregation of multivariate models is also well covered in the theoretical
literature [43–45]; in particular, Breitung and Swanson [44] provided theoretical evidences for a
dependence between Granger causal relationships and temporal aggregation of multivariate time
series. These studies generally advise using disaggregated data for model estimation to prevent losses
of information and increase forecasting performance. Although advantages of temporal aggregation
have no theoretical support, several recent studies [46–50] provide empirical evidence of the better
forecasting performance of models, estimated on the basis of aggregated data. Kourentzes [48,51]
explained these empirical findings by easier identification of different time series components using
different temporal aggregation levels (i.e., trends could be more easily identified for aggregated data,
where random disturbances have lower impact). This argument is important in the context of this
research, because we expect that the structure of spatial dependencies has positive forecasting accuracy
effects for specific aggregation levels only.

Although the importance of temporal aggregation was highlighted by several recent studies
in the traffic forecasting domain (e.g., Vlahogianni and Karlaftis [35]), many empirical studies that
utilise spatiotemporal models are focused on a specific temporal aggregation level only. Suggesting
a new methodological approach, the authors arbitrarily select a temporal aggregation level for their
experimental part (i.e., 5 min time intervals for short-term forecasting) and make potentially improper
generalisations of obtaining results.

Summarising the literature review, we conclude that:

• The spatiotemporal structure of traffic flow dependencies plays an important role in the modern
traffic forecasting methodology.

• Definition of the spatiotemporal structure is a complex problem, whose solution depends on the
selected level of temporal aggregation of data series, among other parameters.

• The optimal level of temporal aggregation is subject to many problem- and case-specific factors
and should be estimated empirically.
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• Despite the acknowledged importance of temporal aggregation, its role is rarely addressed in
methodological literature on traffic flow forecasting.

In this research, we provide empirical evidence of the importance of temporal aggregation
for estimating a forecasting accuracy of spatiotemporal models. We argue that the analysis of
spatiotemporal model specifications, conducted for an arbitrary specified temporal aggregation level,
can easily lead to misleading conclusions. Thus, the main research question addressed in this study is:

• Does the temporal aggregation level play a crucial role for estimating forecasting accuracy of
spatiotemporal traffic flow models? If yes—is it possible to empirically estimate the optimal
temporal aggregation level, given the model specification and required forecasting horizon?

To the best of our knowledge, there are no previous studies focusing on the importance of
temporal aggregation for spatiotemporal traffic forecasting models. The fact of this importance is
acknowledged in recent literature, e.g., Vlahogianni and Karlaftis [35] stated that “further research is
needed to determine the optimum aggregation level with respect to different transportation modelling
applications”. At the same time, the majority of recent methodological studies did not include the
level of temporal aggregation into a set of tuned parameters (usually, this set is limited by different
forecasting horizons, definitions of the spatiotemporal structure, and model-specific hyperparameters).
We state that this exclusion can lead to incorrect conclusions on models’ forecasting performance and
inappropriate model selection.

2. Materials and Methods

This section contains a detailed description of the research dataset and methodology,
including aspects of data pre-processing, definition of spatial structures, model specifications,
and measurement of the forecasting accuracy.

2.1. Research Data

The dataset was collected by sensors deployed in the Minneapolis urban area and managed by
the Minnesota Department of Transportation (MnDOT). The sensors are regular traffic detectors that
include inductive loops installed in the pavement and constantly test their inductance. The inductance
is raised when a massive metal object passes the loop (the sensors are tuned to identify scooters and
larger vehicles), and this signal is used for traffic measurement. Sensors collect information on the
traffic volume (number of cars passed the loop) and the occupancy (percentage of time when a vehicle
is located in the loop). Further, these raw indicators can be used for traffic classification, estimation of
traffic speed, and other traffic values. This study was purely based on raw traffic counts, reported by
the sensors and aggregated to 1 min time frames. These data are publicly available and were recently
utilized in several studies [21,24,52]. We utilized traffic volume data for 5 weeks (35 days) from
26 February 2017 to 1 April 2017. Data were collected from the MnDOT system with 1 min temporal
aggregation, and further aggregated for 2, 3, 4, 6, and 12 min intervals.

We analysed two road network segments to discover the effects of temporal aggregation in
different spatial settings. The first road network segment represents the sequential spatial structure
and includes information from 8 sensors, deployed on an expressway (I-94) section without ramps
and traffic lights. The segment contains 7 road connections of 5.3 km at total (757 m in average)
and the speed limit of 60 mph. The road segment and corresponding weighted directed graph are
presented in Figure 1.

The sequential locations of road sensors were selected as a representative of the simplest spatial
structure—there is only one possible path on the corresponding road graph.
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Figure 1. Road segment with sequential sensor locations: a map and corresponding weighted directed
graph (weights represent distances by road in meters).

The second segment road network segment represents the complex (typical) spatial structure and
includes information from 19 sensors, deployed on expressways near to the city centre. Sensors serve
different directions, so have different daily patterns. The segment contains 19 road connections of
30.9 km at total (1626 m in average) and speed limits of 55–60 mph. Four sensors (S138, S288, S584, S62)
represent entrances to the analysed network segment, six sensors (S123, S283, S291, S586, S557, S566)
represent exits, and another ten sensors are intermediate (have both incoming and outgoing links).
The road segment and corresponding weighted directed graph are presented in Figure 2.
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Figure 2. Road segment with non-sequential sensor locations: a map and corresponding weighted
directed graph (weights represent distance by road in meters).

Traffic flows within the complex spatial structure are more diverse—the number of possible paths
on the corresponding road graph is 11.

The purpose of conducting analysis for two road segments is related to existing trends
in spatiotemporal traffic forecasting: many earlier studies are based on the sequential settings,
while recently the focus has shifted to city-wide complex road networks [3]. We tested our research
hypothesis in sequential and complex spatial settings to demonstrate the importance of temporal
aggregation for both of them.

Daily patterns of traffic volume at different locations are naturally similar in the sequential spatial
structure, but vary in the complex one. Figure 3 represents different daily patterns at selected sensors in
the complex spatial structure: S93 (intermediate on the expressway) has relatively stable loading during
the day, S291 (exit to the city centre) has a morning peak, and S123 (exit in a direction, opposite to the
city centre) has a higher loading during the evening hours.
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Figure 3. Typical daily traffic at three sensor locations (S291, S93, and S123).

We executed the research separately for original time series of traffic volume and detrended ones.
Missing data were replaced by an average value of the 5-period window around the missed time point.

2.2. Data Preprocessing: Temporal Aggregation and Trend Removal

Let us define a traffic flow at a sensor location i as a counting process Ni(t), representing the
number of vehicles that passed through the sensor during the time interval (0, t). Then, time aggregation
of this process with a level ∆t (in minutes) is a time series, defined as:

y∆t
i, t = Ni(t∆t) −Ni((t− 1)∆t) (1)

In this research, we considered 6 levels of temporal aggregation, ∆t ∈ {1, 2, 3, 4, 6, 12}.
The selection of these values is explained by the research problem of short-term traffic forecasting
(usually researchers consider intervals up to 15 min as a short term for traffic flows) and least common
multiple of values (12 min).

Due to the additivity of the counting process, time series for different temporal aggregation levels
∆t and K∆t are linked as:

yK∆t
i, t =

K−1∑
k=0

y∆t
i, t−k (2)

Given a total observation time period T, the length of the aggregated time series is defined as
T∆t = T div ∆t, where div is the integer division operator.

Generally, traffic flow is a multi-dimensional variable, which includes traffic volume, speed,
headway, and other traffic characteristics. In this research, we concentrated on the analysis of one
characteristic, traffic volume. There is a large potential of the modelling of traffic flow as a multivariate
variable, and the generalization of all considered models for the multivariate case is straightforward.

The time series of traffic volumes contains natural daily, weekly, and yearly trends. There is
empirical evidence showing that the removal of these trends can lead to better forecasting accuracy of
models [53] and easier identification of spatial correlation between sensor locations [24]. We considered
both original (not transformed) and detrended time series of the traffic flow for our analysis for
the reduction in trend-related findings (it is well-known that trends in time series increase the
risk of spurious regressions, but, on the other hand, trends can contain information that can be
potentially useful for model forecasting performance). The analysed time interval is fairly short
(5 weeks), and relates to a homogeneous period (March), so we removed trends on a weekly basis.
Given the number of time points v per week as V = 7 × 24 × 60/∆t and the number of weeks as
s = T div (7× 24× 60× ∆t), we estimated trends as simple average values for a specified time interval
of a week at a location i:

Trend∆t
i,v =

1
s

s−1∑
t=0

y∆t
i,v+tV (3)

and a detrended time series as
y∆t, resid

i,t = y∆t
i,t − Trend∆t

i,t mod V (4)
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where mod is the modulo operator. We utilized a separate set of 4 training weeks before the main
sample for identifying weekly trends (using of the full sample for identification of weekly trends can
lead to a bias for a short training period). For longer time series, it is recommended to use differencing
with lag V or seasonal exponential smoothing [14] for detrending. All further research steps were
separately applied for the original and detrended traffic volumes.

Traffic patterns vary for working days and weekends. We excluded Sundays and Saturdays from
the sample to reduce this source of variability.

2.3. Spatiotemporal Forecasting Models

The naïve forecasting model was used as a baseline for the model forecasting accuracy. We used
basic (non-seasonal) naïve forecasts, where the last available value was used as a forecast for all
forecasting horizons. The popular univariate Box–Jenkins method [54] was used as a univariate
basis for forecasting accuracy comparison. The method includes specification and estimation of the
autoregressive integrated moving average (ARIMA) model:

∆dyt =

p∑
h=1

φh∆dyt−h + εt +

q∑
h=1

θhεt−h (5)

where t = 1, . . . , T∆t; p and q are orders of autoregressive and moving average components respectively;
∆dyt is the dth order difference (stationary) of the time series yt, integrated of order d; φh and θh
are unknown model parameters; and εt is an independent, identically normally distributed error
with zero mean. The univariate model was separately applied for time series at every sensor
location. An appropriate model specification was selected on the basis of Hyndman and Khandakar
algorithm [55], which combines a repeated KPSS test [56] for identification of the time series order of
integration and the corrected Akaike information criterion (AICc) for selection of autoregressive (p)
and moving average (q) lag orders.

A univariate ARIMA model can be considered as a good benchmark, which does not take spatial
dependencies into account. An opposite approach is to allow all possible dependencies between time
series, without utilizing information about the spatial structure. The vector autoregressive (VAR)
model is widely used to capture the linear interdependencies among multiple time series. Let Yt be a
k× 1 vector

(
y1,t, y2,t, . . . , yk,t

)′
, where yi,t is a value at a time point t and a spatial location i, then VAR(p)

model is presented as:

Yt = µ+

p∑
h=1

ΦhYt−h + εt, (6)

where Φh is a set of k× k matrices of unknown coefficients for every lag h = 1, . . . , p; µ is a k× 1 vector
of constants; εt is a k × 1 vector of i.i.d. errors with zero mean and a k × 1 vector of variances σ2

ε.
For our research datasets, VAR models with the constant term do not outperform VAR models with
µ = 0, so further we refer to VAR(p) without the constant term as VAR for brevity reasons. A set of
unknown parameters of VAR(p) model includes µ, Φh, and σ2

ε, and is usually fairly large (k2p + 2k
parameters). Due to the large number of parameters, VAR models suffer from the overfitting problem,
which, in particular, affects their out-of-sample forecasting accuracy. Although several statistical
regularization approaches (e.g., lasso [14]) can be used to reduce the number of estimated parameters,
we concentrate on VAR models exogenously restricted by the spatial structure [20].

The primary object of this research is spatiotemporal models, the forecasting performance
of which naturally depends on the spatial structure of the dataset. Many studies consider the
physical properties of traffic flows and estimate spatial dependencies between consecutive points
on arterial roads. However, the problem is more complex: different segments of a road network
can be considered as complementary, and traffic flows could be relocated under specific conditions
(congestion, traffic jams, etc.).
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We conduct this research for two different spatial settings:

• Sensors located on an urban arterial road without ramps and traffic lights (the sequential structure)
• Sensors located on a typical urban road network (the complex structure)

Spatial dependencies in the sequential structure are highly expected due to the nature of traffic flow,
and their existence is empirically supported by many previous studies. In its turn, spatial dependencies
in the complex structure are a matter of uncertainty. In addition to the physical properties of
traffic flows and related drivers’ decisions, these dependencies can appear between physically
unconnected locations (teleconnections), explained by the simultaneous effects (i.e., dinner hours).
Risks of spurious dependencies in the complex structure are higher, and the usefulness of the spatial
structure for increasing the forecasting accuracy is not obvious and a matter of the selected temporal
aggregation level.

Let Sh =
{
sh, i j

}
be a k × k binary matrix that represents possible spatial dependencies between

values of the vector Yt and its lag of order h, Yt−h (sh,i j = 1 if a dependency between yi,t and y j,t−h is
allowed and sh,i j = 0 if the dependency is impossible). Then the spatially restricted specification of
VAR model is:

Yt =

p∑
h=1

(Φh ◦ Sh)Yt−h + εt, (7)

where Φh ◦ Sh is the Hadamard (entry-wise) product of matrices. We refer to this model as spatially
restricted VAR (SRVAR). Note that Sh matrixes are usually sparse, so the number of unknown
parameters is significantly smaller than in the unrestricted VAR model.

There are different approaches to specification of Sh matrices. Min and Winter [19] used travel times
between sensor locations (for upstream links), taking into account different traffic speed conditions.
Yang et al. [21] and Cai et al. [57], among several other researchers, utilized cross-correlations for
identification of “connected” road segments. Schimbinschi et al. [20] used direct road connections
between sensor locations (both up- and downstream) for their topology-regularized VAR. We consider
two alternative specifications of Sh matrices: travel-time-based and correlation-based.

Travel-time-based approach. Let di j be a distance by road between locations i and j (in meters),
speedi j is an average speed at this road segment (m/min), and ∆t is the temporal aggregation level
(in minutes). Given that for the analysed road network the average speed is normally 10% higher than
the speed limit and the empirical distribution of speed is left-tailed, we can define

minLagi j =
di j(

speedi j·∆t
) , (8)

as a minimal temporal lag between yi and y j, allowed by the road network configuration (b. . .c
brackets are used for rounding down). Further, we set sh,i j to 1 if minLagi j = h for a travel-time-based
specification of the matrix of spatial dependencies Sh,travel time. Using such specification, we assume
that a spatial effect of time lag h between yi and y j is only possible if the point i is reachable from
the point j in h time steps. The VAR model, spatially restricted by the specified travel-time matrix
Sh,travel time, is referred to as SRVARtravel time.

Correlation-based approach. A concurrent SRVAR model specification is based on
cross-correlations between time series at different locations. Let

minLagi j = argmax
h∈[−hlim,hlim]

Corr
(
yi,t, y j,t−h

)
, (9)

where hlim is a predefined maximum possible lag and Corr
(
yi,t, y j,t−h

)
is a Pearson cross-correlation

between time series. minLagi j is intentionally set to 0 if the maximum cross-correlation value is
lower than a predefined threshold (we used 0.1 as a threshold in this research). Further specification
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of the restricted VAR model is identical to SRVARtravel time; the resulting VAR model is referred to
as SRVARcorrelation.

The presented spatially restricted VAR model should not be confounded with spatial VAR models,
SVAR, or with space–time autoregressive models, STAR. SVAR [58] contains a simultaneous (not
temporarily lagged) spatially lagged dependent variable, which makes them less natural for forecasting
purposes than the presented SRVAR model. STAR models [9] represent a restricted form of the SRVAR
model, where the Φh ◦ Sh matrix is reduced to φhWh (Wh is an exogenous matrix of spatial weights).
STAR models are more parsimonious in terms of unknown parameters, but require careful specification
of spatial weights, which can be a problem for the dynamic environment.

Summarising the methodology above, the final set of candidate models is:

• Naïve forecasts as a baseline,
• Independent ARIMA models are a good non-spatial alternative,
• Travel-time-based spatially restricted VAR model, SRVARtravel time,
• Correlation-based spatially restricted VAR model, SRVARcorrelation,
• Unrestricted VAR model.

2.4. Estimation of Forecasting Accuracy

Overfitting is a well-known problem for multivariate models, including VAR, so in-sample metrics
of accuracy should not be used for model comparison. We applied the rolling analysis [59], a time series
cross-validation technique, for the estimation of models’ out-of-sample forecasting accuracy. A rolling
window is a time subinterval of a predefined length TRW (the number of points in the corresponding
aggregated time series is T∆t

RW = TRW div ∆t), which is used as a training set for models. The rolling
window is gradually shifted inside the research time interval of a step ∆t, providing new model
estimates and forecasts. We use the same forecasting horizon h for models of all temporal aggregation
levels, so the total length of the validation set (and the number of the rolling window shifts) equals
T∆t

V = T∆t
− T∆t

RW − h + 1.
The mean absolute error (MAE) is used in this research as an absolute metric of the model

forecasting accuracy:

MAE(i, h, ∆t) =
1

T∆t
V

T∆t
−h∑

t=T∆t
RW

∣∣∣∣y∆t
i, t+h − ŷ∆t

i, t+h|t

∣∣∣∣, (10)

where ŷ∆t
i, t+h|t are h-step-ahead predicted values. Furthermore, MAE(i, h, ∆t) are aggregated by spatial

locations with equal weights: MAE(h, ∆t) = 1
k
∑k

i=1 MAE(i, h, ∆t). A widely used relative metric for
forecasting accuracy comparison is the mean absolute percentage error (MAPE). Despite the popularity
of this metric, there are many studies on misleading results from MAPE, obtained for time series
with close-to-zero (or zero) actual values. As the traffic volume (both original and detrended) is
naturally allowed to be 0, we prefer the mean absolute scaled error (MASE) [60] as the main metrics for
comparison of different models:

MASE(i, h, ∆t) =
MAE(h)

1
T∆t

V −1

∑T∆t−h
t=T∆t

RW+1

∣∣∣∣y∆t
i, t+h − y∆t

i, t+h−1

∣∣∣∣ , (11)

MASE is a relatively new forecasting accuracy metric, which is based on the comparison of the
model’s MAE values with one-step naïve forecasting MAE values. This metric has good statistical
properties and allows direct comparison of forecasting models. Similar to MAE, MASE values are
separately calculated for every sensor location and aggregated for the overall model forecasting
accuracy measure.

To compare the forecasting accuracy of models, estimated for different time aggregation levels,
we used the sums of forecasts for shorter time frames ŷK∆t

i, t =
∑K−1

k=0 ŷ∆t
i, t−k and the corresponding
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cumulative MAE metric. For example, to estimate the forecasting accuracy of a model, estimated for
4 min temporal aggregation, for a 12 min horizon, we applied MAE(i, h, 3∆t) values.

3. Results and Discussion

The primary research question relates to the forecasting accuracy of spatiotemporal models for
different temporal aggregation levels. We consider three different spatiotemporal specifications of VAR
models: the travel-time-based and correlation-based spatially restricted VAR and the unrestricted VAR
model. Principles of both approaches to spatial restriction are described in the Methodology section.

Both travel-time- and correlation-based restrictive matrices depend on the temporal aggregation
level. Table 1 contains estimated matrices for original traffic volumes in the sequential spatial settings
for 1-min temporal aggregation (and a matrix of most significant lags in the unrestricted VAR model
for comparison).

Table 1. Matrices of spatial lags for the original traffic volume in the sequential spatial structure.

Travel-Time-Based Spatial Restrictions

S240 S242 S244 S135 S248 S250 S136 S253

S240 0 0 1 1 2 2 3 3

S242 0 0 0 1 2 2 2 3

S244 0 0 0 0 1 1 2 2

S135 0 0 0 0 1 1 1 2

S248 0 0 0 0 0 0 1 1

S250 0 0 0 0 0 0 0 1

S136 0 0 0 0 0 0 0 0

S253 0 0 0 0 0 0 0 0

Correlation-Based Spatial Restrictions

S240 S242 S244 S135 S248 S250 S136 S253

S240 0 0 1 1 2 2 3 3

S242 0 0 0 1 2 2 2 3

S244 0 0 0 1 1 1 2 3

S135 0 0 0 0 1 1 1 2

S248 0 0 0 0 0 0 1 1

S250 0 0 0 0 0 0 1 1

S136 0 0 0 0 0 0 0 1

S253 0 0 0 0 0 0 0 0

Unrestricted VAR, Most Significant Lags (std. Error > 3)

S240 S242 S244 S135 S248 S250 S136 S253

S240 4 1 1 1 2 2 3 2

S242 1 1 1 1 2 2 2 3

S244 3 6 1 1 1 1 2 3

S135 0 2 1 1 1 1 1 2

S248 0 0 0 1 4 1 1 4

S250 6 6 4 1 2 1 1 1

S136 1 6 6 3 0 1 1 1

S253 3 0 0 6 6 6 0 4
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It can be easily noted that travel-time- and correlation-based restrictive matrixes are almost identical
in this case. The unrestricted VAR specification discovers a lot of additional spatial dependencies,
which cannot be explained by the kinematic traffic flow theory.

In the complex spatial settings, these matrices differ significantly—Table 2 presents the number of
links in matrices for different temporal aggregation levels and dissimilarity (percent of different links)
between travel-time- and correlation-based matrixes.

Table 2. Number of links and similarity of spatial dependency matrices.

Temporal
Aggregation,

Minutes

Unrestricted
VAR

Correlation-Based
SRVAR

Travel-Time-Based
SRVAR

Percent of Different Links in
Correlation-Based and

Travel-Time-Based Matrices

The complex spatial structure, detrended traffic flow

1 96 31 43 6.6

2 88 24 31 5.8

3 85 26 24 7.8

4 63 38 18 12.7

6 67 48 8 15.5

12 52 71 0 19.7

The complex spatial structure, original traffic flow

1 122 145 43 29.4

2 115 129 31 28.8

3 112 103 24 23.0

4 111 91 18 21.3

6 89 76 8 19.4

12 86 62 0 17.2

The sequential spatial structure, detrended traffic flow

1 52 25 22 4.7

2 46 17 16 1.6

3 35 13 11 3.1

4 30 7 6 1.6

6 22 1 0 1.6

12 13 0 0 0.0

The sequential spatial structure, original traffic flow

1 56 25 22 4.7

2 50 17 16 1.6

3 43 12 11 1.6

4 39 5 6 1.6

6 27 0 0 0.0

12 21 0 0 0.0

In the complex spatial environment, travel-time restriction is the strictest one—for example, for the
12 min temporal aggregation, the travel-time restrictive matrix does not allow any dependencies between
locations, because all vehicles should leave the analysed road segment in 12 min. Complete results for
all temporal aggregation levels and both spatial environments are available from the author by request.
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MASE values of five models (naïve forecasts, univariate ARIMA, travel-time-based SRVAR,
correlation-based SRVAR, and unrestricted VAR) were estimated for different temporal aggregation
levels, using the rolling window technique, described in the Methodology section. The accuracy of
one-step ahead forecasts of detrended traffic volumes is plotted in Figure 4; complete calculation
results for four different experiment settings (original and detrended traffic volumes for the sequential
and complex spatial structure) are presented in Table 3.
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Table 3. Mean absolute scaled error (MASE) values for one-step ahead forecasts for different temporal
aggregation levels.

Temporal Aggregation, Minutes

1 2 3 4 6 12

The complex spatial structure, detrended traffic flow

Naïve forecasts 1.000 1.000 1.000 1.000 1.000 1.000

Independent ARIMA models 0.735 0.762 0.775 0.779 0.805 0.846

Travel-time-based SRVAR model 0.694 0.750 0.774 0.780 0.804 0.846

Correlation-based SRVAR model 0.676 0.741 0.771 0.778 0.804 0.849

Unrestricted VAR model 0.678 0.743 0.785 0.808 0.880 1.033

The complex spatial structure, original traffic flow

Naïve forecasts 1.000 1.000 1.000 1.000 1.000 1.000

Independent ARIMA models 0.776 0.848 0.903 0.944 0.960 0.999

Travel-time-based SRVAR model 0.730 0.798 0.850 0.887 0.947 0.967

Correlation-based SRVAR model 0.701 0.781 0.837 0.869 0.915 0.928

Unrestricted VAR model 0.691 0.766 0.828 0.875 0.936 1.015

The sequential spatial structure, detrended traffic flow

Naïve forecasts 1.000 1.000 1.000 1.000 1.000 1.000

Independent ARIMA models 0.675 0.694 0.725 0.758 0.790 0.872

Travel-time-based SRVAR model 0.530 0.645 0.736 0.777 0.800 0.867

Correlation-based SRVAR model 0.524 0.642 0.740 0.773 0.800 0.867

Unrestricted VAR model 0.468 0.550 0.646 0.722 0.778 0.888

The sequential spatial structure, original traffic flow

Naïve forecasts 1.000 1.000 1.000 1.000 1.000 1.000

Independent ARIMA models 0.697 0.691 0.871 0.992 0.927 0.954

Travel-time-based SRVAR model 0.437 0.500 0.756 0.814 0.925 0.907

Correlation-based SRVAR model 0.421 0.500 0.753 0.857 0.936 0.907

Unrestricted VAR model 0.397 0.472 0.670 0.754 0.867 0.953

The first notable observation is a better forecasting performance of spatiotemporal models
(comparatively to the independent ARIMA models) for smaller periods of temporal aggregation (1 and
2 min periods). The unrestricted VAR model demonstrates the best forecasting performance for the
sequential spatial structure, while for the complex spatial structure, it does not outperform SRVAR
model specifications. For larger temporal aggregation levels, the forecasting accuracy of SRVAR and
independent ARIMA models are very similar, while the accuracy of the unrestricted VAR model is
significantly degraded. In addition, we note that this pattern (preference of spatiotemporal models for
smaller temporal aggregation levels) is stable within this research, but obviously depends on the spatial
environments. The average travel time between sensor locations in the complex spatial structure is
about 1 min, and the maximum is about 6 min, which corresponds to temporal aggregation levels with
discovered preference of spatiotemporal models.

In addition, it should be noted that for larger temporal aggregation levels, SRVARtravel time utilizes
a very limited number of allowed lags (eight lags for 6 min periods, and no lags for 12 min periods),
so we can conclude that in terms of the forecasting accuracy, information about the absence of spatial
dependencies is equally or even more important than information about their presence.
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Another observation is almost identical forecasting accuracies of correlation-based (SRVARtravel time)
and travel-time-based (SRVARtravel time) spatially restricted VAR models. This observation is essential
for the sequential spatial settings, where correlation-based and travel-time-based spatial restrictive
matrixes are almost identical, but was not expected in the complex spatial settings, where the matrices
differ significantly. Both approaches to spatial restriction have their own advantages (flexibility and
endogeneity of correlation-based and manageability of the travel-time-based restrictions), so we can
conclude that this choice is experiment-specific and depends on available data and modelling purposes.

The dynamics of the models’ forecasting accuracy for different horizons are presented in Figure 5.Sensors 2020, 20, x FOR PEER REVIEW 16 of 22 
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The results are consistent between the sequential and complex spatial settings: better forecasting
performance of spatiotemporal models for 1 and 2 min forecasting horizons, and a small preference of
independent ARIMA models for longer horizons (due to their higher flexibility).

The obtained results represent the forecasting accuracy, averaged for analysed sensors. Obviously,
improvement of spatial model specifications depends on sensor position within the network.
For example, SRVARtravel time includes only the forward propagation of traffic volume conditions,
and thus it cannot improve forecasting accuracy for sensors, located at entrances to the analysed
network segment. Table 4 contains sensor-specific forecasting accuracy values for one-step ahead
forecasts of the models with 1 min temporal aggregation.

The results for the sequential spatial structure directly match our expectations: forecasting accuracy
for first two sensors in a row (S240 and S242) has similar values for independent ARIMA and SRVAR
models, but for other sensors the improvement, provided by spatiotemporal specifications, is significant
(up to −0.27 of MASE for the detrended and up to −0.41 for the original traffic volume). Results for the
complex spatial structure are also consistent—no improvements for the entrance sensors (S138, S288,
S584, S62) and significant improvement for the majority of other sensors. The most interesting are
the exceptions—no significant improvements are discovered for intermediate S93 and S103 sensors.
Both sensors are located in I-94 E/WB corridor, which crosses the analysed road segment at the western
part. The absence of improvement in spatiotemporal models for these sensors means that traffic flow
in this corridor mostly depends on other roads, which pass outside of the analysed road segment.
Thus, observed forecasting accuracy of spatially restricted VAR models allows to us identify anomalies
in the spatial structure and to provide a potential method for model improvement.

Finally, we analysed the forecasting accuracy of the models for a longer period of time on the
basis of different temporal aggregation levels. We selected 12-min interval for comparison as the least
common multiple of research temporal aggregation levels (1, 2, 3, 4, 6, and 12 min). Forecasts for
smaller temporal aggregation levels were aggregated as described in the Methodology section (by direct
summation of the necessary number of multi-step-ahead forecasts). Dependencies between resulting
forecasting accuracy and a temporal aggregation level are presented in Figure 6.

Presented polylines provide evidence for a statistical preference of 2, 3, 4, and 6 temporal
aggregation levels for 12 min forecasting with a model-dependent optimal time aggregation level.
For example, the unrestricted VAR model demonstrates the best forecasting accuracy for the 4 min
temporal aggregation level. These results match our expectations, based on previous studies of
univariate and multivariate time series models [61]. It should be stressed that our results are
empirical and cannot be proven theoretically, because models for different temporal aggregation
levels are not identical and depend on the aggregation-specific spatial restrictions. Nevertheless,
the provided evidence of the existence of an optimal temporal aggregation level could be useful for
practical forecasting. Further improvements include the application of a multi aggregation prediction
algorithm, described in [48], for combining forecasts from models, estimated for different temporal
aggregation levels.

The results for original time series are generally consistent with the findings presented above.
It should be noted that for the majority of executed experiments, the forecasting accuracy of the
detrended traffic volume is higher than of the original time series. This result is consistent with the
recommendations provided in [24,53]. Additionally, we tested the research hypothesis separately for
the peak hours, which are most important in terms of traffic forecasting. The general conclusions were
very close to the complete dataset. This fact was expected, because we focus on average forecasting
error metrics (MAE, MASE) and all selected models (including the naïve forecasts) work well during
“calm” periods, so the major part of the average error appears during peak hours or unusual traffic
conditions. Given similar results and almost identical conclusions for a complete dataset and for peak
hours, we decided to limit the paper text and to leave only complete dataset results.
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Table 4. Sensor-specific MASE values.

Detrended Traffic Volume Original Traffic Volume

Naive
Forecasts ARIMA

Travel-Time-
Based SRVAR

Model

Correlation-
Based SRVAR

Model

Unrestricted
VAR Model

SRVAR vs.
ARIMA

Naive
Forecasts ARIMA

Travel-Time-
Based SRVAR

Model

Correlation-
Based SRVAR

Model

Unrestricted
VAR Model

SRVAR vs.
ARIMA

The complex spatial structure

S62 1.00 0.76 0.76 0.76 0.75 0.00 1.00 0.79 0.80 0.77 0.78 −0.02

S64 1.00 0.69 0.70 0.70 0.71 0.00 1.00 0.77 0.76 0.75 0.74 −0.02

S63 1.00 0.76 0.76 0.67 0.66 −0.09 1.00 0.80 0.81 0.69 0.67 −0.11

S93 1.00 0.74 0.74 0.73 0.74 0.00 1.00 0.78 0.78 0.77 0.76 −0.01

S103 1.00 0.77 0.76 0.76 0.74 0.00 1.00 0.80 0.76 0.76 0.73 −0.04

S109 1.00 0.72 0.66 0.64 0.65 −0.08 1.00 0.74 0.68 0.65 0.65 −0.09

S110 1.00 0.73 0.59 0.60 0.61 −0.13 1.00 0.75 0.63 0.62 0.62 −0.13

S123 1.00 0.70 0.62 0.62 0.62 −0.08 1.00 0.72 0.65 0.65 0.63 −0.07

S138 1.00 0.73 0.74 0.74 0.75 0.02 1.00 0.74 0.75 0.75 0.76 0.01

S283 1.00 0.72 0.72 0.71 0.70 −0.02 1.00 0.77 0.76 0.75 0.73 −0.01

S288 1.00 0.73 0.74 0.74 0.75 0.02 1.00 0.78 0.77 0.76 0.75 −0.02

S291 1.00 0.70 0.62 0.62 0.63 −0.07 1.00 0.74 0.71 0.67 0.65 −0.07

S557 1.00 0.70 0.56 0.56 0.57 −0.14 1.00 0.76 0.58 0.58 0.57 −0.18

S565 1.00 0.74 0.63 0.55 0.55 −0.19 1.00 0.79 0.68 0.58 0.56 −0.21

S566 1.00 0.72 0.62 0.62 0.62 −0.10 1.00 0.78 0.65 0.64 0.63 −0.14

S584 1.00 0.73 0.74 0.74 0.74 0.00 1.00 0.76 0.76 0.75 0.76 −0.01

S108 1.00 0.73 0.72 0.58 0.58 −0.15 1.00 0.77 0.73 0.58 0.58 −0.20

S585 1.00 0.75 0.71 0.71 0.71 −0.05 1.00 0.80 0.75 0.75 0.73 −0.05

S586 1.00 0.89 0.81 0.81 0.80 −0.08 1.00 0.89 0.84 0.83 0.81 −0.06

The sequential spatial structure

S240 1.00 0.67 0.70 0.70 0.70 0.03 1.00 0.66 0.61 0.61 0.58 −0.06

S242 1.00 0.68 0.76 0.76 0.65 0.09 1.00 0.73 0.68 0.68 0.75 −0.05

S244 1.00 0.66 0.45 0.45 0.37 −0.21 1.00 0.67 0.28 0.28 0.26 −0.40

S135 1.00 0.68 0.56 0.55 0.43 −0.13 1.00 0.68 0.52 0.42 0.31 −0.26

S248 1.00 0.67 0.42 0.42 0.36 −0.24 1.00 0.70 0.29 0.29 0.29 −0.41

S250 1.00 0.67 0.42 0.40 0.39 −0.27 1.00 0.70 0.31 0.30 0.29 −0.40

S136 1.00 0.69 0.41 0.41 0.40 −0.27 1.00 0.72 0.33 0.34 0.33 −0.38

S253 1.00 0.69 0.52 0.48 0.44 −0.21 1.00 0.70 0.47 0.46 0.38 −0.24
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Summarising the results and discussion above, we state the key empirical findings as follows:

1. Unrestricted VAR models outperform spatially restricted models in the sequential spatial structure
with strong essential spatial links for smaller temporal resolution levels. In the complex spatial
structure, spatially restricted models are as good as unrestricted VAR models for smaller temporal
resolution levels and significantly outperform them for larger temporal resolution levels (with a
limited number of possible spatial links). Thus, we strongly recommend spatial restrictions for
the modelling of traffic flows in a highly connected urban spatial environment.

2. Correlation-based spatial restrictive matrixes are almost identical to travel-time-based ones for the
sequential spatial structure. For the complex spatial structure, travel-time-based spatial restrictive
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matrices are significantly sparser, but this fact does not negatively affect model out-of-sample
forecasting accuracy. Thus, we recommend the travel-time-based spatial restrictions as a baseline
for spatiotemporal model specifications.

3. Improvements of sensor-specific forecasting accuracy, provided by the spatiotemporal model
specifications, depend on a sensor position within the road network graph. These improvements
are highly significant for sensors, located inside an analysed network segment and on its
exits, and insignificant for sensors, located near entrances to the analysed network segment.
We concluded that insignificant improvements for sensors, located inside the analysed network
segment, could be considered as an indicator of an incomplete spatial structure.

4. Optimal temporal aggregation levels for longer forecasting horizons (12 min in this research) are
found at intermediate values (2–6 min) and related to the spatial structure (average distances
between spatial locations). We recommend considering different temporal aggregation levels for
any modelling approaches, and concentrate on temporal aggregation levels, which are close to
spatial resolution (travel times between spatial locations), for spatiotemporal models.

5. The majority of executed experiments indicate higher forecasting accuracy for models of detrended
traffic volumes comparatively to models of the original time series.

4. Conclusions

This study is devoted to the empirical analysis of temporal aggregation effects of forecasting
accuracy of spatiotemporal models. We demonstrated that a selected level of temporal aggregation
directly affects the structure of spatiotemporal relationships and, as a result, the forecasting performance
of models. The effects of temporal aggregation vary for different model specifications and different
forecasting horizons. Thus, we argue that the level of temporal aggregation should be included in the
primary set of tuned parameters, used for the optimisation of the model’s forecasting performance
and selection of the best model. Analysis of models’ forecasting accuracy for different temporal
aggregation levels improves the confidence in the obtained results and allows wider generalisation of
the conclusions made.

We empirically tested unrestricted and spatially restricted vector autoregressive models and
compared their forecasting accuracy for different temporal aggregation levels of real-world traffic
flow data. The research methodology is based on the rolling window analysis of out-of-sample
model forecasting performance. Research experiments were executed in several dimensions:
temporal aggregation levels (1, 2, 3, 4, 6, and 12 min), forecasting horizons (one-step and multi-step
forecasts), spatial complexity (sequential and complex spatial structures), spatial restriction approach
(unrestricted, travel-time-based and correlation-based), time series transformation (original and
detrended traffic volumes). The empirical results support our main proposition on the crucial role of
the temporal aggregation level.

Although the empirical part of this study is purely focused on urban traffic data analysis,
the discussed problem is applicable to other multi-sensor systems, where relationships between sensor
data streams play an important role, e.g., medical wearable sensors or systems of meteorological
stations. In addition to the forecasting model selection problem discussed in this paper, the selection
of the optimal temporal aggregation level can be important for reducing redundant information
transmissions and limiting network traffic flows.

This study analyses the temporal aspect of data aggregation only, while aggregation in the
spatial dimension (e.g., spatial clustering of sensor data) also plays the important role for modern
spatiotemporal traffic forecasting models. A detailed analysis of the spatiotemporal aggregation effects
is required and can be mentioned as a direction for further research.
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