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Abstract
Network robustness is the ability of a network to maintain performance after disruption, thus

it is an important index for network designers to refer to. Every actual network has its own

topology structure, flow magnitude (scale) and flow distribution. How the robustness relates

to these factors still remains unresolved. To analyze the relations, we first established a

robustness problem model, studied the hardness of a special case of the model, and gener-

ated a lot of representative network instances. We conducted experiments on these

instances, deleting 5% to 50% edges on each instance and found that the robustness of a

network has an approximate linearity to its structural entropy and flow entropy, when the

correlation coefficient between the structure and flow is fixed. We also found that robust-

ness is unlikely to have a relation to the flow scale and edge scale in our model. The empiri-

cal studies thus can provide a way of quickly estimating the robustness of real-world

networks by using the regression coefficients we obtained during the experiments. We con-

ducted computation on a real-world dataset and got favorable results, which exhibited the

effectiveness of the estimation.

Introduction
Network robustness refers to the resilience of a network when subjected to pressure and dis-
ruption [1]. It is the ability of a network to tolerate accidents and damages to nodes or links.
Network providers and defenders attempt to maintain a maximum of network’s availability,
whereas malicious attackers try to destroy the network as much as possible. Because of the life-
and-death importance for both sides, the studies of the robustness of networks have attracted
many researchers’ attention.

At the very beginning, the studies have focused primarily on the relationship between the
robustness of a complex network and its topology, because elements, i.e. links and nodes,
greatly impact the availability of the network. Elements’ alteration can sharply change the
robustness of the network. Barabási’s original work [2] showed that a network’s topological
characteristics has a significant influence on its robustness. Researchers consequently found
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that, scale-free complex networks under the Barabási-Albert (BA) model, which features het-
erogeneous nodal degree distribution, will be resilient against random failures but fragile
towards intentional attacks [2–6]. On the other hand, networks under the Erdős-Rényi (ER)
model whose nodal degrees are uniformly distributed, are quite robust against intentional
attacks [7, 8]. By rewiring links, one can altering the degree distribution, and therefore can
change the robustness of networks. The authors of [9] using simulations found that scale-free
networks with “onion structure” are very robust against targeted high degree attacks. Later,
more researchers confirmed this finding and applied or adapted this verdict to robust network
analysis and design [10–12]. Recently, the deeper causality and the dynamics reasons of this
finding were revealed clearer [13, 14].

However, real-world robustness is dependent on not only the topology, but also on the
dynamic interaction flow on the network. For example, the breakdown of a node with more
flow originated from it will be more serious than breakdown on those of less flow. Matisziw is a
pilot to investigate this situation. In [1], he and others studied the robustness of complex net-
works that have nodal interactions (directed flows, in fact). They empirically analyzed the dif-
ferences of robustness that are caused by different flow distributions in varying time intervals
on the American backbone network. Their results showed that robustness varies temporally
and that the critical link set varies spatially over different time intervals. They therefore con-
cluded that a network’s robustness is sensitive to nodal interaction changes. However, they did
not tell us how the interaction’s distribution on a network’s topology affects the robustness.

Therefore, in this paper, we attempt to investigate several problems for random networks
and scale-free networks: How does the heterogeneity of a flow’s distribution affect the robust-
ness? How does a flow’s distribution on the network’s topology affect the robustness? Do flow
size, edge size or node size matter to robustness (Do flow volume, edge number or node num-
ber matter)?

Our work presumed the following scenario. An attacker can only remove links of a network.
As the attacker has finite attacking resources, he can only remove at most k links. His goal is to
make the network support the fewest interaction flows after the link removal. This problem is a
more generic version of the critical link set problem. The critical link set problem (denoted:
CLP) specifies a unit of interaction flow on every pair of node. In [15], CLP has been shown to
be NP-complete, so there is unlikely polynomial time complexity exact algorithm that can
solve CLP. Therefore, the more generalized robustness problem is also NP-complete. There are
many heuristic algorithms for similar problems of CLP. For example, article [16] proposed an
exact algorithm for a similar problem: critical clique detection problems; article [17] surveyed
the approaches for critical element detection problems. We want to point out that our work dif-
fers from those approaches in that our method is an approximate approach and that the results
obtained in our paper can be conveniently used to estimating other networks with similar
graph size.

Our contributions in this paper include:

• Built up an evaluation model for a network’s robustness with non-uniform interaction flows
on it. The model is easier to understand than [1] and can be applied to real world usage.

• Derived out the inapproximability ratio of the robustness problem when the problem shrinks
to the critical link set problem (CLP).

• Generated massive representative instances (data) with different topologies, flows and cou-
pling levels to find the relations among robustness, topology and flow.

• Designed optimal and near-optimal optimization algorithms to calculate the generated cases
of the model.
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• Discovered robustness’ nearly linear relationship to topology complexity and flow complex-
ity and found that robustness may have nothing to do with flow scale, and edge scale when
deleting edges by percentage instead of fixed numbers.

• Using the regression coefficients, we applied them to a real world network and got good esti-
mation. There are other papers to estimate the bounds, such as [18]. However, their work has
not considered graphs with weighted edges while our paper mainly to address the estimation
of weighted graph in a different method.

Methods
In order to investigate how much network topology, network nodal interaction flows and the
two’s coupling level affect network robustness, we first established a mathematical model con-
cerning the total remaining flow in the residual network after a specific deletion. Then, we gen-
erated massive instances with varying structure, flow and coupling parameters. Subsequently,
we computed 10 cases of optimal value of each instance. However, we found that the optimum
computation was time unfeasible because of its NP-completeness. But fortunately, the genetic
algorithms (GA) [19] can produce very near results; therefore we adopted a genetic algorithm
(GA) to calculate the approximate results. Finally, we derived some relations by analyzing the
results we obtained. We in the end applied the numerical findings to real-world practice.

Model
Studies concerning robustness have used many metrics, such as giant component size, tough-
ness, algebraic connectivity, and natural connectivity [20] to evaluate a network’s structural
robustness. In [15], the authors used a metric called “pairwise connectivity”. Pairwise connec-
tivity is the total number of node pairs which are mutually reachable. Recent studies that con-
sidered flow used more precise metrics, such as elasticity of robustness [1]. In this paper, we
extend pairwise connectivity (denoted: PC) to residual flow. Then, we newly defined a metric,
Robu, which is equal to residual flow after deletion divided by original overall flow.

Because network robustness is its ability to preserve performance, we want to know how
much the residual flow will be if the removal strategy is the best for the attacker, i.e., how much
flow the network can preserve after the cleverest deletion, thus avoiding robustness’s depen-
dency on the deletion strategy’s uncertainty. We can model the problem as follows:

Assume an undirected simple weighted graph G = (V, E, f), where V is the node set, E the
edge set and f : V � V ! N. Let n = |V| be the total number of nodes and e = |E| be the num-
ber of edges. We denote the interaction flow from i to j as fi, j or fij. The “interaction flow from i
to j”, can be viewed as the quantity of flow that i sends to j. Assume, at the beginning, the graph
is all connected, so we can define the original total supported interaction flow, naming it O, as

O ¼
Xn

i¼1

Xn

j¼1;j6¼i

fi;j ð1Þ

We assume at most p (0� p� n � (n − 1)/2) physical links can be removed. We define a
binary indicative variable matrix u, where uij = 1 means “i can reach j by along link(s)” while
uij = 0 means “j is not reachable from i”, i.e., i and j are disconnected. Since the graph is undi-
rected, uij is numerically equal to uji.

Let h be another node in the graph, then according to real world truth, we have the property
of u as Table 1, where “�”means that the corresponding cell can take a value of either 0 or 1.
Explanation of the last line is that, when node i, j are connected (direct or indirect) and j, h are
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connected, then i, hmust be connected. The rest 3 lines means that whether i and h are con-
nected can’t be deduced out.

After deleting p edges, the network’s performance can be measured using the minimum
supported residual flow Op.

Op ¼
Xn

i¼1

Xn

j¼1;j6¼i

ui;j � fi;j ð2Þ

The robustness of the network, Robu, can be defined as

Robu ¼ Op=O ð3Þ

Robu is between 0 and 1. When residual flow Op is larger, Robu is larger and it means that
the network is more robust.

Our model is an integer linear programming. The goal is to minimize Op while satisfying
two kind of constraints. The first constraint is the number of deletion constraint. One can only
delete at most p edges. Written mathematically, the constraint is

X

ði;jÞ2E
i<j

ð1� uijÞ � p
ð4Þ

The other kind of constraints is that of graphic connectivity. It demands that the variables u
satisfy the so-called “triangle inequality” as Table 1, so to speak

uij þ ujh � uih � 1 i; j; h 2 V ð5Þ

In [15], the authors have proven that Eq (5) can be replaced by more efficient constraints as

uij þ ujh � uih � 1 h 2 NðiÞ [ NðjÞ ð6Þ

where N(i) is the neighbors of node i and they have shown the correctness of the substitution.
We call one network (with a determined topology and flow) an “instance” and one calcula-

tion of deleting certain edges in this instance a “case”. The robustness of one case of an instance

Table 1. The property of u.

uij ujh uih

0 0 *

0 1 *

1 0 *

1 1 1

This table shows the mathematical condition of u in a graph has to satisfy.

doi:10.1371/journal.pone.0145421.t001
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can be formalized as Eq (7) by combining Eqs (2), (4) and (6) together:

min
X

i;j2V
i =¼j

uijfij

subject to uij þ ujh � uih � 1 h 2 NðiÞ [ NðjÞ

uij ¼ uji

X

ði;jÞ2E
i<j

ð1� uijÞ � p

uij ¼ 0; 1

ð7Þ

In our experiments, we calculated about 8,000 instances (i.e., networks) and the case number
for each is 10, with deletion percentage varying from 5% to 50%. The 8000 instances come
from 4 groups; within each group the node number, edge number and flow quantity of
instances (networks) are the same— networks are different only in degree distribution, flow
distribution and coupling tightness between the two distributions.

In Eq (7), if all fij = 1, this problem is called the “critical link set problem (CLP)”. When the
p links chosen to be deleted obtain the minimum Op, these p links are called the critical links.
In the next section, we discuss the hardness of approximation of critical link set problem.

Eq (7) is a global 0-1 integer programming. It can be solved using some mathematical tools/
software, but the variable space can be large. We used GUROBI [21] to calculate one group of
instances. And for three other groups of instances, we instead used GA for the reasons men-
tioned before.

We are to build the numerical relations between network robustness and the three factors—
the topology, the flow and the coupling. To characterize network’s structure (topology) numer-
ically, we introduce the network structure entropy [22] based on the nodes’ degree sequence.
There are also other entropy calculation methods such as [23, 24]. We use the former one
because it’s relative simpler in form. For future work, we can experiment the results using the
later methods.

Given a graph G = (V, E) and its degree sequence {di}, 1� i� n, the structure entropy of G
is

ET ¼ �Ii ln ðIiÞ; ð8Þ

where

Ii ¼ di=
Xn

i¼1

di ð9Þ

Ii is called the importance of node i. When a graph is very random, the importance of nodes
are more likely to be equal, so this graph will be more stable under intentional attack; on the
other hand, when some of the nodes in the graph have a large degree, the graph will be more
vulnerable, and we would sense that the graph has a small entropy. The smallest entropy graph
is a star-like network and the largest entropy graph is a degree-equal graph [22]. Paper [25, 26]
also reached similar conclusions. The entropy of any other graph should be within the two
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extreme cases. Thus, we can normalize the entropy of any graph as Eq (10):

ET ¼ ET � ETmin

ETmax � ETmin

¼ 2ET � ln ð4ðn� 1ÞÞ
2 ln ðnÞ � ln ð4ðn� 1ÞÞ ð10Þ

It is apparent that 0 � ET � 1.

To describe the heterogeneity of the flow, we can define a metric EN like ET , as one unit of
interaction flow can be viewed as an arc. Here, we will not bother to write down flow structure

entropy EN in detail.
A qualifier is needed to quantify the relation between the topology and flow. This qualifier is

the coupling coefficient. The terminology can also be named correlation coefficient. If certain
node’s degree is relatively large in the graph and its flow degree is also relatively large, then the
graph’s topology and flow are positively coupled. We use Spearman correlations [27] to mea-
sure the coupling, whose equation is

r ¼
P

iðxi � x�Þðyi � y�ÞffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiP
iðxi � x�Þ2

q P
iðyi � y�Þ2 ð11Þ

where xi is the rank of node i after sorting according to degree, and x� is the average rank, which
is similar to y. ρ is within [-1,1].

In a word, we want to discover the relations of Robu to ET , EN upon varying ρ after deleting
50%, 45%, . . ., 5% edges. We delete at most 50% of edges because when deleting more edges,
the residual flow will be very small, even be zero.

Hardness
We first attempt to determine the theoretical hardness of the robustness problem before com-
puting. We analyzed a specific case of the robustness problem, the critical link set problem
(CLP). The NP completeness of CLP has been proven in [15], so it is impossible to obtain opti-
mal solutions in polynomial time complexity. We now further extend their work to derive the
inapproximability ratio of CLP. The inapproximability ratio of a hard-to-tackle problem is the
smallest gap between the optimal result and any approximate result obtained by deterministic
approximation algorithms. We will show that for CLP, any deterministic algorithms will pro-
duce a result larger than 5/3 times of the optimum. Since the robustness problem is harder
than CLP, good approximation algorithms do not exist. Hence, for getting near-optimal or
optimal result of Robu, non-deterministic approaches is the only way. Before deducing our
conclusion, certain definitions and lemmas are required.

Definition 1 [28] Let 0< α< β. A minimization problemP is said to have an NP-hard gap
of [α, β] if there exists an NP-complete problem Γ and a polynomial-time many-one reduction f
from Γ toP with the following properties:

1. If x 2 Γ, then opt(f(x))� α, and

2. If x =2 Γ, then opt(f(x))> β.

where opt() denotes the optimal objective function value.
Lemma 1 Assume thatP is an minimization problem with an NP-hard gap [α, β], 0< α<

β. Then, there is no deterministic polynomial-time (β/α)-approximation algorithms for problem
P unless P = NP.

Proof 1 Assume that f is a reduction from an NP-complete problem Γ toP satisfying proper-
ties (i) and (ii) of Definition 1. Suppose, for the sake of contradiction, that there is a polynomial-
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time (β/α)-approximation A for problemP.We may then construct a polynomial-time recogni-
tion algorithm for problem Γ as follows:

1. On inputting instance x of problem Γ, compute the instance y = f(x) of problemP.

2. Run algorithm A on instance y to get a (β/α)-approximation S for y.

3. Return YES if and only if the objective function value of solution S for problemP is less than
or equal to β.

It is easy to verify the correctness of the above algorithm: If x 2 Γ, then opt(y)� α, hence the
objective function value of any (β/α)-approximation solution for y is at most α × β/α = β. On the
other hand, if x =2 Γ, then the optimal objective function value of any solution for y has already
been greater than β, not to mention that the approximation objective value equals the optimal
value multiply an approximation ratio that is always greater than 1. Therefore, the approxima-
tion value of y enables us to determine whether x is in Γ whilst Γ is an NP-complete problem—

this is a contradiction, and we have the proof.
Theorem 1 An approximation algorithm with a ratio less than or equal to 5/3 does not exist

for a critical link set problem.
Proof 2 Consider a well-known NP-complete problem, the 3-multiway cut problem. The prob-

lem asks if there exists an edge cut set of size k such that the deletion of the set disconnects 3 given
nodes (terminals). We can construct a many-one reduction from a 3-multiway cut instance to a
CLP instance as Fig 1. At each node, we attach a clique of n2 nodes, whose nodes also connect to
the original node, thus forming a clique of n2 + 1 nodes. Denote the source instance as G and the
destination instance as G’. We now try to prove that CLP has a gap [α, β], i.e., if G has a 3-multi-
way cut of size k then G’ has a pairwise connectivity at most α, whereas if G hasn’t a k size 3-mul-
tiway cut, then G’ has at least β pairwise connectivity. According to the lemma, the
inapproximability ratio will be β/α and we need to calculate α and β.

We first prove that if G has a 3-multiway cut of size k, then G’ has a pairwise connectivity of
at most 2C2

n2þ1
þ C2

n2þn�2
(“the α”): Let Scut be the set of edges that disconnects the 3 given nodes

in G, then |Scut| = k. Scut will also disconnect each of the 3 nodes with a clique in G’. Therefore,
Scut will partition G’ to at least 3 components, and no component will contain more than 1 clique.
A previous article [29] has proven that fewer components results in greater pairwise connectivity.
Therefore, when Scut partitions G’ to 3 parts, the total pairwise connectivity will be the greatest.
Suppose Scut cuts G’ to 3 parts with a size of (n

2 + 1) + xi, i = 1, 2, 3, xi � 0, x1 + x2 + x3 = n − 3,
and this is the best partition strategy. Under this circumstance, the maximization of the total
pairwise connectivity is equivalent to the minimization of the pairwise connectivity loss, where
the loss is simply caused by the disconnection of nodes in different components. So

loss ¼ ½ðn2 þ 1Þ þ x1� � ½ðn2 þ 1Þ þ x2� þ ½ðn2 þ 1Þ þ x1� � ½ðn2 þ 1Þ þ x3�
þ ½ðn2 þ 1Þ þ x2� � ½ðn2 þ 1Þ þ x3�

¼ CONSTANT þ x1 � x2 þ x1 � x3 þ x2 � x3
When two of the 3 x’s take value 0, the loss will be the smallest, which is equal CONSTANT, and
thus the pairwise connectivity after partition is the greatest. That is to say, G’ is parted to n2 + 1,
n2 + 1, (n2 + 1) + (n − 3), and the pairwise connectivity is 2C2

n2þ1
þ C2

n2þn�2
.

Conversely, we can show that if G does not have a k size 3-multiway cut, then G’ has at least
C2

2n2þ2
þ C2

n2þn�2
(“the β”): if G does not have a 3-multiway cut, then G might have been parted

to 1 or 2 components, and obviously being parted to 2 components has less pairwise connectivity.
Similar to considering the loss that was previously defined, we know that the optimum occurs
when the size of the 2 components are 2 � (n2 + 1), n2 + n − 2. Therefore the inapproximability
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ratio is:

r0 ¼ b=a ¼ C2
2n2þ2

þ C2
n2þn�2

2C2
n2þ1

þ C2
n2þn�2

¼
ð2n2þ2Þð2n2þ1Þ

2
þ ðn2þn�2Þðn2þn�3Þ

2

2� ðn2þ1Þn2
2

þ ðn2þn�2Þðn2þn�3Þ
2

¼ 5n4 þ 2n3 þ 2n2 � 5nþ 8

3n4 þ 2n3 � 2n2 � 5nþ 6
¼ 5

3
ðOmitting the lower orderÞ

ð12Þ

This means that there is likely to be no polynomial-time deterministic 5
3
-approximation

algorithm for CLP. It also means the robustness problem is difficult to approximate too. How-
ever, the need for knowing the robustness of a network is demanding, so we have to develop
estimation approaches for robustness. This desire drives us to empirically study the relations

Fig 1. Reduction illustration. The reduction from an instance of 3-multiway cut problem to an instance of CLP.

doi:10.1371/journal.pone.0145421.g001
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among robustness and factors using genetic algorithms, and then fortunately find the near lin-
earity relations.

Data and Experiments
Because there were no analytic conclusions for the robustness and related factors, we decided
to study their discrete relation in a empirical way. In this section, we described how we gener-
ated the required instances and how we performed computation on them. The generation steps
are as follows:

1) Given a node and edge scale, generate networks with different structure entropies.
2) Given a flow scale, on the graphs of step 1), to generate flow matrix with different

entropies.
3) Relabel the indices of the nodes in the second step so that the topology distribution and

flow distribution produces different correlation coefficient.

To generate an adjacency matrix with specified ET , rewiring link techniques are needed.
According to [22], if the entropy is greater than desired, we rewire edges from a centralized
node to small degree node; otherwise perform an inversion until the err is tolerable.

We ultimately generated four groups of instances (See S1 Appendix). The group names are
50-200-1000, 50-200-10000, 50-600-10000, 87-200-4000. The first number is the node size, the
second the edge size and the last is the flow size. In each group, we generated networks with
structural entropy and flow entropy from 0.1 to 1.0 with step length 0.1. The Spearman coeffi-
cients are from -1.0 to 1.0, interval 0.1, so there are 10 � 10 � 20 = 2000 networks (instances) in
each group.

After the generation comes the computation.
4) On each generated instance, to calculate 10 cases—corresponding to deleting 50%, 45%,

. . ., 5% edges (floored if not integral). For each case, use exact algorithms or a high perfor-
mance evolutionary algorithm.

5) Analyze the relations statically after gathering the result data together. For example, in
group 50-200-1000, we will analyze what the relations among Robu, “graph entropy” and “flow
entropy”, if we delete 20% of edges while spearman correlation is strongly negative.

For the computation, we used GUROBI for the group 50-200-1000. GUROBI is thought to
be the most efficient integer programming software, but it still costs too much time for our
problem. This software uses exhaustive search methods such as cutting-plane techniques [30]
for integer linear programming and it provides interfaces for programming languages to call.
We also designed an ordinary genetic algorithm to compute this group. After comparison, we
found that GA performs well too, thus we adopted GA for the other groups of the instances
because GUROBI is too time consuming.

We have not included a detailed description of the generation and computation algorithms
here, but we can provide it upon request to readers with interests.

Results and Discussion
The logic of this part is more or less mentioned before: at first, we discover the linearity of rela-
tions, so we showed 3 examples for text length. Then, we turned to GA and found the regres-
sion coefficients were near to those of integer programming (IP), that’s to say GA is capable for
usage. And then, we tested the impacts of flow scales, edge scale and node scales. At last, we uti-
lized the historical coefficients to real world network robustness computation and got favorable
results. The picture of Fig 2 would explain more. “Fig 3: 50-200-1000, deleting 20%, [-0.2, 0.2],
IP”means Fig 3 is for the 50-200-1000 dataset, deleting percentage 20%, results for networks
whose Spearman coefficients are within [-0.2, 0.2], using integer programming. The
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bidirectional arrows links two samples that to compare, while the unidirectional arrows means
that the origin is a complementary to the terminate. In each black box, there are at least two
examples to support our conjecture.

Approximate Linearity for Exact Results
Figs 3 and 4 are for the 50-200-1000 group when deleting 20% of the edges using the exact algo-
rithm, and the absolute value of the Spearman correlation is smaller than 0.2, which means the
degree distribution and flow distribution are “loosely coupled”. There are 500 data in this cate-
gory. The Z-axis is the robustness value, and the X-axis and Y-axis are the entropies. The data
form a linear regression because the data are now nearly planar. The plane is now observed like
a line because of our visual angle. Most of the absolute error is within [-0.05, 0.05].

Fig 5 is another example of linearity. Fig 5 is the data for deleting 5% of the edges in group
50-200-1000, with a Spearman value smaller than -0.9 (strongly negatively coupled). It’s regres-

sion vector is [0.140 -0.312 0.867], i.e., robu ¼ 0:140� 0:312 � ET þ 0:867 �EN .

Fig 2. Relations of all figures. The relations of all figures: comparisons and complementary.

doi:10.1371/journal.pone.0145421.g002
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Figs 6 and 7 are a third supporting example. For text length, we are not to show more. Figs 6
and 7 will be used later.

Performance of GA
As mentioned previously, the exact algorithm is very time-consuming, so we tried using a GA.
From Fig 8 we can see that the GA data also forms a plane, a plane with similar coefficients.
The regression vector is [0.120 -0.144 0.810], which is near to Fig 3’s regression vector([0.140
-0.312 0.867]).

Fig 3. Linear relation example 1. Example 1 is deleting using GUROBI 20% of the edges in [−0.2, 0.2] coupled networks in group 50-200-1000.

doi:10.1371/journal.pone.0145421.g003
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There are additional supports for resorting to GA, such as Figs 9 and 10. The two figures
correspond to Figs 6 and 7. These four figures demonstrate deleting 5% of the edges in strongly
positively coupled networks using GUROBI and GA. The data fit a plane very well and the
regression vector for GUROBI is [0.802 0.0817 -0.05], whereas for GA, the vector is [0.857
0.1950 -0.04]. The relative error is almost within ±10%. The two vectors are similar, just as in
the former example. Based on these facts, we believe that our genetic algorithm’s results are
close to the optimal. So we adopted GA for the rest of the computations for the massive com-
putations of our experiments.

Irrelevance of Flow Scale
We compared the results of group 50-200-10000 to 50-200-1000 with other parameters fixed.
The regression coefficients for this example (Figs 11 and 12) are [0.808 0.250 -0.081], which are
similar to those of Fig 9 ([0.857 0.1950 -0.04])— the flow scale expanded 10 times but the coef-
ficients are near, because we normalized the robustness to within [0,1].

This is not a singular phenomenon. Figs 13 and 14 display two samples that differ only in
the flow scale. Regression vector for the two are [-0.215 0.239 0.088] and [-0.233 0.272 0.190].
We can see that the difference is slight too. So we conclude the flow magnitude does not affect
our model’s robustness of networks.

Fig 4. Fig 3’s absolute error. The stem graph for the absolute error between each data point and the regression plane in Fig 3.

doi:10.1371/journal.pone.0145421.g004
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Fig 5. Linear relation example 2. Example 2 is deleting using GUROBI 5% of the edges in the� −0.9 coupled networks in group 50-200-1000.

doi:10.1371/journal.pone.0145421.g005
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Fig 6. Regression example 2 of GUROBI-computed. This example is deleting using GUROBI 5% of the edges in�0.9 coupled networks in group 50-200-
1000.

doi:10.1371/journal.pone.0145421.g006
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Fig 7. Relative error for regression example 2 of GUROBI-computed. Fig 6’s relative error.

doi:10.1371/journal.pone.0145421.g007
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Irrelevance of Edge Scale
Because we delete edges by percentage, we will want to know whether the robustness relates to
the edge size. The experiments find that, no matter in dense or sparse graph, once we delete the
same percentage of the edges, the resulting robustness is alike. There are many supporting
data. Fig 15 give an illustration, its vector is [-0.290 0.356 0.205], just similar to that of Fig 15
([[-0.233 0.272 0.190]).

Figs 16 and 17 provide another illustration. Their vectors are [-0.366 0.214 0.6113] and
[-0.303 0.412 0.662].

Relevance of Node Scale
Finally, we want to know whether the node size matters. To our findings, node size truly mat-
ters. For example Fig 18’s vector is [-0.073 0.083 0.522], which is quite different from that of
Fig 17. And the vector of Fig 19 is [-0.038 0.050 0.048], which is also quite different from Fig
15.

Real-world Application
Because the flow size and the edge size do not matter in the model, we can store each coeffi-
cients vector for node size 50, considering certain Spearman relation together with a certain

Fig 8. Regression example 1 of GA-computed. This example is deleting using GA 5% of the edges in�
−0.9 coupled networks in group 50-200-1000.

doi:10.1371/journal.pone.0145421.g008
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deletion percentage. That is, we store a dictionary D: R × R! R × R × R. The left two real num-
bers are (Spearman correlation, deletion percentage), and right three numbers are coefficients
vector (v0v1v2), where v0 is constant coefficient, v1 is coefficient for topology entropy, v2 for
flow entropy. On receiving a deletion case with same node size, we can estimate its robustness
after certain deletion using the stored vectors, step by step:

1. calculate the topology entropy of the network EN.

2. calculate the flow entropy of the network ET.

Fig 9. Regression example 2 of GA-computed. This example is deleting using GA 5% of the edges in�0.9 coupled networks in group 50-200-1000.

doi:10.1371/journal.pone.0145421.g009
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3. calculate the Spearman correlation of the network.

4. Round the number of edges for deletion to nearby percentage in our dictionary.

5. Find the coefficients vector (v0v1v2) mapped by duple (correlation, deletion percentage),
together with the parameters calculated in 1) 2), thus obtain the rough estimation by multi-
plying vector by [1ENET], i.e. Robu = (v0, v1, v2) � [1ENET]T.
To validate this conjunction, we carried computation on a real-world dataset and the results

proved the conjunction to be effective and efficient. We found a well-known dataset with 50
nodes, 100 edges, 2450 unit’s flow. The dataset which is from a Operational Research data
library in http://people.brunel.ac.uk/mastjjb/jeb/orlib/files/, is named “steinb4.txt”. We chose
this file because its node size is the same with our empirical studies before and that the robust-
ness of a steiner graph is also a want-to-know by Steiner problem dealers. We set the edge
weight to be 1 and thus this graph has a normalized structural entropy ET = 0.906. We let each
pair of node has a flow of 1 unit and thus the normalized flow entropy EN = 1.000, thus the
spearman correlation is 0.

The historical regression vector (coefficients) of deleting 5% to 50% edges is as follow, when
the coupling correlation is very small (absolute value of Spearman Correlation smaller than
0.2, so we can use the following vector because the real-world network’s correlation is 0):

5%:[0.170 0.002 0.723]
10%:[0.014 -0.023 0.648]
15%:[-0.011 -0.052 0.550]

Fig 10. Relative error for regression example 2 of GA-computed. Fig 9’s relative error.

doi:10.1371/journal.pone.0145421.g010
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Fig 11. Flow irrelevance example 1. This example is deleting using GA 5% of the edges in�0.9 coupled networks in group 50-200-10000.

doi:10.1371/journal.pone.0145421.g011

Hardness Analysis, Empirical Studies of Relations in Dynamic Networks

PLOS ONE | DOI:10.1371/journal.pone.0145421 December 22, 2015 19 / 29



20%:[-0.011 -0.029 0.400]
25%:[-0.011 -0.011 0.285]
30%:[-0.011 -0.004 0.208]
35%:[-0.011 0.003 0.147]
40%:[-0.009 0.002 0.105]
45%:[-0.007 0.002 0.071]
50%:[-0.006 -0.000 0.050]
We can estimate a network’s robustness by calculate the inner product of the vector and

[1ETEN]T. Table 2 shows our results. Line 1 is the number of deleted edges. Line 2 is the near-
est deletion percentage. Line 3 is the exact residual flows by Gurobi [21] and Line 4 is the exact
robustness. Line 5 is the estimated robustness using our approximation linearity equation. And
the last line is the absolute error between exact robustness and estimated robustness. We can
see that most of the entries’ error is less than 0.02 and some of the entries is even equal. So the
estimation can be thought to be effective.

Conclusion
In this paper, we analyzed the hardness of a special case of the robustness model and empiri-
cally studied the relations between robustness and topology, flow and their coupling level. This
work considers more factors that contribute to robustness variation in complex networks than
the previous literature have considered. The findings are novel and can be used in situations
where slight error is tolerable. By applying the historical data to a very different real world

Fig 12. Relative error for the example. Fig 11’s relative error.

doi:10.1371/journal.pone.0145421.g012
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Fig 13. Flow irrelevance example 2. This example is deleting using GA 50% edges in� −0.9 coupled networks in group 50-200-1000.

doi:10.1371/journal.pone.0145421.g013
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Fig 14. Flow irrelevance example 2. This example is deleting using GA 50% edges in� −0.9 coupled networks in group 50-200-10000.

doi:10.1371/journal.pone.0145421.g014
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Fig 15. Edge irrelevance example 1. This example is deleting using GA 50% edges in� −0.9 coupled networks in group 50-600-10000.

doi:10.1371/journal.pone.0145421.g015
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Fig 16. Edge irrelevance example 2. This example is deleting using GA 10% of the edges in� −0.9 coupled networks in group 50-600-10000.

doi:10.1371/journal.pone.0145421.g016
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Fig 17. Edge irrelevance example 2. This example is deleting using GA 10% of the edges in� −0.9 coupled networks in group 50-200-10000.

doi:10.1371/journal.pone.0145421.g017
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Fig 18. Node relevance example 1. This example is deleting using GA 50% of the edges in� −0.9 coupled networks in group 87-200-4000.

doi:10.1371/journal.pone.0145421.g018
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Fig 19. Node relevance example 2. This example is deleting using GA 10% of the edges in� −0.9 coupled networks in group 87-200-4000.

doi:10.1371/journal.pone.0145421.g019

Table 2. Real-world applications.

deletion 3 10 20 30 40 52

percent 5% 10% 20% 30% 40% 50%

exact residual flow 1081 1524 890 476 302 146

exact robu 0.882 0.622 0.363 0.194 0.123 0.059

regression value 0.894 0.641 0.363 0.193 0.116 0.044

error 0.012 0.019 0.000 0.001 -0.007 -0.015

doi:10.1371/journal.pone.0145421.t002
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networks, the effectiveness of estimation approach is verified. In the future, we would like to
explore other methods of characterizing the degree and flow distribution and to compare
which methods produces more preciser estimation. Moreover, we want to establish a more
realistic robustness model in future.

Supporting Information
S1 Appendix. The dataset and results. This appendix contains the dataset we generated, and
on them we carried our experiments. We collected the results into the .xml file and analysed
the results.
(ZIP)
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