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Abstract: Phase-sensitive time-domain reflectometry (Φ-OTDR) can be used for fully distributed
long-distance vibration monitoring. There is a fading phenolmenon in the Φ-OTDR, which will cause
the signal intensity somewhere to be too low to extract the phase of the signal without distortion.
In this paper, the Φ-OTDR based on space-division multiplexing (SDM) is proposed to suppress
fading and we used multi-core optical fiber (MCF) to realize SDM. While inheriting the previous
optimization strategy, we proposed a strategy based on frequency spectral similarity to process
multiple independent signals obtained by SDM. And we compared the two methods. Through the
experiments, the distortion rate can be reduced from an average level of 9.34% to less than 2% under
continuous running of 270 s, which proves that SDM is a reliable technical route to achieve fading
suppression. This method can effectively improve the fading suppression capability of the existed
commercial systems.

Keywords: phase-sensitive time-domain reflectometry (Φ-OTDR); fading suppression; space-division
multiplexing (SDM); multi-core optical fiber (MCF)

1. Introduction

Phase-sensitive optical time-domain reflectometry (Φ-OTDR) has been widely applied
in various applications such as structural health monitoring [1–4], intrusion detection [5,6]
and geological hazard monitoring [7,8] due to its high sensitivity and distributed measure-
ment ability. In recent years, it has also been innovatively proposed to be used in the field
of optical networks [9,10]. Φ-OTDR uses an ultra-narrow linewidth laser as the system
light source, and utilizes the interference effect between the Rayleigh backscattered (RBS)
light generated by multiple scattering positions within the pulse width of the inject light
in the optical fiber to increase its sensitivity to external disturbances. It has the ability
to demodulate the phase of RBS to obtain the disturbance information carried by RBS.
Once the fiber is disturbed, vibration around the optical path can cause phase modulation
and the RBS phase variation has a linear response to the disturbance. Therefore, high-
fidelity reconstruction of the disturbance signal along the fiber can be achieved through
demodulating the RBS phase.

Nevertheless, the amplitude of RBS trace is jagged [11]. Interference among a large
amount of backscattered light generated at different positions gives rise to a new kind of
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problem called fading noise [12]. Rayleigh fading noise (RFN) is fluctuations in backscat-
tered signals, which causes some low intensity areas which may be close or even lower than
system noise floor [13], and it makes the system difficult to demodulate the phase signal
properly in such low intensity areas resulting in false monitoring [14]. Fading effect adds a
key noise term limiting to the signal-to-noise ratio (SNR) of the Φ-OTDR system [15,16].

In recent years, many researchers have focused on methods for RFN reduction [17,18]. Us-
ing multiple independent detection channels could be helpful [12]. Thus, multi-frequency
technology was proposed. In 1992, Shimizu et al. [13] studied the characteristics of fading
noise in coherent optical time-domain reflectometry (C-OTDR) and derived the effects of
frequency shift averaging (FSA) on fading noise reduction, but this method would not be
suitable for dynamic measurement. Another way to suppress the fading was proposed
by Tao et al. in 2018 [19]. They described an Φ-OTDR with a multi-frequency nonlinear
frequency modulation (NLFM) optical pulse. They compressed the RBS generated by con-
tinuous wave (CW) light with non-linear tuning frequencies through signal process. This
method can obtain higher probe pulse energy without sacrificing spatial resolution and will
increase the overall SNR to reducing the possibility of fading. However, in long-distance
measurement, the fading was still a problem due to the attenuation of the RBS intensity
at the sensing fiber tail. Besides these methods, many scholars have put forward and
verified the feasibility of frequency-division multiplexing (FDM). In 2001, Mermelstein et al.
calculated and measured the frequency difference condition when two probe signals are
statistically independent [20], and these results server as a guidline for the development of
Φ-OTDR with FDM structure. Then in 2013, Pan et al. [21] brought forth a multi-frequency
Φ-OTDR with equal frequency interval of several tens of MHz using phase modulator.
This method introduces multiple frequency signals to avoid fading in space domain since
the location of fading areas are different for independent frequencies. Based on this idea,
Hartog et al. [18] described an Φ-OTDR that allows the measurement to be carried out
quasi-simultaneously at multiple probe frequencies and used it for seismic wave detection.
They reduced the noise caused by fading and improved the SNR by aggregating the data
obtained. Due to the short time of interference caused by seismic wave, the problem of
long-time signal acquisition was not considered in this article, and there was no problem of
dynamic selection through multiple measurement results. No further discuss on the phase
difference signal behavior in the fading region was performed. In 2019 Zabihi et al. [22]
used three different probe frequencies in Φ-OTDR based on the FDM principle. They real-
ized signal reconstruction by a tracking algorithm for selecting the optimum probe signal
at any time continuously. However, in the commonly used FDM method, the structure
of system is relatively complex due to the need to obtain multiple frequencies, and the
bandwidth of detection signal becomes larger, which increases the difficulty of system
hardware implementation.

In some applications, such as seismic wave monitoring, aerospace vehicle monitoring
and other heavy equipment monitoring, much attention is paid to improve the sensing
performance, as the accuracy of monitoring is important. It is an important issue to
suppress fading noise. When using multi-frequency technology for fading suppression,
it would be inevitably to change the system structure, which complicates the hardware
design. Therefore, we hope that there is a way to improve the fading noise suppression
performance based on the existed system structure. Due to the characteristics of random
refractive index fluctuations, it is considered that multiple independent measurement
samples could also be obtained through space-division multiplexing (SDM). If SDM could
be combined with Φ-OTDR, it could provide a new way to suppress fading in Φ-OTDR.

In this article, we tried to effectively suppress the fading noise in Φ-OTDR without
changing the structure of the existed sensing system. To achieve this purpose, we proposed
an Φ-OTDR using multi-core fiber (MCF) to achieve SDM. On the one hand, although the
price of MCF is a little higher than single-mode fiber (SMF), it is acceptable for relative
precision applications. On the other hand, with the maturity of MCF production technology
and the increase in market demand [23], its cost will gradually decrease [24,25]. Through
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the S-type series connection of fan-in and fan-out, we achieved the object of not changing
the hardware structure of sensing systems. In addition, to predict the fading phenomenon
and choose the optimum core which gives the best phase signal at any moment, we
proposed a new optimization algorithm called Maximum spectrum similarity selection
(MSSS) besides inheriting the original algorithm [22]. In this way, we could suppress the
fading noise only by changing the sensing fiber and improving signal processing method.

The rest of this paper is structured as follows: Section 2 introduces the principle of
fading noise and our method. Section 3 describes the experimental setup. Section 4 presents
the results of our experiments which prove the feasibility of this method, and a discussion.
Finally, Section 5 draws the conclusions.

2. Principle

With the orthogonal demodulation and the phase unwrap, the phase can be extracted
from the in-phase and the quadrature components of the beat signals [26]. Then we use
differential methods to reconstruct vibration signals [27]. Figure 1 shows how an external
vibration that induces extra stress on the fiber and results in a change in optical path
length (OPL), where two segments of fiber A and B with a length of L are selected as the
reference regions. The change in length ∆L is directly related to the change in relative phase
difference ∆ϕ between the two regions. Any external perturbation within two specific
points changes the phase of the backscattered light wave. Therefore, the reconstruction of
external vibration signal can be realized by demodulating the phase difference ∆ϕ.

∆ϕ =
4πn

λ
∆L (1)

where n is the refractive index of fiber; λ is the wavelength of probe light; ∆L is fluctuation
of fiber length results from external perturbation.

Figure 1. Principles of demodulating the phase information of rayleigh backscattered (RBS) light.

However, the above description is an ideal situation. In practice, due to the existence
of fading, the amplitudes of regions A and B will be very low and even submerged in
noise, which will affect the phase detection result. According to the one-dimensional (1-D)
scattering model, tiny refractive index fluctuations in fibers can be seen as scattering points
and the RBS waveform is closely related to the characteristics of scattering points [28].
Figure 2 shows 1-D scattering model, we assume that in a fiber segment of length L, the
number of randomly distributed scattering points is N, and the scattering points are marked
as 1, 2 . . . n along the distribution distance. xi represents the distance of the ith scattering
point in the fiber from the beginning of the fiber. Electric field of scattered light at time t is
E(t). This is the superposition of scattering signals in the range of optical pulse at a certain
position of optical fiber and these points are numbered as [xa, xa+1 . . . xb]. The fiber loss
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within pulse duration can be negligible owing to the pulse width is generally narrow [13],
so E(t) can be simplified described as:

E(t) = E0e−αvgt
b

∑
i=a

√
ξi cos(2kxi −ω0t + ϕ0) (2)

E0 is electric filed intensity of injected pulse. α is the loss coefficient of fiber. vg is the speed
of light propagating in optical fiber. ξi is the scattering coefficient of ith scattering point. k
is wave number of light in fiber. ω0 is the angular frequency of the probe pulse. ϕ0 is the
initial phase of injected pulse.

Figure 2. 1-D scattering model Schematic diagram.

In the heterodyne detection structure, RBS returning from fiber is mixed with the
optical local oscillator (OLO). The electric filed intensity of OLO can be expressed as:

Elo(t) = El cos(ωt + ϕl) (3)

El is electric filed intensity of injected continuous wave (CW). ω is the angular frequency
of CW. ϕl is the initial phase of CW. The photodetector detects the optical power, and its
output photocurrent can be given as the following formula:

I(t) ∝ (E(t) + Elo(t))
2

= 1
2 E2

0e−2ανgt
b
∑

i=a
ξi + E2

0e−2ανgt
b
∑
j>i

b
∑

i=a

√
ξiξ j cos

[
2k
(
xi − xj

)]
+E2

0e−2ανgt
b
∑
j>i

b
∑

i=a

√
ξiξ j cos

[
2k
(
xi + xj

)
− 2ω0t + 2ϕ0

]
+ 1

2 E2
l

+ 1
2 E2

l cos(2ωt + 2ϕl)

+ElE0e−αvgt
b
∑

i=a

√
ξi cos(2kxi − (ω0 −ω)t + ϕ0 + ϕl)

+ElE0e−αvgt
b
∑

i=a

√
ξi cos(−2kxi + (ω0 + ω)t + ϕl − ϕ0)

(4)

Due to the limitation of the measurement bandwidth of photodetector, the double
optical frequency term and optical frequency superposition term can be ignored. The first
and fourth term is direct current (DC) term, and the second and sixth term is alternating
current (AC) term which represents the interference between backscattering light and the
interference between RBS and OLO, respectively, are used to perceive external distribution
events. According the formula, characteristics of scattering points influence the backscat-
tering signal received by the photodetector. Due to the inhomogeneous spatial distribution
of effective index, the amplitude of RBS conforms to a Rayleigh distribution [29], forming a
jaded appearance in the backscatter measurement.
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Therefore there is a certain probability that RBS will fall into the weak zone. When
RBS falls into the weak zone, SNR of the signal amplitude will decrease. Intensity noise
will transfer to phase noise during phase demodulation [30]. When we use the method of
signal difference between two nearby reference regions A and B to demodulate the phase,
the value of phase SNR is associated with backscatter power of two position which is
selected to make differencing, is given by:

SNRφ =
σ2

φ

σ2
n [1/A2(t1) + 1/A2(t2)]

(5)

where σ2
n and σ2

φ are the variance of intensity noise and external disturbance separately;
A(t1) and A(t2) represent to the signal amplitude at two different locations where are
selected for a differential process [30]. It can be seen the SNR of phase will raise with the
increase of RBS amplitude, so fading will have an adverse effect on phase demodulation.

Since fading is closely related to the characteristics of scatters, obtaining multiple
independent measurement samples can be an effective fading suppression method. In the
process of optical fiber manufacture, doping, drawing and other process will inevitably
cause random fluctuation in the core refractive index distribution along the lateral direction
of the fiber. The magnitude of these refractive index fluctuations is much smaller than
the wavelength of the incident light, so the positions of such refractive index fluctuations
can be approximated as discrete scattering points in space [12]. In optical fiber, scatters
are randomly distributed over distance, and the scattering rate of each scattering points
is also random. Accordingly, the intensity fluctuation which is the result of interference
of scattered light generated by millions of scattering points would also be random. It can
be inferred that, for different batches of optical fibers, even different sections of the same
batch of optical fibers, the fluctuation of fading has very good independence. Therefore,
one of the ways to obtain independent measurement can be to use the signal from different
fiber channels.

If the optical pulses are injected into multiple fiber channels, the phase term in the
formula would change due to the inconsistent characteristics of the scattering points of the
fiber, xi and ξi are not exactly the same, so we estimate that the curve amplitude fluctuation
of Φ-OTDR only depends on the fiber state in the case of the optical frequency and the shape
pulse having been determined. When we obtain the backscattering signals from multiple
fiber channels, the fluctuation of RBS is different for each channel. As Figure 3 shows, the
yellow solid line and the green solid line are the normalized demodulated amplitude of
RBS in two dependent cores. The horizontal red dotted line shows a threshold which we
assumed is located at 0.1 of the normalized result. To achieve a good SNR of demodulation
phase, the threshold needs to guarantee an empirical value of at least 10 dB SNR at the
output for areas above it [22]. For the commercial system used here, a SNR more than
10 dB could be obtained when the signal strength exceeds 10% of the entire quantization
range through preliminary calibration [31]. Obviously, the locations of fading in two RBS
amplitude curves are not exactly the same. It can be inferred that probability is low when
the fading areas in the signal appear simultaneously at the same location for the RBS curve
obtained with different cores.
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Figure 3. Signal amplitude fluctuation in different fiber channels.

After solving the source of independent measurement, the next key problem is how to
continuously optimize multiple measurement results. According to the characteristics of
fading, we proposed two different optimization algorithms for dynamic selection among
multiple sets of signals to achieve the reconstruction of vibration signals. One is to dy-
namically select the demodulation results corresponding to the signal with the strongest
amplitude among multiple backscattering signals, inherited from the work mentioned in
our previous works [22]. The other is to dynamically select the best two groups of the
results based on frequency domain characteristics and average them to acquire the recon-
structed vibration signals. Here, we used spectral similarity for data selection. If the quality
of reconstructed signal is good, its frequency spectrum will have a high degree of similarity.
This is because noise has random characteristics, if reconstructed signal contains a lot of
noise, its spectrum similarity would be low. When using frequency spectrum for similarity
comparison, we can make flexible bandwidth selection according to the characteristics
of signal and noise. Here, the correlation coefficient is used to evaluate the similarity of
frequency spectrum, calculated as follows:

ρ(A, B) =
1

N − 1

N

∑
i=1

(
Ai − µA

σA

)(
Bi − µB

σB

)
(6)

Here, µA and σA are the mean and standard deviation of A, µB and σB are the mean
and standard deviation of B. When we obtained the two sets of data with the highest
spectral similarity at any time, we averaged them to obtain the final reconstructed signal.

Obviously, these channels need to be consistent in their perception of the same external
disturbance when using SDM in order to reconstruct the disturbance signal over time.
Multi-fiber cables have variety of structures. In some structures, due to the outer armor and
the loose structure of the inner fibers, the coupling of the external disturbance of each fiber
may be inconsistent. When using multi-fiber cables, it is necessary to select the appropriate
structure. Considering the structure between each fiber core for MCF is more compact than
that of multi-fiber cable, so that the coupling consistency to external disturbances is higher,
can achieve signal restoration and fidelity, so here we used MCF to perform experiments to
verify the feasibility of SDM.

3. Experimental Setup

The experimental setup is shown in Figure 4. Light from a narrowband continuous
wave laser with linewidth of 3.7 kHz operating at 1550 nm was divided into an interrogation
arm and a local oscillator arm. The interrogation arm passed through an acousto-optical
modulator (AOM) which created a probe pulse of 100 ns width, 1 kHz repetition rate
and 200 MHz frequency shift. After the pulse was amplified by an erbium-doped fiber
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amplifier (EDFA), it was injected into the 200 m SMF through a circulator. The peak power
of the EDFA output was about 18 dBm. Fan-in, fan-out was used to connect each core of
MCF (YOFC, MC1010-A). The typical value of cross-talk in MCF fiber is −50 dBm/100 km,
so inter-core crosstalk could be ignored in the measurements. MCF was wound on the
piezoelectric transducer (PZT) in parallel in the experiment. The profile structure of the
MCF used in experiment is shown in Figure 5. We can see that the core-core pitch is
41.5 ± 1.5 µm and the cladding diameter is 150 µm, therefore the arrangement of the cores
is very compact. This ensures the consistency of the coupling. The six outer cores are
distributed in a regular hexagon. Since this is a demonstrative experiment, we focused on
the ability of using MCF to suppress the fading, rather than measuring distance and spatial
resolution. We only used a 50 m MCF in the experiment. Due to the short length of MCF,
we connected a section of SMF (200 m) to the front end of the MCF for extension, in order
to ensure the integrity of the signal. Vibration events were applied to MCF. And disturbed
area of MCF was about 25 m. The gauge length employed for phase demodulation was
about 34 m in the subsequent data processing.

Figure 4. MCF assisted phase-sensitive time-domain reflectometry (Φ-OTDR) System setup. CW
Laser: Continuous Wave Laser; AOM: Acousto-Optical Modulator; EDFA: Erbium Doped Fiber
Amplifier; Cir: Circulator; SMF: Single-mode fiber; MCF: Multi-core optical fiber; PZT: Pizeo-electric
Transducer; BPD: Balanced Photo Detector; DAQ: Data Acquisition.

Figure 5. Cross section of MCF.
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We numbered the cores in a MCF from one to seven to facilitate subsequent distinction.
In order to achieve the measurement of multiple fiber core data without changing the
existing sensing structure, we connected the cores in series end-to-end, so we could use
only one photodetector to receive the signal based on this structure. The RBS returning from
the fiber under test (FUT) was mixed at the receiver with local oscillator. A data acquisition
(DAQ) system was used to capture the output signal with 250 MHz sampling rate. As
a proof of principle experiment, we only chose three of the seven cores and connected
them end-to-end. As shown in Figure 4, three fiber cores were connected end to end in an
S-shape. We used PZT to simulate sinusoidal vibration signals of different frequencies.

A 10 Hz sinusoidal signal was applied on PZT. Figure 6 presents the demodulation
results of three cores separately when there is no fading. These are the results that we
selected from a large amount of data after demodulating the signals of the three cores
in traditional way. It can be seen from the figure that under the same disturbance, the
demodulation phase results of each fiber were good and had a high degree of consistency,
we can expect these results due to the MCF as SDM. Therefore, for multiple sets of data,
we could achieve an optimal trace by directly hopping from a distorted signal to a well-
shaped one in the proper time. Here, we adopted two different algorithms for predicting
the occurrence of distorted phase shape and compared the results of the two methods.
Maximum amplitude selection (MAS) was based on signal amplitudes. Comparing the
intensity of each group of signals at each moment and selecting the reconstruction signal
corresponding to the highest intensity data as the reconstruction signal at that moment.
The other way was based on frequency domain comparison, we called it as MSSS. We
calculated the short-time Fourier transform (STFT) of each fiber demodulation result. In the
confirmatory experiment, we only selected the two sets of data with the highest spectral
similarity and averaged them to obtain the reconstructed disturbance signal.

Figure 6. The result of three independent fiber cores.

The specific steps of MSSS algorithm is shown in Figure 7. We applied a short-time
Fourier transform (STFT) on each group of data, compared the frequency spectrum in each
time period which refers to the window width during the STFT, and obtained two groups
of data with the highest similarity. The demodulation phases corresponding to the data
with the highest similarity in this time period was averaged to obtain the reconstructed
phase in this time period. By sliding the window along the time axis, the STFT frequency
spectrum matching was achieved along the time dimension. Splicing the obtained phases,
and finally realizing the phase reconstruction.
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Figure 7. The process of judging using short-time Fourier transform (STFT) as a standard program.

4. Results and Discussion

Figure 8 illustrates the output for about 20 s with MAS algorithm. Due to the fact
the amplitudes had some small fluctuations, we used averaging to mitigate the effect of
these fluctuations. Here, we set the time window width for averaging to be 100 points,
which corresponding to 0.1 s. Phase signals from core 1, core 2, core 3 and the final output
show the reconstructed vibration signal obtained by demodulating each core separately,
and the reconstructed signal obtained by the optimization algorithm. It can be clearly
seen that extracted phases from all three cores have distortions for some different time
ranges. The fourth line in Figure 8 is the lowest value of the signal intensity in the process
of demodulating the three sets of RBS. Blue line is the demodulation amplitude of RBS in
core 1, the red and the yellow line are the demodulated amplitude of RBS in core 2 and 3,
respectively. Comparing the corresponding signal intensity, the distortion positions are all
positions with weak amplitude. The fifth row in Figure 8 indicates the selection of data in
the optimal algorithm. When the core corresponding to the highest amplitude in the RBS
amplitude diagram changes, the system will jump to select the phase extracted from the
core with the highest amplitude. As can be seen in this figure, since the intensity of core 3
was weak, the reconstruction results are basically selected from core 1 and 2. Due to the
loss caused by fusion splicing process of MCF and fan-in/fan-out, the intensity of probe
pulse would be attenuated during transmission and the loss of core 3 was larger than that
of core 1 and core 2. Figure 9 shows the intermediate frequency (IF) signals in the three
cores. It could be seen that with the increase of cascading degree, the intensity of IF signal
decreases due to the connection loss. Core 3 has obvious attenuation. When we used signal
strength as the selection criterion, we could avoid selecting the position with the weakest
signal, thereby avoiding the distortion position. The final output is shown in Figure 8.
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Figure 8. Extracted phase signal from all single beat frequency, as well as prediction signal and final
output (selection based on signal amplitude).

Figure 9. Intermediate frequency (IF) signal intensity of three cores.
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It can be seen in Figure 9 that the three cores were connected in series because the
signal was continuous, while, it was worth noting that since the cores were cascaded in an
S-shape, the signal of core 2 needed to be inverted during data processing to ensure that the
corresponding positions of signals of three cores were consistent along the distance axis.

We also reconstruct the vibration signal with MSSS method to make a comparison.
Figure 10 presents the output for 20 s. In order to show better frequency resolution,
the window width of the STFT is 1 s, and the overlap of the sliding window is three-
fourths of the window width. The subgraphs core 1, core 2 and core 3 in Figure 10 are
the spectrograms corresponding to the extracted phases. Among them, the main energy
is concentrated around 10 Hz, but at certain moments, the results obtained by the three
cores have strong other frequency components. The fourth row in the Figure 10 shows
the similarity of the pairwise comparison of the spectrum. The blue one is the spectrum
similarity of the results obtained by cores 2 and 3, the red and yellow are the similarities
of cores 1, 2 and cores 1, 3 respectively. By obtaining the maximum similarity at a unique
moment, we can get the prediction signal, which is the curve shown in the next line. The
prediction signal indicates the source of the signal extracted in the optimal algorithm at
each moment, that is, the data obtained from which two cores are selected. The last two
lines of graphs are the time domain and frequency domain graphs of the reconstructed
signal obtained by the optimization algorithm. Obviously, this method also achieved an
optimal trace, the range of distortion in extracted phases from all core 1, 2 and 3 was well
avoided in the reconstruction results in Figure 10.

To further evaluate the impact of amplitude average window width in MAS and STFT
window width in MSSS, we presented the probability of failure of the final output under
the data length of 200 s for different window width (0.01 s~0.9 s) in Figure 11. Here, we
assumed that any deviation of the peak-to-peak value of the demodulation phase from its
peak-to-peak average that exceeds 10% is a failure. The probability of failure in the entire
data is the distortion rate. In the STFT calculation, the overlap degree of the sliding window
was involved. We also applied statistics on this and plotted it in Figure 11. The blue dotted
line is the distortion rate fitting curve of MAS. The red, yellow and purple dotted line
are respectively the fitting curve of the distortion probability of MSSS when the overlap
is one-quarter, one-half and three-quarter of the window width. As the window width
increases, the distortion rate decreases rapidly and then gradually increases in volatility.
The distortion rate of MAS increases with window width faster than MSSS. For the curves
under the three overlapping degrees, the inhibition effect is weak when the overlap is
three-quarters, but the difference between the three is not very obvious. Overall, the
overlap impact of MSSS seems to be small. The best point of the suppression effect in this
figure is about 0.1 s. At this location, we obtained that the distortion rate of the extract
phase of core 1, 2 and 3 is 7.08%, 7.72% and 15.96%, respectively. The output result after
using MAS has a distortion rate of 2.59%, and the distortion rate of MSSS is 1.53%. In
STFT, the size of window determines the time resolution and frequency resolution of the
spectrum. The longer the window width, the higher the frequency resolution and the lower
the time resolution after Fourier transform. When the window width is too small, it is easy
to be affected by random noise. When the window width is too large, it would be unable
to make timely response to the fading change. Therefore, the window width needs to be
adjusted reasonably according to the requirements of frequency and time resolution. For
the two methods, especially under the large window width, the suppression effect of the
MSSS is obviously better than that of MAS.
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Figure 10. Extracted phase signal from all single beat frequency, as well as prediction signal and final
output (selection based on frequency domain).

Figure 11. The probability of failure for different window width.
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We collected data for about 270 s continuously. The vibration signal applied to PZT is
a 10 Hz sinusoidal wave. According to the above results, we selected a window width of
0.1 s to perform statistics on the entire segment of data. The distortion rate of the extract
phase of fiber 1, 2 and 3 is 6.20%, 6.32% and 15.66%, respectively. The output result after
using MAS has a distortion rate of 1.97%, and the distortion rate of MSSS is 1.36%, as
shown in Figure 12.

Figure 12. The distortion probability of demodulation results.

Although the suppression effect of MSSS is better than MAS in most cases, its compu-
tational complexity is significantly higher than that of MAS. In order to further evaluate the
influence of these two algorithms on the calculation pressure of global signal processing,
we had counted the computing time of each part of the program in an environment where
Central Processing Unit (CPU) is an Intel (R) Core (TM) i5-3470 CPU @ 3.20 GHz and
Random-Access Memory (RAM) is 8.00 GB. (Dell, Xiamen, China). To verify the feasibility
of the algorithm, the CPU was used for calculation. Our program was written in MATLAB
and precompiled. The running time of each part is shown in Figure 13. When processing
200 s of data of the same length, in-phase/quadrature (IQ) demodulation takes about 36 s.
When the window width is 0.1 s, the preferred tracking algorithm MAS takes about 0.7 s,
and algorithm MSSS takes about 1.1 s; when the window width increases to 1 s, MAS
takes about 0.9 s, and MSSS takes about 0.4 s. For the convenience of display in the figure,
we gave the respective time consumption per unit time data. It can be seen that as the
window width increases, the advantage of calculation amount of MAS will be weakened,
even worse than that of MSSS. However, the increase of the window width will weaken the
fading suppression effect. Therefore, in actual application, the two methods have their own
advantages and disadvantages, but they both can achieve effective fading suppression, and
the structure is simple.

This work demonstrated Φ-OTDR system with a simplified design of using MCF
for SDM to suppress fading noise. For multiple sets of data obtained through MCF,
optimization is required. In the optimization algorithm, in addition to the amplitude
tracking in the previous work, this paper also proposed a spectrum similarity based
optimum-tracking, which had achieved excellent fading noise suppression effects. When
the window width is small, the calculation amount of MSSS is significantly higher than that
of MAS. The calculation time of MSSS is about 1.5 times that of MAS when the window
width is 0.1 s. The selection of algorithms in practical applications involves the trade-off
between fading noise suppression effects and hardware capabilities.
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Figure 13. Algorithm time statistics.

When the measurement length is further extended, the calculation pressure of the
CPU will inevitably increase. And its calculation amount will increase exponentially as the
number of cores increases. At this time, the choice of Graphics Processing Unit (GPU) will
be an excellent technical route. For the promotion in practical applications, due to the high
expense, there are still limitations in application temporarily using MCF. If a multi-fiber
cable is used, in order to ensure the uniformity of the coupling of optical fiber to external
disturbance, the optical cable structure needs to be considered. It should be able to calculate
the coupling coefficient and correct the phase to the same, to facilitate subsequent data
processing. The proposed method is quite likely to be used in engineering practice in the
near future.

5. Conclusions

The Φ-OTDR system is improved based on the SDM structure and the optimum-
tracking algorithm. In order to ensure the uniformity of the coupling of optical fiber to
external disturbance, SDM is realized by MCF, and the distortion rate can be reduced
from an average of about 9.4% to less than 2% under continuous time running for the
proposed scheme. Compared with FDM, the proposed method does not need to change
the hardware structure of the instrument of the sensing system, which offers a reliable
option to achieve fading suppression for Φ-OTDR system. This method can be applied to
the existed commercial systems to improve the fading suppression ability effectively. As
the cost of MCF decreases, SDM will become a very practical technology to improve the
SNR of Φ-OTDR system.
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