
FAK/src-Family Dependent Activation of the Ste20-Like
Kinase SLK Is Required for Microtubule-Dependent Focal
Adhesion Turnover and Cell Migration
Simona Wagner1, Chris J. Storbeck2, Kristin Roovers2, Ziad Y. Chaar1, Piotr Kolodziej2, Marlene McKay2,

Luc A. Sabourin1,2*

1 Department of Cellular and Molecular Medicine, University of Ottawa, Ottawa, Ontario, Canada, 2 Cancer Therapeutics, Ottawa Health Research Institute, Ottawa,

Ontario, Canada

Abstract

Cell migration involves a multitude of signals that converge on cytoskeletal reorganization, essential for development, immune
responses and tissue repair. Using knockdown and dominant negative approaches, we show that the microtubule-associated
Ste20-like kinase SLK is required for focal adhesion turnover and cell migration downstream of the FAK/c-src complex. Our results
show that SLK co-localizes with paxillin, Rac1 and the microtubules at the leading edge of migrating cells and is activated by
scratch wounding. SLK activation is dependent on FAK/c-src/MAPK signaling, whereas SLK recruitment to the leading edge is src-
dependent but FAK independent. Our results show that SLK represents a novel focal adhesion disassembly signal.

Citation: Wagner S, Storbeck CJ, Roovers K, Chaar ZY, Kolodziej P, et al. (2008) FAK/src-Family Dependent Activation of the Ste20-Like Kinase SLK Is Required for
Microtubule-Dependent Focal Adhesion Turnover and Cell Migration. PLoS ONE 3(4): e1868. doi:10.1371/journal.pone.0001868

Editor: Nils Cordes, Dresden University of Technology, Germany

Received September 24, 2007; Accepted February 15, 2008; Published April 2, 2008

Copyright: � 2008 Wagner et al. This is an open-access article distributed under the terms of the Creative Commons Attribution License, which permits
unrestricted use, distribution, and reproduction in any medium, provided the original author and source are credited.

Funding: This work was supported by the Canadian Institute for Health Research, MDAUSA and a Premier’s Research for Excellence Award. CJS is the recipient of
a Canadian Heart and Stroke Foundation Fellowship. KR is supported by the Canadian Breast Cancer Foundation. LAS is the recipient of a CIHR scholar award. SW
is supported by OGSST and NSERC studentship.

Competing Interests: The authors have declared that no competing interests exist.

* E-mail: lsabourin@ohri.ca

Introduction

Migration is required for numerous biological processes such as

development, tissue repair and regeneration. Signal transduction

events governing cell migration involve an ever-expanding

number of molecules functioning in interconnected biochemical

pathways regulating the turnover of adhesion complexes at the

leading edge of migrating cells. Stimulation of cell adhesion and

migration induces the formation of integrin-FAK-src complexes

required for the recruitment and activation of a number of adaptor

molecules leading to focal adhesion turnover and migration [1–3].

Indeed, FAK-null cells assemble large and stable adhesion

complexes leading to migratory deficits [4]. Similarly, a FAK

mutant at tyrosine 397, deficient for c-src binding, fails to induce

focal adhesion disassembly in FAK-deficient fibroblasts [5–7].

Supporting this, src-family kinase-deficient cells or cells expressing

kinase inactive v-src display larger focal adhesions that fail to

disassemble [8,9].

In addition to a an amino-terminal serine/threonine kinase

domain, the Ste20-like kinase SLK bears a central coiled-coil

domain and a carboxy-terminal AT1-46 [10] homology (ATH)

domain [11,12] of unknown function. Elevated SLK expression

and activity leads to rapid actin stress fiber disassembly in a Rac1-

dependent manner [13]. We have previously shown that SLK

localizes to vinculin-rich ruffles at the cell periphery in spreading

fibroblasts, suggesting a role for SLK in adhesion dynamics [13].

Consistent with a role in cytoskeletal rearrangements, SLK has

been shown to indirectly associate with the microtubule network

[13] and is required for fusion of C2C12 myoblasts into

differentiated myotubes [14]. Interestingly, SLK has also been

shown to regulate cell cycle progression [15]. In addition, SLK

overexpression has been shown to induce an apoptotic response

[12]. Supporting a role for SLK in cell death and cellular stress,

cleavage of SLK by caspase 3 results in its activation [11].

Similarly, anoxia-recovery also activates a SLK/p38-dependent

apoptotic response [16].

Our previous studies showed that SLK overexpression induced

a rapid actin stress fiber disassembly that could be partially rescued

by co-expression of dominant negative Rac1 [13]. Furthermore,

fibroblasts expressing an activated SLK c-terminal truncation

failed to assemble large peripheral adhesions during spreading on

fibronectin, suggesting that SLK is an important regulator of

cytoskeletal dynamics [13]. Here we show that SLK co-localizes

with microtubules and adhesion components at the leading edge of

migrating cells. We demonstrate that SLK is activated following

scratch wounding of fibroblast monolayers in a FAK-src-MAPK-

dependent manner. We find that SLK knockdown or expression of

a dominant negative version results in impaired microtubule-

dependent adhesion turnover and delayed migration. Overall our

results show that SLK is a novel regulator of focal adhesion

turnover and cell migration.

Results

SLK is activated by monolayer wounding and is required
for cell migration

We have previously shown that SLK can be co-precipitated

with a-tubulin and that it localizes to membrane ruffles at the
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periphery of spreading fibroblasts [13]. In addition, SLK appears

to induce actin stress fiber breakdown through a Rac1-mediated

pathway [13]. As the signaling pathways activated during cell

spreading also regulate cell motility [1,2,17,18], we tested the

possibility that SLK may play a role in cell migration.

To test this, we initially investigated the localization of SLK and

other cytoskeletal markers following scratch wounding of fibroblast

monolayers. Co-immunostaining of SLK with actin stress fibers

shows that, in addition to a perinuclear distribution, it is also

enriched at the leading edge of migrating cells but not along stress

fibers (figure 1A–C). Similarly, at the leading edge, SLK was found

to co-localize with paxillin and Rac1 in structures reminiscent of

membrane ruffles (figure 1D–F and J–L). Interestingly, it did not

localize to large focal adhesions as evidenced by the lack of co-

localization with paxillin at these sites (figure 1D–F). Supporting

our previous results demonstrating SLK-tubulin co-precipitation

[13], SLK co-localized with the microtubule network at the

leading edge (figure 1G–I). These observations suggest that SLK is

recruited at the leading edge of migrating cells with other adhesion

signaling proteins.

Scratch wounding of confluent monolayers has been shown to

induce polarization and migration [19,20]. Therefore, we

Figure 1. SLK is recruited to the leading edge. MEF 3T3 monolayers on fibronectin-coated coverslips were scratch wounded and allowed to
migrate for 2–3 hours. Monolayers were immunostained for SLK in combination with actin (A–C), paxillin (D–F), a-tubulin (G–I), or Rac1 (J–L). In
addition to perinuclear staining, SLK was found to be recruited into membrane ruffles (arrowheads) at the leading edge with the other markers
surveyed. SLK was not found in mature adhesion complexes as shown by the lack of co-localization between SLK and paxillin in these structures
(arrows). All photomicrographs are shown at 4006. Scale bar 10m.
doi:10.1371/journal.pone.0001868.g001
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investigated SLK kinase activity at various time points following

scratch wound induced migration of fibroblast monolayers.

Immunoprecipitation and in vitro kinase assays show that SLK

kinase activity is markedly increased following scratch wounding of

confluent fibroblasts, with a peak of activity at 60 minutes followed

by a decline at 90 minutes (figure 2). Extended time courses up to

120 minutes have shown that SLK activity does not return to basal

levels observed at time 0 (not shown). This is likely due to the

continued cell migration that occurs following wounding. As

previously reported for wounded astrocyte monolayers [20],

inactivation of GSK3b also occurred over the time course,

indicating polarization and migration of the wounded monolayer.

Together, these data indicate that SLK is activated during cell

migration and suggest a role for SLK in this process.

To investigate the potential role of SLK in cell migration, MEF-

3T3 cells were infected with adenoviral vectors expressing a

truncated kinase inactive (DN) form of SLK, SLK1–373K63R (HA-

KDC; [13]), or a LacZ control, and subjected to transwell

migration assays. Overexpression of DN-SLK in fibroblasts

(figure 3A) resulted in a 60–70% inhibition of migration on

fibronectin-coated transwell inserts (figure 3B and C). To

definitively demonstrate a role for SLK in cell migration, we

transfected small interfering RNA (siRNA) molecules specific for

murine SLK into MEF-3T3 fibroblasts and assayed their

migration in a transwell assay. Following siRNA transfection, the

levels of SLK protein were efficiently reduced at 5 pM of siRNA

and undetectable at 10 pM compared to control siRNA treated

cells (Figure 3D). As for DN-SLK, cells treated with SLK siRNA

showed a ,60% decrease in migration compared to siRNA

control treated cells (figure 3E and F). Supporting this, monolayer

wounding of shSLK-expressing cells showed a marked delay in

wound closure (figure 3G). Together, these data strongly support a

role for SLK in the process of cell migration.

SLK is required for efficient focal adhesion turnover
Efficient cell migration requires focal adhesion turnover at the

leading edge of migrating cells [2,4,6–9,21]. This process is

dependent on the assembly of a functional FAK-src complex

initiated by FAK autophosphorylation at tyrosine residue 397 and

the recruitment of signaling adapter proteins [1–3,5,22–24].

Interestingly, microtubule disruption leads to stable adhesion

complex assembly characterized by high levels of both FAK-

Tyr397 [25,26] and actin stress fibers [26]. Supporting this, stable

adhesions contain high levels of phospho-FAK-Tyr397 [5].

Nocodazole wash-out results in focal adhesion turnover and cell

migration characterized by cyclical changes in pY397-FAK levels

[25]. Because of its association with the microtubule and the

requirement for this structure in the process of focal adhesion

turnover, we investigated the role of SLK in microtubule-

dependent adhesion turnover.

MEF-3T3 cells were infected with adenovirus carrying DN-

SLK or transfected with SLK siRNAs and subjected to

microtubule-dependent focal adhesion turnover assays [25]. As

shown in figure 4, following nocodazole wash-out, control treated

cultures show the cyclical changes in pY397-FAK. However, in

cultures where SLK has been efficiently knocked down, adhesion

turnover is severely impaired as evidenced by the sustained levels

of pY397-FAK. Similarly, a marked delay in pY397-FAK

reduction (15 min vs 60 min) was observed in cultures expressing

the DN SLK1-373K63R following nocodazole wash-out. As

revealed by pY397-FAK and tubulin immunostaining, nocodazole

treated cultures displayed large focal adhesions that disassembled

as the microtubule repolymerized (figure 4C; t = 15 min).

However, cells expressing a SLK shRNA still displayed enlarged

adhesion after the wash-out, suggesting impaired turnover.

Interestingly, SLK kinase assays for the same time course showed

that its activity was low in cells with large adhesions or high levels

of pY397-FAK (figure 4D). Following nocodazole wash out, SLK

kinase activity was upregulated within 15 minutes, as focal

adhesions disassembled and was upregulated further at

t = 60 min, correlating with reduced levels of pY397-FAK. Longer

time courses, up to 120 minutes, showed no further change in

SLK activity, perhaps due to the fact that adhesion turnover has

reached a steady state level. Supporting these observations,

siRNA-mediated knock-down of SLK in migrating monolayers

(2 hours post-wounding) resulted in an increase in the density and

size of vinculin-positive adhesions (figure 5A–D), suggesting that

the absence of SLK may result in adhesion stabilization.

Interestingly, we could not observe any consistent differences in

phalloidin stain following SLK knock-down, suggesting that there

are no effects on actin fiber dynamics or that they are very subtle

(figure 5E–H). Together, these results suggest that SLK-dependent

signals are required to mediate microtubule-dependent focal

adhesion turnover.

Activation and redistribution of SLK requires FAK/src/
MAPK signaling

The assembly and activation of a FAK/c-src complex during

cell motility appears to be required for efficient focal adhesion

turnover [5,7,27]. In addition, the activated FAK/c-src complex

can recruit multiple signaling adapters and activate downstream

signaling through several pathways [2,3,28–31]. The activation of

SLK following scratch wounding of monolayers appears to be a

relatively late event (60 min; figure 2), suggesting that upstream

signaling may be necessary prior to SLK activation. Because of the

ultimate requirement for the FAK-c-src complex in cell migration,

we tested whether src family kinases or FAK were required for

SLK activation in a scratch wound assay.

To test the involvement for src family kinases in SLK

regulation, monolayers were pretreated with the Src-family

inhibitor PP2 (or PP3 control) and then subjected to wounding

in the presence of the inhibitor. As shown in figure 6A, treatment

with the control PP3 resulted in SLK activation 60 minutes

following scratch wounding. Interestingly, treatment with PP2

resulted in an increase in SLK activity in unscratched confluent

Figure 2. SLK is activated by scratch wounding and is required
for cell migration. Confluent MEF 3T3 fibroblasts plated on
fibronectin (10 mg/ml) were stimulated to migrate by scratch wound-
ing. SLK kinase activity was assayed in vitro and found to increase over
time reaching a maximum activity by 60 minutes following wounding.
Total immunoprecipitated SLK levels are shown (lower panel). As
previously reported, GSK3b was found to be inactivated (pGSK3b(Ser9))
over the time course indicating that cell migration has been induced.
WCL, whole cell lysate.
doi:10.1371/journal.pone.0001868.g002
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monolayers that could not be further increased by wounding.

Similar results were obtained in SYF cells and rescued when c-src

was expressed (not shown). This suggests that src family kinases are

required to negatively regulate SLK activity. Supporting this, our

previous results have shown that overexpression of v-src inhibits

SLK kinase activity in a CKII-dependent manner [32].

To investigate the role of FAK in SLK regulation, scratch

wounding assays were performed on FAK(-/-) fibroblasts and

Figure 3. SLK knockdown or expression of a dominant negative SLK inhibits cell migration. Subconfluent MEF 3T3 cells were infected
with Adenovirus vectors expressing DN SLK (Ad-HA-KDC) or LacZ control and subjected to fibronectin (FN) transwell migration assays. (A) Western
blot analysis of HA-KDC expression. Cdc42 was used as a loading control. (B) Polycarbonate membranes were DAPI stained and cells on the underside
were enumerated (C) in random fields and expressed as the average/field from triplicate wells. (D) MEF 3T3 cells were transfected with SLK siRNAs
and analysed for SLK expression. Western blot analysis of treated lysates indicates that SLK siRNA at 10 pM resulted in a marked knockdown of SLK.
Reprobing the membrane with a a-tubulin antibody was used as a control for loading (lower panel). (E–F) Cells were treated with SLK-specific or
control siRNAs and assayed for migration through a chamber coated with bovine serum albumin (BSA) (10 mg/ml) (control) or fibronectin (FN) (10 mg/
ml). In both cases a 60–70% reduction in migration was observed. (G) Confluent MEF3T3 cells were infected with Adenovirus vectors expressing a
scramble or SLK shRNA and manually scratched with a pipet tip. Wound closure was followed for 12 h and the percent closure was evaluated.
doi:10.1371/journal.pone.0001868.g003
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wildtype controls. Following wounding of FAK wildtype mono-

layers, SLK kinase activity is upregulated to levels comparable to

that of MEF3T3 cells (figure 6B). However, little or no SLK

upregulation was observed following the wounding of FAK-null

monolayers (figure 6B), suggesting that adhesion signaling is

required and that SLK activation is not a secondary effect of

monolayer wounding. Similarly, scratch wounding in the presence

of the MEK1 inhibitor U0126 prevented SLK upregulation when

compared to a DMSO control (figure 6C). For the same time

course, scratch wounding resulted in ERK1/2 phosphorylation

whereas it was markedly reduced in the presence of U0126

(figure 6C). Similar experiments in the presence of the p38

inhibitor SB203580 showed no effect on SLK activation (not

shown). Overall, these results suggest that SLK activation by

scratch-induced motility requires the FAK/c-src/MAPK signaling

system.

Cell spreading and scratch wounding of fibroblast monolayers

results in the recruitment of a proportion of SLK protein at the cell

periphery or the leading edge, respectively (figure 1 and [13]).

Microtubule dynamics and stability have been shown to be

regulated by src family kinases in various systems, including

stabilization by integrin-mediated FAK signaling [33–36]. There-

fore, we investigated whether SLK recruitment to the leading edge

was also FAK/c-src dependent. Monolayers of FAK-null or SYF

(src/yes/fyn triple knock-out), as well as wildtype controls, were

scratch wounded and co-immunostained for SLK and Rac1.

Although FAK-null cells do not migrate efficiently, SLK was

detected, along with Rac1, at the leading edge (figure 7C–D).

Similarly, SLK and Rac1 were recruited to ruffles and the leading

edge in U0126-treated cells (figure 7E and F). However, little or no

SLK could be detected at the leading edge of wounded SYF

monolayers (figure 7G–H). Similarly, Rac1 distribution was

impaired in those cells. The distribution of both Rac1 and SLK

was restored when c-src was re-expressed in SYF cells, suggesting

that c-src expression is sufficient to recruit SLK at the leading edge

in migrating cells.

Discussion

Our previous studies have shown that SLK co-localizes with

vinculin and Rac1 in the membrane ruffles and lamellipodia of

spreading fibroblasts [13]. In addition, we have shown that SLK

can indirectly associate with the microtubule network and mediate

actin stress fiber dissolution in a Rac1-dependent manner [13].

Here, we show that SLK can be co-localized with paxillin, a-

tubulin and Rac1 at the leading edge of migrating cells and that its

activity is upregulated by scratch wounding of fibroblast

monolayers. A reduction in SLK levels or activity negatively

affects cell migration and microtubule-dependent focal adhesion

turnover, suggesting that SLK is required for cell motility. Cell

migration by monolayer wounding stimulates SLK activity in a

FAK/src/MAPK signaling dependent manner. In addition,

efficient recruitment of SLK to the leading edge of migrating

cells required c-src.

Figure 4. SLK is required for microtubule-dependent adhesion turnover. Subconfluent MEF 3T3 fibroblasts were infected with adenoviral
constructs (A) encoding kinase-defective SLK (AdHA-KDC) or an AdGFP control or transfected (B) with SLK siRNA (or siControl). Cultures were then
treated with nocodazole (10 mM) for 4 h, washed and surveyed for FAK-pTyr397 levels over time. Expression of HA-tagged SLK or SLK knockdown was
confirmed by Western blot analysis. SLK knockdown or expression of a kinase-deficient SLK interferes with focal adhesion turnover as evidenced by
the delayed disappearance of FAK-pTyr397. (C) The status of the microtubule and pFAK-Y-397 was assessed following nocodazole wash-out in the
presence or absence of shSLK expression. Large adhesions could still be observed in shSLK expressing cells following wash-out. (D) SLK in vitro kinase
assay showing the induction of kinase activity following nocodazole wash-out as described in A and B. Scale bar 10m.
doi:10.1371/journal.pone.0001868.g004
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Overall, our data suggest that SLK is an important regulator of

focal adhesions/contacts dynamics. The activation and recruit-

ment of SLK at the leading edge of migrating cells may be

necessary for the destabilization of focal contacts, a process

required for further protrusive activity and motility [2,17,23,37].

Focal adhesion/contact disassembly would also destabilize the

actin network, a phenotype previously reported to be induced by

SLK overexpression [11,13].

The microtubule network has been shown to be tightly linked to

cell adhesion and motility [26,36,38]. It has been reported that

microtubules target focal contacts to modify their characteristics,

including their disassembly [21,39]. In addition, the microtubule

network has been reported to be stabilized by FAK and Rho

GTPase signaling at the leading edge of migrating cells [36,40,41].

The association of SLK with the microtubule and its requirement

for efficient focal adhesion turnover suggests that it is a novel

microtubule-associated signal required for cell migration.

Interestingly, inhibition of src family kinases by PP2 results in an

upregulation of SLK activity in confluent unscratched monolayers,

suggesting that src family kinases negatively regulates SLK (see

figure 6) which is alleviated by PP2 treatment. Consequently, SLK

cannot be further activated by wounding. Supporting this, we have

previously shown that SLK is not tyrosine phosphorylated and that

v-src overexpression results in SLK downregulation through casein

kinase II [32]. Although it cannot be activated, SLK can still be

recruited to the leading edge of FAK-null cells. However, SLK

recruitment in these structures is impaired in SYF cells (see

figure 6).

One possibility is that the initial c-src recruitment and activation

during focal contact assembly [42–46] recruits the microtubule

network and SLK. Our previous results show that src can activate

CKII, leading to direct downregulation of SLK (32). Therefore, it

is possible that SLK is kept inactive until src family kinases have

been downregulated. Following the subsequent inactivation of c-

src through csk or protein phosphatases [47–49], SLK activity can

be upregulated through a MAPK pathway (figure 8). As the

recruitment of SLK to the leading edge occurs in FAK-null but

not in SYF cells, it is likely that microtubule recruitment through

c-src is FAK independent. One possibility is that, in FAK(-/-) cells,

some aspects of the Pyk2/c-src signaling complex can compensate

for the loss of FAK in the recruitment of SLK [4,50]. However,

Figure 5. SLK knockdown results in adhesion stabilization.
Monolayers of MEF3T3 on FN were infected with adenovirus expressing
shSLK or an shScramble control and scratch wounded. After 2 hours,
the cells were fixed and stained for SLK (A, C, E and G) in combination
with vinculin (B and D) or phalloidin (F and H). In addition to reduced
SLK staining, shSLK expressing cells showed no SLK immunoreactivity at
the leading edge with an increased number of focal adhesions. No overt
differences were observed in phalloidin stained samples. Scale bar 10m.
doi:10.1371/journal.pone.0001868.g005

Figure 6. SLK activation requires FAK/src/MAPK signaling. (A)
Confluent MEF 3T3 monolayers were pre-incubated (60 min) with
inhibitors and then scratch wounded in the presence of inhibitors. Cells
were collected 60 minutes later and analysed for SLK kinase activity. (A)
Treatment with PP2 or PP3 control. (B) FAK-null or wildtype cells were
subjected to scratch wound assays as above and assayed for SLK
activity. (C) Treatment with U0126 and DMSO control. Phospho-Erk1/2 is
shown as a control for U0126 treatment. SLK activation requires FAK/
src/MAPK signaling.
doi:10.1371/journal.pone.0001868.g006

Role for SLK in Cell Migration

PLoS ONE | www.plosone.org 6 April 2008 | Volume 3 | Issue 4 | e1868



Pyk2 cannot substitute for FAK which appears to be necessary for

SLK activation, through a MAP kinase-dependent pathway [31].

Overall our data show that SLK is activated by FAK/c-src/

MAPK signaling during cell migration. Its recruitment to the

leading edge in a c-src-dependent manner is required for focal

adhesion turnover. Whether SLK activation occurs prior to

recruitment or following c-src downregulation is still unclear.

Similarly, whether it is mediated by direct MAPK phosphorylation

or other MAPK-dependent events remains to be elucidated.

Similarly, it is not known whether members of the Rho family of

GTPases impinge on SLK activation or recruitment, or on its

ability to destabilize actin. The identification of SLK substrates or

downstream signaling systems will further our understanding on

the role of SLK in cell migration.

Materials and Methods

Cell culture and migration assays
MEF 3T3, wildtype, FAK(-/-) and SYF (src/fyn/yes triple

mutant) cells were all maintained in Dulbecco’s modified MEM

(DMEM, Gibco) supplemented with 10% fetal bovine serum (FBS,

Gibco), 2 mM L-glutamine (Gibco) and penicillin G (200 U ml21,

Gibco) in a humidified 37uC incubator at 5% CO2. For migration

assays, MEF 3T3 cells were either infected with adenovirus or

treated with control or SLK siRNAs and serum starved overnight

(DMEM+0.5% FBS). Cells (1–36104 ) were then resuspended in

DMEM containing 0.5% BSA and added to the top of a Boyden

transwell migration chamber pre-coated with fibronectin (10 mg

ml21) and allowed to migrate for 3–6 hours. Residual cells were

removed from the top of the chamber and the filter was rinsed in

PBS, fixed in 4% PFA for 10 minutes and stained with DAPI

(0.5 mg ml21, Sigma). The cells that migrated to the underside of

the filter were enumerated from 5 to 10 random fields using DAPI

fluorescence. Cell counts were performed in triplicate for three

independent experiments. Representative experiments are shown.

For wound closure, confluent monolayers were scratched with a

pipet tip and the % closure was evaluated after 12 hours as the

average residual distance between the two migrating front over the

initial distance at time zero. Ten independent measurements were

recorded along the wound.

Scratch wound induced migration was performed as described

[19]. Briefly, MEF 3T3 cells were plated on fibronectin-coated

(10 mg ml21) dishes and serum-starved confluent monolayers were

then scratched with a pipette tip until approximately 50% of the

monolayer was removed. Cells were then washed with PBS, refed

and collected at various time points. In some experiments, the

monolayers were pre-incubated for 60 minutes with 10 mM of

PP3, PP2 (EMD-Calbiochem) or U0126 (Cell Signaling) and

scratched wounded in the presence of inhibitors or DMSO

control. For microtubule-dependent adhesion turnover assays

[25], serum-starved subconfluent MEF 3T3 cells were treated with

10 mM nocodazole for 3 hours. The cultures were then washed 4

times with serum-free medium and refed with DMEM/0.5% FBS

for the duration of the time course. Cultures were harvested at

different time points and surveyed for pFAK-Tyr397 (BioSource)

by Western blotting.

SiRNA Knockdown and Adenovirus infections
MEF 3T3 cells plated at a density of 1–36105 in 60 mm plates

were transfected with 5 or 10 pM SLK siRNA (Dharmacon)

duplex (59- GGUUGAGAUUGACAUAUUA) using Lipofecta-

mine 2000 transfection reagent (Gibco) according to manufactur-

Figure 7. Recruitment of SLK at the leading is c-src-dependent.
Confluent monolayers of FAK wildtype (A–B), FAK-null (C–D), SYF +c-src
(E–F) and SYF (G–H) cells were scratch wounded and immunostained
for SLK and Rac1. Similarly, MEF3T3 monolayers were pretreated with
U0126 (30 min), scratch wounded and stained for SLK and Rac1 (I and
J). SLK and Rac1 failed to be recruited to the leading edge in SYF cells.
Scale bar 10m
doi:10.1371/journal.pone.0001868.g007

Figure 8. Model for SLK activation and recruitment at the
leading edge. A proportion of SLK is microtubule-associated, likely
through a microtubule-binding protein. Following activation of the
FAK/c-src complex, the microtubule network can be recruited as well as
activation of a MAPK cascade. Signaling through CKII by active src may
keep SLK inactive (32) until src inactivation can occur through csk and
other phosphatases. The combined MAPK activation and CKII down-
regulation may contribute to SLK activation. It remains to be elucidated
whether SLK is recruited prior to its activation or whether CKII
downregulation is required for MAPK-mediated SLK activation. This
cascade would ultimately result in adhesion turnover by destabilization
of the actin network or focal contacts/adhesions through an unknown
mechanism.
doi:10.1371/journal.pone.0001868.g008

Role for SLK in Cell Migration
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ers recommendations. In some experiments, the cells were infected

with an adenoviral vector expressing an SLK suppressor hairpin

RNA (psiStrike; Promega) that consisted in the same siRNA

sequence. Cells were collected 48 hours post-transfection and

assayed for cell migration in transwell inserts and protein

expression by western blot analysis. Control siRNAs consisted of

Dharmacon’s non-targeting duplex. Similar results were obtained

with scrambled SLK siRNAs. To monitor the effect of kinase

deficient SLK on cell migration, adenoviral vectors expressing

kinase inactive SLK (HA-KDC: aa 1–373 with an ATP-binding

site mutation; Lys 63–. Arg) or a control (GFP or LacZ) were

used to infect MEF 3T3 cultures [13]. Cells were infected at a

MOI of 10 by the addition of the adenovirus directly to the cells in

0.25% FBS-DMEM 16 hours before migration assays. Expression

of the SLK constructs was confirmed by anti-HA immunoblotting.

LacZ and GFP expression was confirmed by immunobloting with

anti-beta-galactosidase antibody (Promega) and by epifluores-

cence, respectively. GFP expression was confirmed in live cells by

epifluorescence.

Antibodies and immunofluorescence
The primary antibodies used in these studies were as follows:

SLK polyclonal antibodies were as described previously [15].

Phospho-GSK3b(ser 9) and GSK3b (Cell Signaling), phospho

FAK (Y397) (Biosource) and total FAK (Santa Cruz) Paxillin (BD

Transduction labs), a-tubulin (Sigma), Rac1 (Santa Cruz) and

phosphor ERK1/2 and total Erk1/2 (Santa Cruz), Paxillin (BD

Transduction labs), a-tubulin (Sigma) and Rac1 (Santa Cruz) were

obtained from commercial sources. Tetramethyl rhodamine

isothiocyanate (TRITC)-phalloidin was obtained from Sigma.

For immunofluorescence studies, MEF 3T3 cells were plated on

coverslips coated with or fibronectin (10 mg/ml) and incubated

overnight. The following day, monolayers were scratched and

stained after 2–4 h. Briefly, the cells were rinsed with PBS, fixed in

4% PFA and blocked in PBS containing 5% goat or donkey serum

for 20 minutes. Fresh blocking solution containing primary

antibody was added and incubated for 1 h at room temperature.

Antibodies were detected with either anti-mouse or anti-rabbit

secondaries conjugated to either fluorescein isothiocyanate (FITC)

or TRITC (Sigma). The samples were visualized with a Zeiss

Axioscope100 epifluorescence microscope equipped with the

appropriate filters and photographed with a digital camera (Sony

Corporation HB050) using the Northern Eclipse software package.

Western blotting, immunoprecipitation and kinase assays
Cells were lysed in RIPA buffer as previously described [15] and

lysates were cleared by centrifugation at 10000 g for 2 minutes.

Protein concentrations were determined using protein assay dye

reagent (Biorad). Equal amounts of protein (20–40 mg) were

electrophoresed on 8% polyacrylamide gels and transferred to

PVDF membrane. Membranes were probed with the indicated

antibodies overnight at 4uC in 5% BSA or skim milk powder in 16
TBST (50 mM Tris pH 7.4, 150 mM NaCl, 0.05 Tween 20).

Target proteins were detected with horseradish peroxidase

coupled secondary antibodies combined with chemiluminescence

(Perkin Elmer) and exposure to X-ray film.

For immunoprecipitations, 300–400 mg of protein lysate was

immunoprecipitated with 1–2 mg of antibody and 20 ml of protein

A sepharose (Pharmacia) for 2–12 hours. Immune complexes were

recovered by centrifugation and washed with NETN buffer

(20 mM Tris-HCl pH 8.0, 1 mM EDTA, 150 mM NaCl, 0.5%

Nonidet P-40) and subjected to SDS-polyacrylamide gel electro-

phoresis (PAGE) or kinase assay. In vitro SLK kinase assays were

performed following SLK immunoprecipitation as described

previously [15]. Kinase reactions were stopped by the addition

of 7 ml of 46 sodium dodecyl sulfate (SDS) sample buffer and

electrophoresed on 8% SDS-PAGE. The gels were transferred to

PVDF membranes and subjected to autoradiography followed by

western blotting with anti-SLK antibody.

Author Contributions

Performed the experiments: SW PK MM. Analyzed the data: LS SW KR.

Contributed reagents/materials/analysis tools: ZC CS KR MM. Wrote the

paper: LS SW.

References

1. Mitra SK, Schlaepfer DD (2006) Integrin-regulated FAK-Src signaling in

normal and cancer cells. Curr Opin Cell Biol 18: 516–523.
2. Webb DJ, Parsons JT, Horwitz AF (2002) Adhesion assembly, disassembly and

turnover in migrating cells – over and over and over again. Nat Cell Biol 4:
E97–100.

3. Brown MC, Turner CE (2004) Paxillin: adapting to change. Physiol Rev 84:

1315–1339.
4. Sieg DJ, Hauck CR, Schlaepfer DD (1999) Required role of focal adhesion

kinase (FAK) for integrin-stimulated cell migration. J Cell Science 112:
2677–2691.

5. Hamadi A, Bouali M, Dontenwill M, Stoeckel H, Takeda K, et al. (2005)
Regulation of focal adhesion dynamics and disassembly by phosphorylation of

FAK at tyrosine 397. J Cell Sci 118: 4415–4425.

6. Ren XD, Kiosses WB, Sieg DJ, Otey CA, Schlaepfer DD, et al. (2000) Focal
adhesion kinase suppresses Rho activity to promote focal adhesion turnover.

J Cell Sci 113 ( Pt 20): 3673–3678.
7. Webb DJ, Donais K, Whitmore LA, Thomas SM, Turner CE, et al. (2004)

FAK-Src signalling through paxillin, ERK and MLCK regulates adhesion

disassembly. Nat Cell Biol 6: 154–161.
8. Kaplan KB, Bibbins KB, Swedlow JR, Arnaud M, Morgan DO, et al. (1994)

Association of the amino-terminal half of c-Src with focal adhesions alters their
properties and is regulated by phosphorylation of tyrosine 527. Embo J 13:

4745–4756.
9. Fincham VJ, Frame MC (1998) The catalytic activity of Src is dispensable for

translocation to focal adhesions but controls the turnover of these structures

during cell motility. Embo J 17: 81–92.
10. Schaar DG, Varia MR, Elkabes S, Ramakrishnan L, Dreyfus CF, et al. (1996)

The identification of a novel cDNA preferentially expressed in the olfactory-
limbic system of the adult rat. Brain Res 721: 217–228.

11. Sabourin LA, Tamai K, Seale P, Wagner J, Rudnicki MA (2000) Caspase 3

cleavage of the Ste20-related kinase SLK releases and activates an apoptosis-

inducing kinase domain and an actin-disassembling region. Mol Cell Biol 20:

684–696.
12. Sabourin LA, Rudnicki MA (1999) Induction of apoptosis by SLK, a Ste20-

related kinase. Oncogene 18: 7566–7575.
13. Wagner S, Flood TA, O’Reilly P, Hume K, Sabourin LA (2002) Association of

the Ste20-like kinase (SLK) with the microtubule. Role in Rac1-mediated

regulation of actin dynamics during cell adhesion and spreading. J Biol Chem
277: 37685–37692.

14. Storbeck CJ, Daniel K, Zhang YH, Lunde J, Scime A, et al. (2004) Ste20-like
kinase SLK displays myofiber type specificity and is involved in C2C12 myoblast

differentiation. Muscle Nerve 29: 553–564.
15. O’Reilly PG, Wagner S, Franks DJ, Cailliau K, Browaeys E, et al. (2005) The

Ste20-like kinase SLK is required for cell cycle progression through G2. J Biol

Chem 280: 42383–42390.
16. Hao W, Takano T, Guillemette J, Papillon J, Ren G, et al. (2006) Induction of

apoptosis by the Ste20-like kinase SLK, a germinal center kinase that activates
apoptosis signal-regulating kinase and p38. J Biol Chem 281: 3075–3084.

17. Schlaepfer DD, Mitra SK (2004) Multiple connections link FAK to cell motility

and invasion. Curr Opin Genet Dev 14: 92–101.
18. Schlaepfer DD, Hauck CR, Sieg DJ (1999) Signaling through focal adhesion

kinase. Prog Biophys Mol Biol 71: 435–478.
19. Etienne-Manneville S, Hall A (2001) Integrin-mediated activation of Cdc42

controls cell polarity in migrating astrocytes through PKCzeta. Cell 106: 489–498.
20. Etienne-Manneville S, Hall A (2003) Cdc42 regulates GSK-3beta and

adenomatous polyposis coli to control cell polarity. Nature 421: 753–756.

21. Kaverina I, Krylyshkina O, Small JV (1999) Microtubule targeting of substrate
contacts promotes their relaxation and dissociation. J Cell Biol 146: 1033–1044.

22. Brunton VG, Avizienyte E, Fincham VJ, Serrels B, Metcalf CA 3rd, et al. (2005)
Identification of Src-specific phosphorylation site on focal adhesion kinase:

dissection of the role of Src SH2 and catalytic functions and their consequences

for tumor cell behavior. Cancer Res 65: 1335–1342.

Role for SLK in Cell Migration

PLoS ONE | www.plosone.org 8 April 2008 | Volume 3 | Issue 4 | e1868



23. Schwartz MA, Horwitz AR (2006) Integrating adhesion, protrusion, and

contraction during cell migration. Cell 125: 1223–1225.
24. Kaverina I, Krylyshkina O, Small JV (2002) Regulation of substrate adhesion

dynamics during cell motility. Inter J Biochem Cell Biol 34: 746–761.

25. Ezratty EJ, Partridge MA, Gundersen GG (2005) Microtubule-induced focal
adhesion disassembly is mediated by dynamin and focal adhesion kinase. Nat

Cell Biol 7: 581–590.
26. Bershadsky A, Chausovsky A, Becker E, Lyubimova A, Geiger B (1996)

Involvement of microtubules in the control of adhesion-dependent signal

transduction. Curr Biol 6: 1279–1289.
27. Brunton VG, MacPherson IR, Frame MC (2004) Cell adhesion receptors,

tyrosine kinases and actin modulators: a complex three-way circuitry. Biochim
Biophys Acta 1692: 121–144.

28. Mitra SK, Hanson DA, Schlaepfer DD (2005) Focal adhesion kinase: in
command and control of cell motility. Nat Rev Mol Cell Biol 6: 56–68.

29. Schaller MD, Parsons JT (1994) Focal adhesion kinase and associated proteins.

Curr Opin Cell Biol 6: 705–710.
30. Schaller MD (2001) Paxillin: a focal adhesion-associated adaptor protein.

Oncogene 20: 6459–6472.
31. Huang C, Jacobson K, Schaller MD (2004) MAP kinases and cell migration.

J Cell Sci 117: 4619–4628.

32. Chaar Z, O’Reilly P, Gelman I, Sabourin LA (2006) v-Src-dependent down-
regulation of the Ste20-like kinase SLK by casein kinase II. J Biol Chem 281:

28193–28199.
33. Simon JR, Graff RD, Maness PF (1998) Microtubule dynamics in a cytosolic

extract of fetal rat brain. J Neurocytol 27: 119–126.
34. Laurent CE, Delfino FJ, Cheng HY, Smithgall TE (2004) The Human c-Fes

Tyrosine Kinase Binds Tubulin and Microtubules through Separate Domains

and Promotes Microtubule Assembly 10.1128/MCB.24.21.9351-9358.2004.
Mol Cell Biol 24: 9351–9358.

35. Sulimenko V, Draberova E, Sulimenko T, Macurek L, Richterova V, et al.
(2006) Regulation of Microtubule Formation in Activated Mast Cells by

Complexes of {gamma}-Tubulin with Fyn and Syk Kinases. J Immunol 176:

7243–7253.
36. Palazzo AF, Eng CH, Schlaepfer DD, Marcantonio EE, Gundersen GG (2004)

Localized stabilization of microtubules by integrin- and FAK-facilitated Rho
signaling. Science 303: 836–839.

37. Small JV, Stradal T, Vignal E, Rottner K (2002) The lamellipodium: where
motility begins. Trends Cell Biol 12: 112–120.

38. Enomoto T (1996) Microtubule disruption induces the formation of actin stress

fibers and focal adhesions in cultured cells: possible involvement of the rho signal
cascade. Cell Struct Funct 21: 317–326.

39. Kaverina I, Rottner K, Small JV (1998) Targeting, capture, and stabilization of

microtubules at early focal adhesions. J Cell Biol 142: 181–190.
40. Wittmann T, Bokoch GM, Waterman-Storer CM (2003) Regulation of leading

edge microtubule and actin dynamics downstream of Rac1. J Cell Biol 161:
845–851.

41. Cook TA, Nagasaki T, Gundersen GG (1998) Rho guanosine triphosphatase

mediates the selective stabilization of microtubules induced by lysophosphatidic
acid. J Cell Biol 141: 175–185.

42. Arthur WT, Petch LA, Burridge K (2000) Integrin engagement suppresses RhoA
activity via a c-Src-dependent mechanism. Curr Biol 10: 719–722.

43. Arias-Salgado EG, Lizano S, Sarkar S, Burgge JS, Ginsberg MH, et al. (2003)
Src kinase activation by direct interaction with the integrin {beta} cytoplasmic

domain. Proc Natl Acad Sci U S A 100: 13298–13302.

44. Schaller MD, Hildebrand JD, Parsons JT (1999) Complex formation with focal
adhesion kinase; a mechanism to regulate activity and subcellular localization of

Src kinases. Molec Biol Cell 10: 3489–3505.
45. Schaller MD, Hildebrand JD, Shannon JD, Fox JW, Vines RR, et al. (1994)

Autophosphorylation of the focal adhesion kinase, pp125FAK, directs SH2-

dependent binding of pp60src. Mol Biol Cell 14: 1680–1688.
46. Schlaepfer DD, Broome MA, Hunter T (1997) Fibronectin-stimulated signaling

from a focal adhesion kinase-c-Src complex: involvement of the Grb2, p130 Cas
, and Nck adaptor proteins. Mol Cell Biol 17: 1702–1713.

47. Rengifo-Cam W, Konishi A, Morishita N, Matsuoka H, Yamori T, et al. (2004)
Csk defines the ability of integrin-mediated cell adhesion and migration in

human colon cancer cells: implication for a potential role in cancer metastasis.

Oncogene 23: 289–297.
48. McGarrigle D, Shan D, Yang S, Huang XY (2006) Role of tyrosine kinase Csk

in G protein-coupled receptor- and receptor tyrosine kinase-induced fibroblast
cell migration. J Biol Chem 281: 10583–10588.

49. Angers-Loustau A, Cote JF, Charest A, Dowbenko D, Spencer S, et al. (1999)

Protein tyrosine phosphatase-PEST regulates focal adhesion disassembly,
migration and cytokinesis in fibroblasts. J Cell Biol 144: 1019–1031.

50. Sieg DJ, Ilic D, Jones KC, Damsky CH, Hunter T, et al. (1998) Pyk2 and Src-
family protein-tyrosine kinases compensate for the loss of FAK in fibronectin-

stimulated signaling events but Pyk2 does not fully function to enhance FAK-
cell migration. Embo J 17: 5933–5947.

Role for SLK in Cell Migration

PLoS ONE | www.plosone.org 9 April 2008 | Volume 3 | Issue 4 | e1868


