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Abstract

Background: Liver function tests might predict the risk of type 2 diabetes. An independent study evaluating utility of these
markers compared with an existing prediction model is yet lacking.

Methods and Findings: We performed a case-cohort study, including random subcohort (6.5%) from 38,379 participants
with 924 incident diabetes cases (the Dutch contribution to the European Prospective Investigation Into Cancer and
Nutrition, EPIC-NL, the Netherlands), and another population-based cohort study including 7,952 participants with 503
incident cases (the Prevention of Renal and Vascular End-stage Disease, PREVEND, Groningen, the Netherlands). We
examined predictive value of combination of the Liver function tests (gamma-glutamyltransferase, alanine aminotrans-
ferase, aspartate aminotransferase and albumin) above validated models for 7.5-year risk of diabetes (the Cooperative
Health Research in the Region of Augsburg, the KORA study). Basic model includes age, sex, BMI, smoking, hypertension and
parental diabetes. Clinical models additionally include glucose and uric acid (model1) and HbA1c (model2). In both studies,
addition of Liver function tests to the basic model improved the prediction (C-statistic by,0.020; NRI by,9.0%; P,0.001). In
the EPIC-NL case-cohort study, addition to clinical model1 resulted in statistically significant improvement in the overall
population (C-statistic = +0.009; P,0.001; NRI = 8.8%; P,0.001), while addition to clinical model 2 yielded marginal
improvement limited to men (C-statistic = +0.007; P = 0.06; NRI = 3.3%; P = 0.04). In the PREVEND cohort study, addition to
clinical model 1 resulted in significant improvement in the overall population (C-statistic change = 0.008; P = 0.003;
NRI = 3.6%; P = 0.03), with largest improvement in men (C-statistic change = 0.013; P = 0.01; NRI = 5.4%; P = 0.04). In PREVEND,
improvement compared to clinical model 2 could not be tested because of lack of HbA1c data.

Conclusions: Liver function tests modestly improve prediction for medium-term risk of incident diabetes above basic and
extended clinical prediction models, only if no HbA1c is incorporated. If data on HbA1c are available, Liver function tests
have little incremental predictive value, although a small benefit may be present in men.
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Introduction

Change in liver function tests is considered as surrogate marker

of liver injury and nonalcholic fatty liver disease (NAFLD) [1].

Previous studies have demonstrated that circulating concentration

of liver function tests like gamma-glutamyltransferase (GGT),

alanine aminotransferase (ALT) and aspartate aminotransferase

(AST) are increased in individuals with insulin resistance and the

metabolic syndrome [1–3]. In addition, these components of liver

function tests have been shown to be positively associated with the

risk of future type 2 diabetes [1,4]. A recent meta-analysis on this

topic showed that both elevated ALT and GGT were associated

with increased risk of diabetes, while GGT might be a stronger risk

factor than ALT [4].

However, there is only a limited number of studies that examine

the predictive value of liver function tests for the risk of future

diabetes in terms of essential measures of prediction, such as the C-

statistic to assess discrimination between people who develop

diabetes and those who don’t [5–8]. These studies mainly

developed [6,7] or updated [5] clinical prediction models by
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incorporating one or two components of liver function tests in each

models. It is important to note that the predictive value of liver

function tests was examined in combination with other (bio)-

markers and in the same data set that was used to develop the

original models [5–7]. Of these, 2 studies showed improvement in

prediction when GGT plus glycaemia indices were added to a basic

model consisting only of data that can be derived without need for

taking blood samples [6,7]. In another study, a combination of

GGT, ALT, triglycerides and HDL cholesterol improved

discrimination above a diabetes risk score including HbA1c and

glucose [5].

So, whether liver function tests have incremental predictive

value above validated model(s) is still unclear. An independent

study evaluating utility of these markers of liver function when

incorporated in an existing prediction model is needed to answer

this question [9,10]. Recently, we validated and updated German

prediction models from the Cooperative Health Research in the

Region of Augsburg (KORA) study in a Dutch general population

cohort [11,12]. In the current study, we addressed the incremental

predictive value of liver function tests for the risk of future type 2

diabetes when compared with the KORA models [12]. To do so,

we analysed data from two independent cohorts separately. In

each cohort, we performed analyses in the total population and

sex-stratified subgroups to account for potential sex differences in

the prediction performance of each model [6,11,13].

Research Design and Methods

Study Design and Populations
We used data from two cohorts of general population in the

Netherlands: 1) the Dutch contribution to the European Pro-

spective Investigation Into Cancer and Nutrition (EPIC-NL) study;

and 2) the Prevention of Renal and Vascular End-stage Disease

(PREVEND) study. Details of each study design and recruitment

of participants have been published previously [14,15].

In brief, the EPIC-NL cohort (n = 40,011) includes the

Monitoring Project on Risk Factors for Chronic Diseases

(MORGEN) and Prospect cohorts, initiated between 1993 and

1997. Prospect is a prospective cohort study of 17,357 women

aged 49–70 years who participated in a breast cancer screening

programme. The MORGEN cohort consists of 22,654 men and

women aged 20–64 years who were recruited through random

population sampling in three Dutch towns (Amsterdam, Maas-

tricht and Doetinchem). A new random sample of about 5,000

participants was examined each year. We excluded 615 individuals

with prevalent type 2 diabetes and 1,017 with missing follow-up or

who did not consent to linkage with disease registries, leaving

38,379 individuals in the full cohort. In a 6.5% baseline random

sample (n = 2,604) with biochemical measurements [14], similar

exclusion criteria were applied. After exclusions, 2,506 individuals

(including 79 incident diabetes cases) from the random sample and

924 incident diabetes cases in the full cohort remained for the

case-cohort study [16]. We used this case-cohort sample for all

analyses.

In brief, the baseline PREVEND cohort (n = 8,592) was

recruited from inhabitants (aged 28–75 years) of the city of

Groningen, the Netherlands. Baseline measurements were per-

formed between 1997 and 1998. The PREVEND cohort included

a total of 6,000 individuals with a morning urinary albumin

concentration of 10 mg/l or greater and a random control sample

of individuals with a urinary albumin concentration of less than

10 mg/L (n= 2,592). Overall, we excluded 336 individuals with

prevalent type 2 diabetes and 277 with missing data on follow-up,

leaving 7,979 individuals for the full cohort study. We used this full

cohort sample for all analyses.

Ethics Statement
All participants gave written informed consent prior to study

inclusion. All cohort studies complied with the Declaration of

Helsinki and were approved by local medical ethics committees.

Measurements of Biomarkers
In the EPIC-NL study, the general questionnaire contained

questions on demographic characteristics and risk factors for the

presence of chronic diseases. Body weight, height and waist and

hip circumference were measured according to standard proce-

dures. Hypertension was defined based on self-report of diagnosis

by a physician, measured hypertension ($140 mmHg systolic

blood pressure or $90 mmHg diastolic blood pressure) or the use

of blood pressure-lowering medication. Non-fasting blood samples

were collected at baseline from all participants. HbA1c was

measured in erythrocytes using an immunoturbidimetric latex test.

Glucose and uric acid were measured using enzymatic methods.

AST, ALT and GGT were measured using enzymatic methods

and albumin by a colorimetric method [14].

In the PREVEND study, the participants underwent two

outpatient visits to assess baseline data on demographics,

anthropometric measurements, cardiovascular risk factors, health

behaviours, and medical family history and to collect two 24-hour

urine samples on 2 consecutive days. Blood pressure values are

given as the mean of the last two recordings of both visits as this

provides the values after stabilization of blood pressure. Plasma

glucose was measured by dry chemistry (Eastman Kodak,

Rochester, New York). All liver function tests were measured by

a standardized enzymatic method (Modular P; Roche Diagnostics,

Indianapolis, IN).

Definition of Main Outcome
In the EPIC-NL study, potential incident type 2 diabetes was

self-reported via two follow-up questionnaires at 3- to 5-year

intervals in the MORGEN and Prospect cohort. In the Prospect

cohort, a urinary glucose strip test was sent along with the first

follow-up questionnaire as a screening method. Diagnoses of type

2 diabetes were also obtained from the Dutch Center for Health

Care Information, which holds a standardized computerized

register of hospital discharge diagnoses. Follow-up was complete

until January 1, 2006. Potential cases identified by these methods

were verified against general practitioner (MORGEN and

Prospect) or pharmacist records (Prospect only). We defined type

2 diabetes as being present when the diagnosis was confirmed by

either of these methods. For 89% of participants with potential

diabetes, verification information was available, and 72% were

verified as having type 2 diabetes and were included as cases of

type 2 diabetes in this analysis [17]. The rest of individuals were

considered as non-cases.

In the PREVEND study, incident cases of diabetes were

ascertained as described previously [18]. In brief, incident diabetes

was considered present if one or more of the following criteria

were met: 1) a fasting plasma glucose of$7.0 mmol/l (126 mg/dl)

or random sample plasma glucose $11.1 mmol/l (200 mg/dl); 2)

self-reported physician’s diagnosis; 3) use of glucose-lowering

agents according to a central pharmacy registration.

Statistical Analysis
First, we examined the association between the components of

liver function tests (including GGT, ALT, AST and albumin) and

Liver Function Tests for Diabetes Risk
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the risk of future diabetes. For liver function tests, we used

logarithm transformation with base 2 (log2) to allow for in-

terpretation of results per increase of 100% of values of each

component. We used Cox proportional-hazards regression in the

EPIC-NL study which was adapted for case-cohort analysis. We

used logistic regression in the PREVEND full cohort study,

because the events have been detected at regular screening visits or

shortly thereafter. Thus, estimated survival and hazards can not be

accurately calculated by this type of follow-up. In step 1, we

calculated age and sex-adjusted hazard ratios (HRs) and odd ratios

with 95% CIs for the risk of diabetes by doubling of concentrations

of each liver function tests (per log2 unit increase). In step 2, we

adjusted for age, sex, parental diabetes, body mass index (BMI),

smoking status, hypertension, glucose and uric acid. In step 3, we

further adjusted for HbA1c. This could only be done in the EPIC-

NL case-cohort study, because data on HbA1c were not available

in the PREVEND study.

To account for the case-cohort design in the EPIC-NL study,

we applied an extrapolation approach which extends the case-

cohort data to the size of the entire cohort [19]. This is achieved

by extrapolating the non-cases of the random sample (i.e., total

random sample of 2,506 individuals minus 79 cases) to the number

of non-cases in the full cohort (i.e., total sample of 38,379

individuals minus 924 cases). To do so, we substituted the non-

cases of the full cohort (n = 37,455) by a random multiplication of

non-cases of the random sample (n = 2,427). We have previously

described and validated this approach [20].

In the second part of this study, we computed the probability of

getting diabetes using the KORA basic model which was

previously validated and updated in the PREVEND cohort [11].

As previously described [11], we recalibrated the original KORA

model by means of logistic regression to derive the intercept and

the calibration slope in the PREVEND cohort study. We also

adjusted for the difference in incident diabetes between the

KORA and the EPIC-NL cohorts by fitting the original KORA

model in the EPIC-NL case-cohort study [21]. Figure S1 (a, b)

depicts the agreement between the predicted 7.5-year risk and

observed risk of type 2 diabetes after recalibration in each cohort.

The basic model included data on age, sex, parental diabetes,

body mass index (BMI), smoking status and hypertension [12].

Clinical model 1 included additional data on glucose plus serum

uric acid; and in clinical model 2 we further added HbA1c. As the

original KORA models have been developed for a time period of

risk prediction of 7.5 years, we examined the incremental

predictive value of liver function tests also for the 7.5-year risk

of developing type 2 diabetes. Therefore, participants who

developed diabetes after more than 7.5 years of follow-up were

included in 7.5-year prediction as non-cases. We examined added

predictive value of 1) each component alone, 2) combination of

GGT+ALT and 3) a panel of GGT, ALT, AST and albumin. We

assessed improvement of type 2 diabetes prediction in terms of

discrimination by calculating the C-statistic with 95%CI, and

reclassification by calculating integrated discrimination improve-

ment (IDI) and net reclassification improvement (NRI) [22,23]. To

calculate the NRI, cut-off values for risk categories have to be

defined. In previous studies, a number of risk categories for the 10-

year risk of cardiovascular disease [23,24] or type 2 diabetes

[25,26] have been reported. In the present study, we slightly

modified these cut-off values according to the shorter time period

(and hence the lower average observed risk) [25,26], using cut-off

values of ,4% for low-risk, 4%–8% for intermediate-risk and

$8% for high-risk.

In the EPIC-NL case-cohort study, for most predictors ,1% of

data were missing; however, missing values occurred in 5% for

parental history of diabetes, and 20.5% for glucose levels. Because

an analysis of only the completely observed data may often lead to

biased results, we imputed these missing values using single

imputation and predictive mean matching [27]. As the percentage

of missing values for the non-fasting glucose concentration was

relatively high, we repeated our analyses using only data from the

MORGEN cohort, in which less than 10% of values for non-

fasting glucose concentration were missing, as a sensitivity analysis.

In the PREVEND cohort study, for most variables, ,1% were

missing, whereas this was up to 7.5% for self-reported variables.

To account for missing values, we used a similar approach to that

of the EPIC-NL study. Table S1 in supporting information shows

the number of missing values for all variables incorporated in each

model. We also used a weighted method to compensate for

baseline enrichment of the PREVEND participants with high

urinary albumin concentration (.10 mg/l). All the statistical

analyses were carried out using IBM SPSS 19.0 and R version

2.13.1 (Vienna, Austria) for Windows (http://cran.r-project.org/).

Results

Baseline Clinical Characteristics
We summarize baseline characteristics of the participants of

each study in Table 1. Participants of the EPIC-NL study were

more likely to be women, and to have hypertension and parental

history of diabetes, whereas participants of the PREVEND study

were more likely to be smoker and had slightly higher uric acid

and albumin on average. In the EPIC-NL cohort study, we

ascertained and validated 924 (2.4%) incident cases of type

diabetes during a median follow-up of 10.2 years (over 387,000

person-years). In the PREVEND cohort study, we ascertained 503

(6.3%) incident cases during a median follow-up of 7.7 years (over

60,186 person-years).

Liver Function Tests and Type 2 Diabetes
Table 2 depicts the associations between components of liver

function tests and the risk of diabetes, calculated per 100%

increase of marker concentrations in total populations and in

sex-stratified subgroups. In the EPIC-NL case-cohort study, the

multivariable-adjusted HRs (95%CI) for the risk of diabetes

were 1.49 (1.37–1.61), 1.22 (1.09–1.37), 0.97 (0.81–1.17) and

0.34 (0.21–0.54) per doubling concentrations of GGT, ALT,

AST and albumin, respectively. In the PREVEND cohort study,

the multivariable-adjusted ORs (95%CI) for the risk of diabetes

were 1.22 (1.09–1.38), 1.29 (1.11–1.50), 1.16 (0.89–1.50) and

0.31 (0.87–1.05) per 100% increase of concentrations of GGT,

ALT, AST and albumin, respectively. The associations between

liver function tests and the risk of diabetes did not significantly

differ by sex in both cohorts (P.0.1 for interaction). In the

EPIC-NL case-cohort study, stratified analysis by sex showed

that the direction of the association between albumin and

diabetes risk was changed in men after adjustment for age, BMI

with family history of diabetes (also for the KORA basic model

plus glucose) (data not shown).

Predictive Value of Liver Function Tests
In the EPIC-NL case-cohort study, the basic model showed

a C-statistic of 0.823 (0.810–0.837) for the 7.5-year risk of

diabetes (Table 2). Addition of liver function tests improved the

C-statistic of the basic model (C-statistic change= 0.024;

P,0.001) and led to an IDI of 0.011 (P,0.001) and NRI of

9.5% (P,0.001). After addition of each component of liver

function tests alone to the basic models, the C-statistic changes

were 0.014 (P,0.001), 0.006 (P,0.001), 0.001 (P= 0.15) and

Liver Function Tests for Diabetes Risk
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0.002 (P = 0.13) for GGT, ALT, AST and albumin, respectively.

Addition of liver function tests also improved prediction for

clinical model 1 (C-statistic change= 0.009; P,0.001;

NRI=8.8%; P,0.001). Although addition of liver function

tests did not improve prediction for clinical model 2 in the total

population (C-statistic change= 0.002; P= 0.61; NRI=1.2%;

P=0.3), a slight improvement, although not statistically

significant in terms of discrimination, was observed when men

were considered separately (C-statistic change= 0.007; P= 0.06;

NRI=3.3%; P=0.04). In women, addition of liver function

tests improved prediction for clinical model 1, but did not

improve for clinical model 2 (Table 3).

In the PREVEND cohort study, the basic model showed a C-

statistic of 0.775 (0.757–0.793). Addition of liver function tests

improved the C-statistic of the basic model (C-statistic

change = 0.019; P,0.001) and led to an IDI of 0.01

(P,0.001) and NRI of 8.7% (P,0.001). After addition of each

component of liver function tests alone to the basic models, the

C-statistic changes were 0.013 (P,0.001), 0.011 (P= 0.002),

0.002 (P= 0.29) and 0.0001 (P= 0.98) for GGT, ALT, AST and

albumin, respectively. Addition of liver function tests improved

prediction for clinical model 1 in the total population (change of

C-statistic = 0.008; P= 0.003; NRI= 3.6%; P=0.03), with the

largest change in men (C-statistic change= 0.013; P= 0.01;

NRI=5.4%; P= 0.04) (Table 1). In both cohorts, predictive

power slightly increased when we added more liver function

tests to the KORA model. For example, in the EPIC-NL study,

NRI increased from 6% to 9.5% when we added the panel of

all four available liver function tests to the KORA model rather

than only the combination of GGT+ALT (Table S2).

In both cohorts, the basic and clinical models provided

slightly better discrimination in women than in men. For

example, in the EPIC-NL study, the C-statistic of the basic

model was 0.826 (0.810–0.841) in women while this was 0.818

(0.788–0.847) in men. For clinical model 2, the C-statistic was

0.933 (0.923–0.944) in women while this was 0.877 (0.854–

0.905) in men. In the PREVEND study, the C-statistic of the

basic model was 0.822 (0.95–0.848) in women while this was

0.724 (0.697–0.750) in men. For clinical model 1, the C-statistic

was 0.883 (0.859–0.907) in women while this was 0.809 (0.785–

0.832) in men (Table 3).

In a sensitivity analysis, our results using data only from the

MORGEN cohort with less than 10% missing values for non-

fasting glucose were comparable with our results using both

cohorts of the EPIC-NL study. Addition of liver function tests

improved the C-statistic of the basic KORA model (C-statistic

change= 0.020; P,0.001) and led to an IDI of 0.006 (P,0.001)

and NRI of 9.3% (P,0.001). Addition of liver function tests did

not improve prediction for clinical model 2 (C-statistic

change= 0.004, P = 0.10; IDI = 0.003, P= 0.11; NRI= 2.2%,

P= 0.20).

Table 1. Baseline participants’ characteristics in each study.*

EPIC-NL study PREVEND study

Variables Full cohort Random sample
Cases with incident
type 2 diabetes Full cohort

Cases with incident
type 2 diabetes

No. of individuals 38379 2506 924 7979 503

Age– yr 49.1 (11.9) 49.2 (11.9) 56.6 (7.3) 48.9 (12.5) 56.5 (10.7)

Female gender– no. (%) 28531 (74.3) 1872 (74.7) 722 (78.1) 4065 (50.9) 210 (41.7)

Parental history of diabetes– no. (%) 7379 (19.2) 498 (19.9) 377 (40.8) 1252 (15.7) 143 (28.4)

Hypertension– no. (%){ 14122 (36.8) 953 (38.0) 626 (67.7) 2248 (28.2) 275 (54.7)

Antihypertensive medication – no. (%) 3736 (9.7) 259 (10.3) 275 (29.8) 1036 (13.0) 133 (26.4)

Current smoker– no. (%) 11749 (30.6) 789 (31.5) 322 (34.8) 2742 (34.4) 174 (34.6)

Exsmoker– no. (%) 12004 (31.3) 769 (30.7) 241 (26.1) 2896 (36.3) 205 (40.8)

Body-mass index{ 25.6 (4.0) 25.7 (4.0) 29.9 (4.7) 26.0 (4.2) 29.5 (4.7)

Waist cimrcumfernce– cm 85.1 (11.4) 85.3 (11.6) 97.0 (11.6) 88.1 (12.9) 99.2 (12.2)

Systolic blood pressure– mm Hg 126.0 (18.8) 126.1 (18.6) 139.9 (21.6) 123.9 (19.3) 135.7 (20.4)

Biomarkers

Glucose– mmol/liter1 4.9 (1.2) 4.89 (1.17) 6.75 (2.48) 4.7 (0.6) 5.6 (0.7)

HbA1c– % – 5.39 (0.58) 6.5 (1.4) – –

Uric acid–mmol/l – 259.42 (68.48) 285.76 (71.04) 303.07 (80.16) 355.13 (81.94)

GGT– U/liter – 25.5 (20.0) 36.6 (28.9) 32.6 (45.6) 53.9 (126.7)

ALT– U/liter – 20.2 (11.9) 20.3 (11.8) 23.9 (20.7) 31.3 (40.6)

AST– U/liter – 22.7 (9.1) 22.7 (9.0) 25.7 (10.4) 28.7 (19.4)

Albumin– g/L – 38.9 (4.9) 37.1 (4.9) 45.8 (2.7) 45.4 (3.0)

*Data were shown as mean (SD) for continuous variables, and numbers (percentage) for categorical variables. EPIC-NL denotes Dutch contribution of the European
Prospective Investigation Into Cancer and Nutrition, PREVEND denotes Prevention of Renal and Vascular End-stage Disease, HbA1c glycated hemoglobin, GGT gamma-
glutamyltransferase, ALT alanine aminotransferase and AST aspartate aminotransferase.
{Hypertension was ascertained on the basis of self-reported diagnosis by a physician, antihypertensive medication use, systolic blood pressure $140 mm Hg, or
diastolic blood pressure $90 diastolic blood pressure, or a combination of these.
{Body mass index is the weight in kilograms divided by the square of the height in meters.
1To convert values for glucose to milligrams per deciliter, divide by 0.0555. To convert values for uric acid to milligrams per deciliter, divide by 59.48.
doi:10.1371/journal.pone.0051496.t001
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Discussion

In this prospective analysis, we examined whether addition of

liver function tests could be useful to improve prediction of

developing type 2 diabetes above the basic and clinical models in

two independent large population-based cohorts. We observed

that addition of liver function tests improved prediction modestly

only for a basic model without biomarkers in terms of

discrimination and reclassification in each cohort. Furthermore,

addition of liver function tests led to small but statistically

significant improvements in prediction based on a clinical model

incorporating glucose and serum uric acid, but not if the clinical

model also includes HbA1c. However, there was a slightly better

improvement in prediction for men.

Several studies have been performed to investigate the

associations of liver function tests with type 2 diabetes and its

related outcomes [1,4]. However, just a limited number of studies

aimed to examine the incremental predictive value of these

markers over available prediction models. A analysis of the EPIC-

Potsdam cohort showed that a combination of triglycerides, HDL-

cholesterol, GGT and ALT further improved prediction based on

the German diabetes risk score incorporating glucose and HbA1c

in the same population in which they had previously developed

that risk score [5]. In the DESIR study, a model with GGT and

glucose showed an improved prediction in men compared with

a basic model incorporating data on smoking, waist circumference

and hypertension [6]. Recently, the British Heart Study showed

that a clinical model incorporating GGT plus HbA1c improved

prediction compared with a basic simple model. However,

addition of GGT itself had little improvement above a clinical

model incorporating glucose, HDL cholesterol and triglyceride

[7]. Of note, it is particularly important for the value of biomarkers

to be examined in an independent setting, because the improve-

ment in measures of prediction can be overestimated if the same

population is used for development and evaluation of the

incremental value of new biomarkers [10,28,29]. In our study,

we scientifically evaluated incremental predictive value of liver

function tests in two independent Dutch populations because we

intended to validate our findings in another setting as well. In this

way, we took advantage of using a different case mix and slightly

different measurement of diabetes between two cohorts [28].

Furthermore, we also did this analysis for women and men

separately to take into account potential sex differences in the risk

prediction of diabetes [6,30]. For example, we and others have

shown that prediction models might have a slightly better

performance to identify women at high risk [6,11,13]. We

observed no differences in the incremental predictive value of

liver function tests above the basic and clinical model incorporat-

ing glucose plus uric acid between women and men. However,

there was a statistically significant improvement in prediction only

in men when we added liver function tests to a clinical model

incorporating glucose plus uric acid plus HbA1c. At population

level, it is true that a prediction model, like the KORA basic

model, incorporting 6 predictors, performs well to identify the

individuals at high risk of future diabetes for 7.5 years. In our

study, addition of liver function tests did hardly result in any

improvement of prediction once additional data on glycaemia

indices were included. The reason why improvements in

predictions were limited in the latter clinical models is that the

glycaemia indices are integral parts of the clinical outcome of

interest, i.e., diabetes. Diabetes itself is defined by certain cut-offs

for glucose and/or HbA1c [31].

Like previous studies [1,4], we demonstrated significant

associations of some components of liver function tests with the

risk of type 2 diabetes. The associations were independent of

common risk factors but addition of liver function tests only

minimally to modestly improve the risk prediction of disease. In

Table 2. Associations of liver function tests with the risk of type 2 diabetes.

EPIC-NL case-chort study HR (95%) per log2 unit increase
PREVEND cohort study OR (95% CI) per log2 unit
increase

Liver markers Step 1 Step 2 Step 3 Step 1 Step 2

Total

GGT– U/liter 2.08 (1.94–2.22) 1.49 (1.37–1.62) 1.45 (1.34–1.58) 1.76 (1.60,1.93) 1.22 (1.09–1.38)

ALT– U/liter 2.05 (1.86–2.26) 1.22 (1.09–1.37) 1.05 (0.93–1.18) 1.88 (1.66, 2.14) 1.29 (1.11–1.50)

AST– U/liter 1.81 (1.52–2.16) 0.97 (0.81–1.17) 1.04 (0.87–1.22) 1.63 (1.31, 2.02) 1.16 (0.89–1.50)

Albumin– g/L 0.56 (0.34–0.92) 0.34 (0.21–0.54) 0.42 (0.24–0.74) 0.50 (0.17, 1.49) 0.31 (0.87–1.05)

Women

GGT– U/liter 2.03 (1.89–2.18) 1.45 (1.32–1.58) 1.40 (1.27–1.54) 1.86 (1.60–2.16) 1.22 (1.01–1.49)

ALT– U/liter 1.85 (1.66–2.06) 1.07 (0.94–1.22) 0.92 (0.81–1.05) 1.95 (1.57–2.42) 1.29 (1.00–1.67)

AST– U/liter 1.71 (1.39–2.10) 0.80 (0.64–0.99) 0.85 (0.70–1.04) 1.44 (0.97–2.15) 1.20 (0.76–1.88)

Albumin– g/L 0.49 (0.29–0.82) 0.23 (0.15–0.37) 0.53 (0.31–0.90) 0.45 (0.08–2.42) 0.36 (0.05–2.29)

Men

GGT– U/liter 1.98 (1.68–2.34) 1.43 (1.17–1.76) 1.33 (1.08–1.63) 1.67 (1.48–1.88) 1.22 (1.05–1.42)

ALT– U/liter 2.62 (2.14–3.20) 1.87 (1.48–2.35) 1.64 (1.29–2.08) 1.80 (1.53–2.10) 1.29 (1.07–1.56)

AST– U/liter 2.08 (1.50–2.89) 1.66 (1.16–2.38) 1.73 (1.20–2.51) 1.62 (1.24–2.10) 1.15 (0.84–1.58)

Albumin– g/L 0.44 (0.10–1.97) 4.73 (0.92–24.32) 4.23 (0.83–21.58) 0.38 (0.09–1.63) 0.22 (0.04–1.14)

In step, we adjusted for age and sex (in total populations); step 2, further adjusted for BMI (kg/m2), ex-smoker (yes = 1, no = 0), current smoking (yes = 1, no = 0), parental
diabetes (yes = 1, no = 0), hypertension (yes = 1, no= 0), glucose (mmol/l) and uric acid (mmol/l); and model 3 further adjusted for HbA1c (only in the EPIC-NL case-cohort
study).
EPIC-NL denotes European Prospective Investigation Into Cancer, PREVEND Prevention of Renal and Vascular End-stage Disease, CI confidence interval.
doi:10.1371/journal.pone.0051496.t002
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other words, the absolute difference of certain (bio)markers

between individuals who develop and those who remain free of

diabetes at a population level is not likely to resolve whether

a (bio)marker can be useful for prediction [29]. In fact, on an

individual level, the range of marker levels between cases and non-

cases overlap, limiting its incremental predictive value [29,32]. In

contrast, although a certain (bio)marker does not show statistical

significance in an etiologic relation, it might still have incremental

predictive value in combination with other predictors. So from

that point of view it is reasonable to examine all four components

of liver function tests in each model.

All the basic and clinical models showed slightly better

discrimination performance in the EPIC-NL case-cohort study

than in the PREVEND cohort study overall and particularly in

men. This difference might be explained by differences in

heterogeneity between these two populations [33]. Larger

heterogeneity between individuals make it easier to differentiate

between those at high and low risk and may thus lead to higher C-

statistics. For example, variables like age and sex may have larger

heterogeneity in the EPIC-NL cohort when compared with the

PREVEND cohort.

Another explanation for this is that we ascertained incident

cases differently in each cohort. Therefore, we adjusted the

KORA basic model for this difference in incidence of diabetes

between development population and both of our populations.

Although C-statistics are insensitive to error in average outcome,

Table 3. Incremental predictive value of liver function tests for the risk of type 2 diabetes.

EPIC-NL case-cohort study PREVEND cohort study

Prediction Models C value (95% CI) P value
IDI (P
value)

NRI (%)
(P value)

C value
(95% CI) P value

IDI,
P value

NRI (%),
P value

Total sample

KORABasic 0.823 (0.810–0.837) Ref. Ref. Ref. 0.775 (0.753–
0.793)

Ref. Ref. Ref.

KORABasic + LFTs 0.847 (0.834–0.859) ,0.001 0.011,0.001 9.5, ,0.001 0.794 (0.777–
0.812)

,0.001 0.017,
,0.001

8.6, ,0.001

KORABasic + Glucose + UAS 0.894 0.883–0.905) Ref. Ref. Ref. 0.849 (0.833–
0.865)

Ref. Ref. Ref.

KORABasic + Glucose + UAS + LFTs 0.903 (0.892–0.913) ,0.001 0.016,
,0.001

8.8, ,0.001 0.857 (0.841–
0.872)

0.003 0.015,
,0.001

3.6, 0.03

KORABasic + Glucose + UAS + HbA1c 0.919 (0.908–0.929) Ref. Ref. Ref. – – – –

KORABasic + Glucose + UAS + HbA1c +
LFTs

0.922 (0.912–0.932) 0.61 0.002, 0.18 1.2, 0.3 – – – –

Women

KORABasic 0.826 (0.810–0.841) Ref. Ref. Ref. 0.822 (0.795–
0.848)

Ref. Ref. Ref.

KORABasic + LFTs 0.848 (0.833–0.862) ,0.001 0.011,
,0.001

10.9, ,0.001 0.834 (0.808–
0.861)

0.01 0.019,
,0.001

6.3, 0.03

KORABasic + Glucose + UAS 0.898 (0.886–0.910) Ref. Ref. Ref. 0.883 (0.859–
0.907)

Ref. Ref. Ref.

KORABasic + Glucose + UAS + LFTs 0.912 (0.901–0.923) ,0.001 0.013,
,0.001

8.1, ,0.001 0.886 (0.862–
0.910)

0.29 0.013, 0.001 2.2, 0.28

KORABasic + Glucose + UAS + HbA1c 0.933 (0.923–0.944) Ref. Ref. Ref. – – – –

KORABasic + Glucose + UAS + HbA1c +
LFTs

0.935 (0.925–0.946) 0.53 0.003, 0.05 1.1, 0.40 – – – –

Men

KORABasic 0.818 (0.788–0.847) Ref. Ref. Ref. 0.724 (0.697–
0.750)

Ref. Ref. Ref.

KORABasic + LFTs 0.844 (0.817–0.871) ,0.001 0.10, ,0.001 18.3, ,0.001 0.755 (0.729–
0.781)

,0.001 0.021,
,0.001

9.1, 0.003

KORABasic + Glucose + UAS 0.872 (0.847–0.897) Ref. Ref. Ref. 0.809 (0.785–
0.832)

Ref. Ref. Ref.

KORABasic + Glucose + UAS + LFTs 0.876 (0.851–0.901) 0.54 0.013,
,0.001

6.0, 0.01 0.822 (0.799–
0.845)

0.01 0.019,
,0.001

5.4, 0.04

KORABasic + Glucose + UAS + HbA1c 0.877 (0.854–0.905) Ref. Ref. Ref. – – – –

KORABasic + Glucose + UAS + HbA1c +
LFTs

0.883 (0.860–0.911) 0.06 0.009, 0.01 3.3, 0.04 – – – –

KORABasic model included data on age, BMI (kg/m2), ex-smoker (yes = 1, no= 0), current smoking (yes = 1, no= 0), parental diabetes (yes = 1, no = 0), hypertension
(yes = 1, no = 0).
EPIC-NL denotes European Prospective Investigation Into Cancer, PREVEND Prevention of Renal and Vascular End-stage Disease, CI confidence interval, IDI integrated
discrimination improvement, NRI, net reclassification improvement, LFTs, liver function tests (including aspartate aminotransferase, alanine aminotransferase, c-glutamyl
transpeptidase and albumin), KORA Cooperative Health Research in the Region of Augsburg, HbA1c glycated haemoglobin, UAS serum uric acid.
doi:10.1371/journal.pone.0051496.t003
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different ascertainment of outcome might have affected discrim-

ination performance of models [22]. However, the incremental

predictive value of liver function tests was comparable above each

model for both cohorts. It is worthy to mention that our findings

are in line with prior evidence on this topic showing minimal to

modest prediction improvement for risk of future diabetes [5,7]. As

a general limitation, we should mention that the reclassification

improvement is strongly determined by the cut-off values for the

risk categories. As we have previously explained [34], in the

diabetes prediction the clinically-relevant cut-off values are not

clearly stated yet. In fact, it is hard to judge the clinical utility of

liver function test at this time. Diagnosis of diabetes is always

challenging in observational studies because indivduals with type 2

diabetes may remain undiagnosed for several months to years.

Since we used data of self-reports, some cases of type 2 diabetes

may have been undetected. Finally, the PREVEND cohort was

enriched with individuals with a higher urinary albumin concen-

tration. Therefore, we performed weighted analysis to be able to

generalize our findings to the general population. Further studies

are warranted to replicate current findings for long-term risk and

subsequently evaluate the incremental value of liver function tests

[10,28].

We conclude that a combination of liver function tests can

modestly improve prediction of medium-term risk of type 2

diabetes above the basic risk model and the clinical model

incorporating data on glucose and serum uric acid. If data on

HbA1c are available, these markers of liver injury are of little

added predictive value. A slightly better improvement in pre-

diction may be present in men.
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year risk of diabetes (according to the KORA basic model) against

observed risk of developing type 2 diabetes. Panel A (the EPIC-NL

case-cohort study), Panel B (the PREVEND cohort study). The

‘ideal’ and ‘non-parametric’ terms, the dashed line denotes the

ideal calibration line (slope= 1, intercept = 0) and the dotted line

denotes smooth calibration curve for each models. Hosmer-

Lemeshow x2 statistic were 14.7 (P= 0.10) and 7.8 (P= 0.56) for

the calibration performance of KORA basic model (after

adjustment for the intercept and the slope) in the EPIC-NL and

in the PREVEND studies, respectively.

(DOC)

Table S1 Missing data pattern in extrapolated EPIC-NL case-

cohort study and PREVEND cohort study.

(DOC)

Table S2 Incremental predictive value of components of liver

function tests for the risk of future type 2 diabetes.

(DOC)

Author Contributions

Conceived and designed the experiments: AA RPS YTvdS SJLB JWB.

Performed the experiments: AA RPS YTvdS LMP SJLB JWB. Analyzed

the data: AA JWB LMP. Contributed reagents/materials/analysis tools:

AA SJLB EC DLvdA RTG ROBG LMP YTvdS RPS GN AMWS JWJB.

Wrote the paper: AA SJLB JWB. Read and commented on the earlier

drafts of this manuscript: AA SJLB EC DLvdA RTG ROBG LMP YTvdS

RPS GN AMWS JWB.

References

1. Hanley AJ, Williams K, Festa A, Wagenknecht LE, D’Agostino RB Jr, et al.

(2004) Elevations in markers of liver injury and risk of type 2 diabetes: the insulin

resistance atherosclerosis study. Diabetes 53: 2623–2632.

2. Nakanishi N, Suzuki K, Tatara K (2004) Serum gamma-glutamyltransferase and

risk of metabolic syndrome and type 2 diabetes in middle-aged Japanese men.

Diabetes Care 27: 1427–1432.

3. Wannamethee SG, Shaper AG, Lennon L, Whincup PH (2005) Hepatic

enzymes, the metabolic syndrome, and the risk of type 2 diabetes in older men.

Diabetes Care 28: 2913–2918.

4. Fraser A, Harris R, Sattar N, Ebrahim S, Davey Smith G, et al. (2009) Alanine

aminotransferase, gamma-glutamyltransferase, and incident diabetes: the British

Women’s Heart and Health Study and meta-analysis. Diabetes Care 32: 741–

750.

5. Schulze MB, Weikert C, Pischon T, Bergmann MM, Al-Hasani H, et al. (2009)

Use of multiple metabolic and genetic markers to improve the prediction of type

2 diabetes: the EPIC-Potsdam Study. Diabetes Care 32: 2116–2119.

6. Balkau B, Lange C, Fezeu L, Tichet J, de Lauzon-Guillain B, et al. (2008)

Predicting diabetes: clinical, biological, and genetic approaches: data from the

Epidemiological Study on the Insulin Resistance Syndrome (DESIR). Diabetes

Care 31: 2056–2061.

7. Wannamethee SG, Papacosta O, Whincup PH, Thomas MC, Carson C, et al.

(2011) The potential for a two-stage diabetes risk algorithm combining non-

laboratory-based scores with subsequent routine non-fasting blood tests: results

from prospective studies in older men and women. Diabet Med 28: 23–30.

8. Ghouri N, Preiss D, Sattar N (2010) Liver enzymes, nonalcoholic fatty liver

disease, and incident cardiovascular disease: a narrative review and clinical

perspective of prospective data. Hepatology 52: 1156–1161.

9. McGeechan K, Macaskill P, Irwig L, Liew G, Wong TY (2008) Assessing new

biomarkers and predictive models for use in clinical practice: a clinician’s guide.

Arch Intern Med 168: 2304–2310.

10. Hlatky MA, Greenland P, Arnett DK, Ballantyne CM, Criqui MH, et al. (2009)

Criteria for evaluation of novel markers of cardiovascular risk: a scientific

statement from the American Heart Association. Circulation 119: 2408–2416.

11. Abbasi A, Corpeleijn E, Peelen LM, Gansevoort RT, de Jong PE, et al. (2012)

External validation of the KORA S4/F4 prediction models for the risk of

developing type 2 diabetes in older adults: the PREVEND study.

Eur J Epidemiol.

12. Rathmann W, Kowall B, Heier M, Herder C, Holle R, et al. (2010) Prediction

models for incident type 2 diabetes mellitusin the older population: KORA S4/

F4 cohort study. Diabet Med 27: 1116–1123.

13. Buijsse B, Simmons RK, Griffin SJ, Schulze MB (2011) Risk assessment tools for

identifying individuals at risk of developing type 2 diabetes. Epidemiol Rev 33:

46–62.

14. Beulens JW, Monninkhof EM, Verschuren WM, van der Schouw YT, Smit J, et

al. (2010) Cohort profile: the EPIC-NL study. Int J Epidemiol 39: 1170–1178.

15. Lambers Heerspink HJ, Brantsma AH, de Zeeuw D, Bakker SJ, de Jong PE, et

al. (2008) Albuminuria assessed from first-morning-void urine samples versus 24-

hour urine collections as a predictor of cardiovascular morbidity and mortality.

Am J Epidemiol 168: 897–905.

16. Volovics A, Van Brandt PAD (1997) Methods for the Analyses of Case-Cohort

Studies. Biometrical Journal 39: 195–214.

17. Sluijs I, van der AD, Beulens JW, Spijkerman AM, Ros MM, et al. (2010)

Ascertainment and verification of diabetes in the EPIC-NL study. Neth J Med

68: 333–339.

18. Abbasi A, Corpeleijn E, Postmus D, Gansevoort RT, de Jong PE, et al. (2011)

Plasma procalcitonin and risk of type 2 diabetes in the general population.

Diabetologia 54: 2463–2465.

19. Volovics A vdBP (1997) Methods for the Analyses of Case-Cohort Studies.

Biom J 39: 195–214.

20. Abbasi A, Peelen LM, Corpeleijn E, van der Schouw YT, Stolk RP, et al. (2012)

Prediction models for risk of developing type 2 diabetes: systematic literature

search and independent external validation study. BMJ 345: e5900.

21. van Houwelingen HC (2000) Validation, calibration, revision and combination

of prognostic survival models. Stat Med 19: 3401–3415.

22. Steyerberg EW, Vickers AJ, Cook NR, Gerds T, Gonen M, et al. (2010)

Assessing the performance of prediction models: a framework for traditional and

novel measures. Epidemiology 21: 128–138.

23. Cook NR, Ridker PM (2009) Advances in measuring the effect of individual

predictors of cardiovascular risk: the role of reclassification measures. Ann Intern

Med 150: 795–802.

24. Paynter NP, Mazer NA, Pradhan AD, Gaziano JM, Ridker PM, et al. (2011)

Cardiovascular risk prediction in diabetic men and women using hemoglobin

A1c vs diabetes as a high-risk equivalent. Arch Intern Med 171: 1712–1718.

25. Herder C, Baumert J, Zierer A, Roden M, Meisinger C, et al. (2011)

Immunological and cardiometabolic risk factors in the prediction of type 2

diabetes and coronary events: MONICA/KORA Augsburg case-cohort study.

PLoS One 6: e19852.

26. Shafizadeh TB, Moler EJ, Kolberg JA, Nguyen UT, Hansen T, et al. (2011)

Comparison of accuracy of diabetes risk score and components of the metabolic

syndrome in assessing risk of incident type 2 diabetes in Inter99 cohort. PLoS

One 6: e22863.

Liver Function Tests for Diabetes Risk

PLOS ONE | www.plosone.org 7 December 2012 | Volume 7 | Issue 12 | e51496



27. Donders AR, van der Heijden GJ, Stijnen T, Moons KG (2006) Review: a gentle

introduction to imputation of missing values. J Clin Epidemiol 59: 1087–1091.
28. Moons KG (2010) Criteria for scientific evaluation of novel markers:

a perspective. Clin Chem 56: 537–541.

29. Chao C, Song Y, Cook N, Tseng CH, Manson JE, et al. (2010) The lack of
utility of circulating biomarkers of inflammation and endothelial dysfunction for

type 2 diabetes risk prediction among postmenopausal women: the Women’s
Health Initiative Observational Study. Arch Intern Med 170: 1557–1565.

30. Ding EL, Song Y, Malik VS, Liu S (2006) Sex differences of endogenous sex

hormones and risk of type 2 diabetes: a systematic review and meta-analysis.
Jama 295: 1288–1299.

31. Association AD (2011) Standards of medical care in diabetes–2011. Diabetes

Care 34 Suppl 1: S11–61.
32. Herder C, Karakas M, Koenig W (2011) Biomarkers for the prediction of type 2

diabetes and cardiovascular disease. Clin Pharmacol Ther 90: 52–66.

33. Vergouwe Y, Moons KG, Steyerberg EW (2010) External validity of risk models:
Use of benchmark values to disentangle a case-mix effect from incorrect

coefficients. Am J Epidemiol 172: 971–980.
34. Abbasi A, Corpeleijn E, Meijer E, Postmus D, Gansevoort RT, et al. (2012) Sex

differences in the association between plasma copeptin and incident type 2

diabetes: the Prevention of Renal and Vascular Endstage Disease (PREVEND)
study. Diabetologia 55: 1963–70.

Liver Function Tests for Diabetes Risk

PLOS ONE | www.plosone.org 8 December 2012 | Volume 7 | Issue 12 | e51496


