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Abstract
Animals have to judge environmental cues and choose the most suitable option for them

from many different options. Female fruit flies selecting an optimum site to deposit their

eggs is a biologically important reproductive behavior. When given the direct choice be-

tween ovipositing their eggs in a sucrose-containing medium or a caffeine-containing medi-

um, female flies prefer the latter. However, the neural circuits and molecules that regulate

this decision-making processes during egg-laying site selection remain poorly understood.

In the present study, we found that amnesiac (amn) mutant flies show significant defects in

egg-laying decisions, and such defects can be reversed by expressing the wild-type amn
transgene in two dorsal paired medial (DPM) neurons in the brain. Silencing neuronal activi-

ty with an inward rectifier potassium channel (Kir2.1) in DPM neurons also impairs egg-

laying decisions. Finally, the activity in mushroom body αβ neurons is required for the

egg-laying behavior, suggesting a possible “DPM-αβ neurons” brain circuit modulating egg-

laying decisions. Our results highlight the brain circuits and molecular mechanisms of

egg-laying decisions in Drosophila.

Introduction
Drosophila females selecting a suitable site to deposit their eggs is a biologically important be-
havior that allows the study of a simple decision-making process [1,2,3,4]. Female flies have to
judge and select a proper site for laying eggs to ensure that the environment is optimal for sur-
vival of their offspring [1,2,4]. The specific molecular mechanisms and neural circuits that con-
trol egg-laying decisions in Drosophila are poorly understood

The amnesiac (amn) gene encodes a neuropeptide (AMN) whose function was first identi-
fied in the context of olfactory associative memory in Drosophila [5]. An amnmutant can asso-
ciate specific odors with an electrical foot shock or a sugar reward, but will forget this
information quickly, which suggests that amn is specifically involved in memory instead of ini-
tial learning [5,6,7]. A remarkable study demonstrates that the amn gene product is strongly
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expressed in two dorsal paired medial (DPM) neurons that innervate all lobes of the mush-
room body [6]. Targeted expression of the amn gene in two DPM neurons rescues olfactory as-
sociative memory in an amnmutant background [6]. The Drosophilamushroom body is a
paired neuropil structure crucial for olfactory associative memory and can be structurally di-
vided into the αβ, α´β´, and γ neurons according to their axonal fiber distributions. The den-
drites of the mushroom body form a calyx and project their axons anteriorly to form the
peduncle and extend to the αβ, α´β´, and γ lobes in the middle brain [8]. Numerous studies on
the behavior and brain-anatomy of fruit flies have identified that the mushroom body is crucial
for olfactory associative memory [9,10,11,12,13,14], sleep [15,16], and temperature-preference
behavior [17,18].

In this study, we first identified that the amn gene product is essential for normal egg-laying
decisions by analyzing a collection of amnmutant flies. In addition, genetically silencing the
neuronal activity in DPM neurons disrupts this behavior. Targeting the expression of the amn
transgene in two DPM neurons can fully reverse this behavioral defect in amnmutant flies. Fi-
nally, we demonstrated that neuronal activity in the mushroom body αβ neurons is required
for normal egg-laying decisions suggesting that the possible “DPM-αβ neuron” circuit controls
this behavior via AMN neuropeptide release.

Results

Aged flies exhibit normal egg-laying decisions
It has been reported that female flies avoid laying eggs on a medium containing sucrose, and
that this egg-laying site selection relies on a simple decision-based behavioral process [1]. We
took advantage of this behavioral assay to explore the molecules and brain circuits underlying
egg-laying decisions. A plastic egg-laying chamber was placed in a sweet (sucrose-containing)
and a bitter (caffeine-containing) 1% soft agarose medium, and the two media were separated
by a region of 3% hard agarose, which contained a small gap in the middle to prevent diffusion
of sucrose or caffeine to the opposite site [2](Fig. 1A). Consistent with the previous findings, fe-
male flies prefer to deposit their eggs on a bitter substrate (Fig. 1B)[1]. Decision-making pro-
cesses involve neuronal function in the brain, and aging significantly alters the functioning of

Fig 1. Aging does not alterDrosophila egg-laying decisions. (A) Schematic representation of the chamber for egg-laying decisions assays. Two 1%
agarose media, containing either 100 mM sucrose (orange) or 100 mM caffeine (blue), were loaded above the 3% hard agarose medium (grey). A gap (0.1
cm) was made on the 3% agarose medium in the middle of the chamber. (B) Egg-laying decisions of wild-type flies at different ages (5-day and 21-day). Each
value represents mean ± SEM (N = 36–42, n.s., not statistically significant).

doi:10.1371/journal.pone.0121335.g001
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the nervous system [19,20]. We first tested whether egg-laying decisions changed with aging.
The 21-day old female flies were used for the behavioral assays [21], and we found that aged
flies still executed normal egg-laying decisions compared to young flies (5-day old) (Fig. 1B).

amn expression in two DPM neurons is essential for egg-laying
decisions
amn encodes a preproneuropeptide with limited similarity to pituitary-adenylyl-cyclase-
activating peptide (PACAP) [22]. It has been reported that AMN plays a critical role in behav-
iors of Drosophila such as olfactory memory and sleep [5,7,23]. To examine the role of the amn
gene in egg-laying decisions, a collection of amnmutants were analyzed for their egg-laying
preference in the behavioral chambers. Interestingly, we found that amn1, amn28A, amnc651,
and amnX8 mutants showed significant defects in egg-laying preference compared to wild-type
flies (Fig. 2A). We further examined the egg-laying preference in the chamber containing su-
crose or caffeine substrate in one side and a plain substrate in the opposite side. Consistent
with the previous findings, wild-type female flies avoided laying eggs on sucrose (Fig. 2B) or
caffeine (Fig. 2C) substrates when the other option was a plain substrate [1]. All the amnmu-
tants show significant difference in egg-laying preference in sucrose/plain or caffeine/plain
chambers compared to wild-type flies (Fig. 2B and 2C). These results indicate the amn gene is
critical for egg-laying decisions in sucrose/caffeine, sucrose/plain, and caffeine/plain mediums.

Although the amn gene is expressed throughout the fly brain, targeting expression of the
amn gene in two DPM neurons restores the olfactory memory in amnmutant flies [6]. We
therefore tested whether the amn gene product in DPM neurons is involved in egg-laying deci-
sions. We used a GAL4/UAS system to target expression of the wild-type amn transgene
(amn+) in DPM neuron by applying three independent DPM specific GAL4 drivers, the
C316-GAL4, VT6412-GAL4, and VT64246-GAL4 (Figs. 3A, 3B, and 3C). amn1 is an EMS-
induced mutation in the allele of the amn gene that causes a significant reduction in the amn
transcript [24]. Therefore, we chose amn1 to perform the following rescue experiment. Flies
carrying the amn1/amn1; +/+; C316-GAL4/UAS-amn+, or amn1/amn1; +/+; VT6412-GAL4/
UAS-amn+, or amn1/amn1; +/+; VT64246-GAL4/UAS-amn+ showed normal egg-laying prefer-
ences compared to wild-type flies, indicating that targeting expression of the amn transgene in
DPM neurons restored typical egg-laying preference (Fig. 3D). In addition, acute silencing of
the neuronal activity in DPM neurons by an inward rectifier potassium channel (Kir2.1) dis-
rupts egg-laying preferences (Fig. 3E), suggesting a role of neurotransmission in DPM neurons
for execution of normal egg-laying preference.

Mushroom body αβ neurons are required for egg-laying decisions
The fibers of DPM neurons innervate the mushroom body, and both axons and dendrites are
evenly distributed in the lobes and the anterior peduncle of the mushroom body [6,25]. There-
fore, we examined the role of the mushroom body neurons in egg-laying preferences of female
flies. The Drosophilamushroom body consists of 2000 neurons in each hemisphere of the
brain, and the neurons in the mushroom body can be classified into the γ, α´β´, and αβ subsets
[8,26]. We examined the effects of acute inhibition of activity in different subsets of mushroom
body neurons by tubP-GAL80ts; UAS-Kir2.1 combined with R16A06-GAL4 (γ neurons;
Fig. 4A) or VT30604-GAL4 (α´β´ neurons; Fig. 4B) or VT49246-GAL4 (αβ neurons; Fig. 4C).
Surprisingly, we found that only inhibiting the neuronal activity in the αβ neurons disrupted
the normal female egg-laying preference (Fig. 4D). These data suggest that the release of the
AMN neuropeptide from DPM neurons onto the mushroom body αβ neurons regulates egg-
laying preference in female flies.
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Discussion
The egg-laying site selection by female fruit flies provides a suitable system to study the cellular
mechanisms of a simple decision-making behavior [1,2]. When given the direct choice between
a sucrose-containing medium and a caffeine-containing medium, flies prefer to lay eggs on the

Fig 2. amnmutants show defects in egg-laying decisions. (A) In sucrose/caffeine chamber, amn1, amn28A, amnc651, and amnX8 flies showed significant
difference in egg-laying decisions compared to wild-type flies. amnX8 showed significant difference compared to the other amnmutants. Each value
represents mean ± SEM (n = 34–35, ***P< 0.001). (B) In sucrose/plain chamber, amn1, amn28A, amnc651, and amnX8 flies showed significant difference in
egg-laying decisions compared to wild-type flies. amnX8 showed significant difference compared to the other amnmutants. Each value represents
mean ± SEM (n = 20, ***P< 0.001, **P< 0.01). (C) In caffeine/plain chamber, amn1, amn28A, amnc651, and amnX8 flies showed significant difference in
egg-laying decisions compared to wild-type flies. Each value represents mean ± SEM (n = 23–27, ***P< 0.001).

doi:10.1371/journal.pone.0121335.g002
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latter. This decision-making process during egg-laying site selection is unchanged in aged ani-
mals, suggesting that aging does not dramatically alter the neural activity involved in egg-laying
decisions (Fig. 1).

amn1 is the first amnesiacmutant isolated from the behavioral screening for olfactory mem-
ory mutants by Quinn et al [5]. Here, we identified the crucial role of the amn gene on egg-
laying decisions in female flies. The egg-laying preference is altered in amn1, amn28A, and
amnC651, and amnX8 mutants compared to wild-type flies, implying that the amn gene product
is important for normal egg-laying decisions (Fig. 2). Interestingly, we observed that the amnX8

showed significant difference in egg-laying preference in sucrose/caffeine or sucrose/plain me-
dium compared to the other amnmutants (Figs. 2A and 2B). The original amn1 is an EMS-
induced mutant allele in the amn gene while amn28A and amnc651 are P-element-induced mu-
tations in the amn gene [5,6,24]. The amnX8 was made by imprecise excision of the P-element
from amn28A, and a significant increase in ethanol-sensitive phenotype was found in amnX8

compared to amn1 and amn28A [24]. It is noteworthy that amnX8 contains possibly other GAL4

Fig 3. Expression of amn transgene in DPM neurons reverses the defects of egg-laying decisions in amnmutants. (A) The expression pattern of
C316-GAL4 (green). The brain was immunostained with DLG antibody (red). Arrowheads indicate the somata of DPM neurons. The scale bar represents
50 μm. Genotype was as follow:UAS-mCD8::GFP/+; C316-GAL4/UAS-mCD8::GFP. (B) The expression pattern of VT6412-GAL4 (green). The brain was
immunostained with DLG antibody (red). Arrowheads indicate the somata of DPM neurons. The scale bar represents 50 μm. Genotype was as follow:UAS-
mCD8::GFP/+; VT64246-GAL4/UAS-mCD8::GFP. (C) The expression pattern of VT64246-GAL4 (green). The brain was immunostained with DLG antibody
(red). Arrowheads indicate the somata of DPM neurons. The scale bar represents 50 μm. Genotype was as follow:UAS-mCD8::GFP/+; VT64246-GAL4/
UAS-mCD8::GFP. (D) Overexpression of the amn transgene (amn+) in DPM neurons reversed the deficiency of egg-laying decisions in amn1 background.
Each value represents mean ± SEM (n = 22–24, ***P< 0.001, n.s., not statistically significant). Genotypes were as follows: (1) +/+, (2) amn1/amn1, (3)
amn1/amn1; +/+; +/UAS-amn+, (4) amn1/amn1; +/+; C316-GAL4/+, (5) amn1/amn1; +/+; VT6412-GAL4/+, (6) amn1/amn1; +/+; VT64246-GAL4/+, (7) amn1/
amn1; +/+; C316-GAL4/UAS-amn+, (8) amn1/amn1; +/+; VT6412-GAL4/UAS-amn+, and (9) amn1/amn1; +/+; VT64246-GAL4/UAS-amn+. (E) Effects of
acute silencing of neuronal activity in DPM neurons on egg-laying decisions. The schematics of the temperature shift protocols are shown above each graph.
Each value represents mean ± SEM (n = 17–26, ***P< 0.001. n.s., not statistically significant). Genotypes were as follows: (1) +/+; VT6412-GAL4/+, (2)
tubP-GAL80ts/+; UAS-Kir2.1/+, and (3) tubP-GAL80ts/+; VT6412-GAL4/UAS-Kir2.1.

doi:10.1371/journal.pone.0121335.g003
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insertions elsewhere in the genome left after excision of amn28A (Josh Dubnau unpublished
data), which may cause a significant negative value of egg-laying preference index in sucrose/
caffeine medium (Fig. 2A). Genetic expression of the wild-type amn transgene in DPM neu-
rons of amn1 mutant flies restores the deficiency of egg-laying preference, suggesting that the
expression of AMN in DPM neurons is sufficient for normal egg-laying decisions (Fig. 3D).
The AMN neuropeptide is a homologue of the vertebrate PACAP that mediates several

Fig 4. Neural activity in mushroom body αβ neurons is required for normal egg-laying decisions. (A) Preferential expression of R16A06-GAL4 in
mushroom body γ neurons (green). The brain was immunostained with DLG antibody (red). The scale bar represents 50 μm. Genotype was as follow:UAS-
mCD8::GFP/+; R16A06-GAL4/UAS-mCD8::GFP. (B) Preferential expression of VT30604-GAL4 in mushroom body α´β´ neurons (green). The brain was
immunostained with DLG antibody (red). The scale bar represents 50 μm. Genotype was as follow: UAS-mCD8::GFP/+; VT30604-GAL4/UAS-mCD8::GFP.
(C) Preferential expression of VT49246-GAL4 in mushroom body αβ neurons (green). The brain was immunostained with DLG antibody (red). The scale bar
represents 50 μm. Genotype was as follow:UAS-mCD8::GFP/+; VT49246-GAL4/UAS-mCD8::GFP. (D) Effects of acute silencing of neuronal activity in
different mushroom body neuron subsets on egg-laying decisions. The temperature shift protocols are shown schematically above each graph. Each value
represents mean ± SEM (n = 10–25, ***P< 0.001. n.s., not statistically significant). Genotypes were as follows: (1) tubP-GAL80ts/+; +/UAS-Kir2.1, (2) +/+;
R16A06-GAL4/+, (3) +/+; VT30604-GAL4/+, (4) +/+; VT49246-GAL4/+, (5) tubP-GAL80ts/+;R16A06-GAL4/UAS-Kir2.1, (6) tubP-GAL80ts/+;
VT30604-GAL4/UAS-Kir2.1, and (7) tubP-GAL80ts/+;VT49246-GAL4/UAS-Kir2.1.

doi:10.1371/journal.pone.0121335.g004
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physiological functions through stimulation of cAMP production [22,27], implying that the
cAMP-signaling pathway is important for decision-making processes during egg-laying site se-
lection in Drosophila.

Both the axons and dendrites of DPM neurons are evenly distributed in different lobes of
the mushroom body, suggesting that DPM neurons receive from and transmit to the mush-
room body [25,28]. It has been reported that the neurotransmissions from DPM or mushroom
body α´β´ neurons are required for olfactory memory consolidation [13,28]. In addition, the
projections of DPM neurons to the α´β´ lobes of the mushroom body are sufficient for stabiliz-
ing olfactory memory [28]. These data suggest the possible reciprocal feedback circuits between
DPM-mushroom body α´β´ neurons for olfactory memory consolidation [13,28,29]. Our data
indicate that AMN release from DPM neurons is critical for normal egg-laying decisions. Si-
lencing the activity in mushroom body αβ neurons also affects this behavior, suggesting that
the neural circuitry downstream of DPM neurons modulates egg-laying decisions (Figs. 3E and
4D). However, the neural activity in mushroom body α´β´ neurons is not required for normal
egg-laying decisions (Fig. 4D), which indicates the involvement of separate subsets of mush-
room body neuron during olfactory memory consolidation and egg-laying decisions. In addi-
tion to the AMN neuropeptide, it has been shown that DPM neurons also release serotonin
(5HT) onto the mushroom body αβ neurons via the action of the 5HT1A receptor [30].
Whether 5HT and the 5HT1A receptor are required for egg-laying decisions is still unknown.

Interestingly, a recent study identified that different subsets of dopaminergic neurons play
opposing roles in egg-laying preference on ethanol substrate in a concentration-dependent
manner [3]. Neuronal activity in the mushroom body α´β´ neurons and the ellipsoid body R2
neurons is also required for normal egg-laying preference for ethanol in female flies [3]. We
speculate that egg-laying decisions on different substrates (i.e. different concentrations of
ethanol-containing foods or sucrose/caffeine containing medium) are mediated by indepen-
dent subsets of mushroom body neurons. Further study is needed to establish the molecular
and neural circuits in the mushroom body involved in decision-making processes during egg-
laying site selection in Drosophila.

Materials and Methods

Fly strains
All the fly stocks were raised on standard cornmeal food at 25°C and 70% relative humidity on
a 12:12 h light: dark cycle. The “Cantonized” w1118 w(CS10) was used as the wild-type control.
The C316-GAL4 (Bloomington stock number: 30830), amn1 (Bloomington stock number:
5954), amn28A, amnC651, amnX8, and UAS-amn+ flies have been described previously
[6,7,21,24]. VT64246-GAL4 and VT30604-GAL4 flies have been described previously [25,30].
VT6412-GAL4 and VT49246-GAL4 flies were obtained from the Vienna Drosophila Resource
Center (VDRC), Vienna Tile. The R16A06-GAL4 (Bloomington stock number: 48709) flies
were obtained from Bloomington stock center. The tubP-GAL80ts (Bloomington stock number:
7019); UAS-Kir2.1, and UAS-mCD8::GFP (Bloomington stock number: 5137); UAS-mCD8::
GFP (Bloomington stock number: 5130) flies were gifts from Dr. Ann-Shyn Chiang.

Whole-mount immunostaining
Fly brain samples were dissected in phosphate-buffered saline (PBS) and fixed in 4% parafor-
maldehyde for 20 min at room temperature. After fixation, the brain samples were incubated
in PBS containing 1% Triton X-100 and 10% normal goat serum (PBS-T) and degassed in a
vacuum chamber to expel tracheal air with six cycles (depressurize to 270 mmHg then hold for
10 min). Next, the brain samples were blocked and penetrated in PBS-T at 25°C for 2 h and
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then incubated in PBS-T containing 1:10 mouse 4F3 anti-discs large (DLG) monoclonal anti-
body (Developmental Studies Hybridoma Bank, University of Iowa) at 25°C for one day. After
washing in PBS-T three times, the samples were incubated in 1:200 biotinylated goat anti-
mouse or rabbit IgG (Molecular Probes) at 25°C for one day. Next, brain samples were washed
and incubated in 1:500 Alexa Fluor 635 streptavidin (Molecular Probes) at 25°C for one day.
After extensive washing, the brain samples were cleared and mounted in FocusClear (CelEx-
plorer) for confocal imaging.

Confocal microscopy
Sample brains were imaged under a Zeiss LSM 700 confocal microscope with a 40X C-Apoc-
hromat water-immersion objective lens. To overcome the limited field of view, some samples
were imaged twice, one for each hemisphere, with overlaps in between. We then combined the
two parallel image stacks into a single dataset with an on-line stitch of ZEN software, using the
overlapping region to align the two stacks.

Behavioral apparatus
First, 2.5 ml of 3% agarose (with 1% v/v of acetic acid and ethanol) was placed into the behav-
ioral chambers (2.4 cm” L X 2.4 cm”WX 1.5 cm”H plastic container). After the 3% hard aga-
rose solidified, 200 μl of sucrose medium (100 mM sucrose in 1% agarose that contains 1% v/v
ethanol) and 200 μl of caffeine medium (100 μM of caffeine in 1% agarose that contains 1% v/v
ethanol) were added to opposite sides of a chamber. A small gap (0.1 cm) was made to separate
two mediums to prevent a diffusion problem between the two mediums. For the sucrose/plain
or caffeine/plain assays, 200 μl of sucrose or caffeine medium were added in one sides and
200 μl of plain medium (1% agarose that contains 1% v/v ethanol) were added to opposite sides
of the chamber.

Behavioral assay
We use a protocol modified from that of Yang et al. [1]. Ten virgin females of specific geno-
types and 20 male wild-type flies were placed in empty food vials that only contained wet yeast
paste for 24 h to allow them to mate. After mating, all the males were removed and three fe-
males were transferred into one behavioral chamber for a 2-h egg-laying preference assay.
After 2 h, all the females were removed and the number of eggs on each side of the chamber
were counted using a light microscope. The calculation of the performance index followed the
method described in Yang et al [1]. The preference index is calculated using the following for-
mula: [(number of eggs on caffeine medium – number of eggs on sucrose medium)/ (number
of eggs on caffeine medium + number of eggs on sucrose medium)]X100. For sucrose/plain
chamber assays (Fig. 2B), the preference index is calculated using following formula: [(number
of eggs on plain medium – number of eggs on sucrose medium)/(number of eggs on plain me-
dium + number of eggs on sucrose medium)]X100. For caffeine/plain chamber assays
(Fig. 2C), the preference index is calculated using following formula: [(number of eggs on plain
medium – number of eggs on caffeine medium)/(number of eggs on plain medium + number
of eggs on caffeine medium)]X100.

Heat shock protocol
For acute Kir2.1 expression with tubP-GAL80ts, flies were kept at 18°C throughout develop-
ment. After eclosion, virgin female flies were collected and housed at 23°C or 30°C for 5 days.
On the 4th day, 10 virgin females and 20 male wild-type flies were placed in empty food vials
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that only contained wet yeast paste for 1 day at either 23°C or 30°C to allow them to mate. After
mating, the female flies were separated frommales, housed at 25°C for an 8-h incubation and
then transferred into the behavioral chamber for the 2-h egg-laying preference assay at 25°C.

Statistics
All the raw data were analyzed parametrically with JMP5.1 statistical software (SAS Institute
Inc.). The data were evaluated by one- or two-way ANOVAs, except for the two-group com-
parisons in Figs. 1B, 2A (+/+ and amnX8), and 2B (+/+ and amnX8), for which paired t-tests
were used. Subsequent pairwise planned comparisons were adjusted for experiment-wise error
(α), keeping the overall α at 0.05. All data are presented as the mean ± SEM.
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