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It has been well established that Foxp3+ regulatory T cells (Treg cells) play a crucial role for
immune repression and tolerance, protecting the body from autoimmunity and
inflammation. Previous studies indicate that intestinal Treg cells are one specialized
population of Treg cells, distinct from those in other organ compartments, both
functionally and phenotypically. Specific external and internal signals, particularly the
presence of microbiota, shape these Treg cells to better cooperate with the gut
ecosystem, controlling intestinal physiology. The integrity of intestinal epithelial barrier
represents a key feature of gut immune tolerance, which can be regulated by multiple
factors. Emerging evidence suggests that bidirectional interactions between gut
epithelium and resident T cells significantly contribute to intestinal barrier function.
Understanding how Treg cells regulate intestinal barrier integrity provides insights into
immune tolerance-mediated mucosal homeostasis, which can further illuminate potential
therapeutic strategies for treating inflammatory bowel disease and colon cancer.
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INTRODUCTION

Regulatory T cells (Treg cells) are a specialized T cell subset which play a critical role in controlling
immune homeostasis and peripheral tolerance (1, 2). Intestinal Treg cells mainly develop and
differentiate in the thymus as thymic Treg (tTreg) cells, or can be induced in the periphery as
peripheral Treg (pTreg) cells (3, 4). tTreg cells are generated after self-antigen recognition by T cell
receptor in the thymus while pTreg cells are derived by non-self-antigen from naïve T cells. While
these two types of Treg cells show complementary functions and different genetic signatures, they
both express master transcription factor Foxp3 (5, 6). The function of Foxp3+ Treg cells for gut
physiology has been documented in patients with immunodysregulation polyendocrinopathy
enteropathy X-linked (IPEX) syndrome who lost the Treg cells (7). These patients exhibit
symptoms of spontaneous inflammation in multiple organs, with most severe disorders on the
mucosal surfaces, including the gastrointestinal (GI) tract (8). Plus, Foxp3 deficient mice (Scurfy) as
well display severe autoimmunity in the gut (5, 9). These findings indicate that Treg cells are crucial
for the intestinal immune tolerance. Considering the distinct antigen repertoires, intestinal pTreg
cells are mainly responsible for immune tolerance against environmental insults, whereas tTreg cells
protect the tissue from autoreactive responses.
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The intestinal epithelium represents the largest interface
which protects the body from potential danger while sensing
external milieu. The monolayer of intestinal epithelial cells
(IECs) form a physical barrier to segregate external
environment from the intestinal tissues. Given the constant
challenges and insults from dietary and microbial antigens, the
integrity of intestinal epithelium barrier is a key feature of gut
homeostasis (10). In addition to immune suppression, newly
emerging evidence suggests that intestinal Treg cells also exert
function for epithelium tissue repair and mucosal barrier
maintenance (11). Hence, to elucidate how Treg-IEC crosstalk
participates in gut physiology and pathophysiology is essential
for the comprehension of tissue adaptation of Treg cells in the
intestinal microenvironment.

In this Review, we will summarize and discuss the current
understanding of how mutualism between Treg cells and IECs
contribute to GI physiology and immune tolerance.
GUT TREG SUBSETS

In general, tTreg cells infiltrating in lamina propria (LP)
inductive site origin from those tTreg cells propagating in
peripheral blood, while pTreg cells accumulating in LP
inductive site are mainly comprised by locally differentiated
naïve T cells (12). The surface homing molecules CCR7 and
CD62L direct tTreg and naïve T cells migrate into gut-associated
lymphoid tissue (GALT) or gut-draining mesenteric lymph
nodes (mLN). In these lymphoid compartments, tTreg cells
expand when expose to unknown signals (13) and a substantial
proportion of the naïve T cells differentiate into pTreg cells.
Thereafter tTreg and pTreg cells migrate into LP effective site
facilitated by a4b7 integrin and CCR9 signaling (14, 15). Unlike
tTreg cells, pTreg cells expand inside of LP after exposed to
commensal and dietary antigens (13). With an exception of the
common pTreg homing route, there remain some pTreg cells
found in LP, differentiated by TGF-b and retinoic acid (RA)
producing eosinophils (16). In concert with freshly infiltrated
tTreg and pTreg cells, there is also a subset of memory Treg cells
resident in LP expand and exert immune suppression functions
when induced in the gut. These CD103 expressing memory Treg
cells are generated in a previous induction event and quiescent to
exhibit tissue resident feature to join in the Treg pool to maintain
mucosal homeostasis (17).

Although tTreg and pTreg cells are both able to exert
immunosuppression function in the gut, they function
independently and synergistically to maintain mucosal
tolerance. tTreg cells and pTreg cells have different TCR
repertoires, and thus response to different antigens. tTreg cells
normally recognize self-antigen, and therefore response to those
exposed antigens expressed by IECs, particularly under certain
intestinal perturbations such as sterile injuries (18). pTreg cells
normally recognize alien-antigens such as dietary metabolites
and microbe-antigens and expand at the induction site (19, 20).
In addition, strong TCR affinity facilitates the generation of a
small portion of cross-react Treg cells with not fully elucidated
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reasons (18), including self-antigen responding pTreg cells (21)
and foreign antigen responding tTreg cells (22). The variety of
TCR repertoires covered by tTreg cells and pTreg cells are both
required in regulating intestinal immune responses. It has been
shown that adoptive transfer of tTreg cells alone is not sufficient
to fully rescue Foxp3 deficiency during murine model of colitis,
unless Foxp3–CD4+ T cells are co-transferred, suggesting that
both tTreg and pTreg cells are required for optimal protection
during intestinal inflammation (23, 24). These findings shed light
on developing Treg transfer therapy for potential treatment of
human IBD patients.
IEC-MEDIATED INTESTINAL TREG CELLS
INDUCTION AND FUNCTION

IEC-Expressed MHC-II Independent
Intestinal Treg Cells
Different studies have shown that intestinal Treg cells can be
controlled via both IEC independent and dependent manners.
Interaction between IEC and dendritic cell (DC) facilitates
generation of tolerogenic DC via TGF-b and RA, which
promotes intestinal Treg cells differentiation and restrains
inflammation of colitis (25). Meanwhile, IECs are known to
secret exosomes to the extracellular environment, which induce
the tolerogenic properties to DCs for the generation of Treg cells
in the gut (26). Additionally, other IEC-derived factors such as
cytokines are as well known to modulate Treg cells
differentiation and function. For instance, IEC-derived IL-18
modulates effector T cell differentiation in the gut which
indirectly influence Treg function (27). Another study
indicates that during intestinal tumorigenesis, IECs promotes
specific subset of KLRG1+GATA3+ Treg cells accumulation
mediated via IL-33 (28).

IEC-Expressed MHC-II Dependent
Intestinal Treg Cells
Complement to the DC studies, intestinal Treg cells can also be
directly induced by MHC class II (MHC-II) on IECs. It has been
shown that both human and mouse IECs express MHC-II
molecules (29–32). IECs single cell survey identifies the
expression of MHC-II on IECs (33), suggesting that IECs
function as non-conventional APCs (34). The induction of
MHC-II on IECs has been demonstrated to be IFN-
g−dependent (35–39). It has been reported that IEC-derived
MHC-II is sufficient to induce effector CD4+ T cells activation in
GvHD model (37). Several studies have implicate that IECs
preferentially promote suppressive Treg cell responses (38).
Loss of MHC-II on IECs results in elevated levels of colitis
associated with reduced Treg cells (34, 38). The expression of
antigens by IECs leads to the proliferation of antigen-specific
Treg cells in the intestine, which is further shown to be MHC-II-
dependent (40). Moreover, intestinal mononuclear phagocytes
(MNPs) have been reported to acquire MHC-II from IECs,
subsequently assisting the generation of Treg cells (41).
However, contradictory data show that MHC-II molecules are
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dispensable for T cell activation during murine colitis (42),
raising the possibility that IEC-mediated T cell activation is
context-dependent. Additional to IEC-mediated Treg cell
expansion, recent study demonstrates that intestinal Treg cells
are converted into CD4+Foxp3– IELs to control intestinal
inflammation, indicating the critical role of IECs in controlling
environmental adaptation of Treg cells in the gut (43). IECs from
small intestine also provide a unique IL-2 independent milieu for
the maintenance and survival of Treg cells (44). Altogether, the
microenvironment of epithelium calibrates cellular and
functional properties of Treg cells to cope with dynamic
change in the gut.
MICROBIOTA-DERIVED INTESTINAL
TREG CELLS

IECs are critical for microbial-mediated T cell differentiation and
accumulation. It has been long established that segmented
filamentous bacteria (SFB) promote intestinal Th17 cell
differentiation which requires the direct adhesion of SFB on
epithelium (45–47). The SFB-IEC interaction leads to the
production of serum amyloid A (SAA) from IECs which is
critical for Th17 cell differentiation (48). Loss of such
interaction compromises the induction of Th17 cells,
indicating IEC plays a role of a key mediator in T cell
responses to microbes (48). Similarly, gut Treg cells have also
been shown to be induced from naïve T cells by antigens derived
from commensal bacteria, which are known as inducible Treg
cells (49). It has been reported that commensal bacteria such as
Clostridium species and B. fragilis are able to induce peripheral
Treg cells via IEC dependent or independent manners (50, 51).
The Clostridia colonize the mucus layer without direct adhesion
to IECs. The colonization of Clostridium species is found to
impact on IECs for the production of TGF-b and indoleamine
2,3-dioxygenase (IDO), which could contribute to the induction
of colonic Treg cells (52, 53). More importantly, de novo
generation of intestinal Treg cells may require synergistic
effects with different Clostridia species, given the fact that a
single species is insufficient in polarizing Treg cells (54).
Additional to TGF-b and IDO-derived from IECs, Clostridia
may also induce Treg cell generation via producing short chain
fatty acids (SCFAs) by diffusing through the epithelium to LP
(55–58). Moreover, gut bacteria also generate secondary bile
acids which can modulate the balance of Th17 and pTreg cells for
intestinal immune homeostasis. (59). While Clostridia species
are known to regulate Treg cells via IEC dependent manners,
other microbiota species including Lactobacil l i and
Bifidobacteria, can also induce and activate colonic Treg cells
by IEC independent manners (50, 60–62). It is now commonly
recognized that microbiota modulates T cell differentiation and
function in the gut for intestinal physiology (63). Given that
Clostridia and Bacteroides species are two prominent members
of the mammalian gut microbiota, such microbiota-mediated
Treg cell regulation could be one machinery for the maintenance
of gut homeostasis. Recent study further elucidates that mucosa-
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associated fungi also modulates gut Th17 responses for intestinal
barrier function (64). Specifically, both Candida albicans and
Staphylococcus aureus are identified to be strong inducers of
human Th17 responses (65, 66). These findings implicate that T
cell differentiation and function could be regulated by a diverse
community of bacteria, viruses, protozoa, and fungi within the
GI tract (67). Given close proximity of gut microbiota and
epithelium barrier, IECs play a critical role in bridging the
crosstalk between different microbes and hosts for immune
regulation in the gut. The precise mechanisms of how IECs
collaborate with different microbial for immune tolerance is still
under investigation, including Treg cells generation
and function.
DIET-DERIVED INTESTINAL TREG CELLS

Dietary components largely influence the development and
function of intestinal Treg cells, which can be mediated by
IEC-dependent and -independent manners. Dietary antigens
are known to directly induce RORgt+ pTreg cells which are
essential for the induction of oral tolerance (19, 68). Dietary
vitamin A-derived retinoic acid regulates the differentiation and
accumulation of Treg cells, which exerts both pro- and anti-
inflammatory functions (69, 70). The metabolite of vitamin D3,
1,25-dihyroxyvitamin D3 can promote Treg cell differentiation
(71). Interaction between vitamin B9 and its receptor (folic acid
receptor 4) on Treg cells facilitates colonic Treg cell survival (72),
protecting the mice from colitis (73). Additionally, vitamin C
transporter was found to highly expressed on Treg cells. Vitamin
C treatment leads to impaired suppressive function of tTreg cells,
whereas it promotes pTreg cell generation both in vitro and in
vivo (74). High salt diet (HSD) has also been reported to promote
pathogenic Th17 responses via SGK1-Foxo1 signaling pathway
while dampening Treg cell function, enhancing the susceptibility
of autoimmunity and inflammation (75–78). Moreover, it has
been suggested that HSD modulates gut microbial responses for
proinflammatory T cells generation in human (79). And clinical
study shows that dietary sodium intake positively correlates with
the severity of autoimmunity (80). Further, another study
demonstrates that dietary-derived sugar, D-mannose, induces
Treg cell generation in both human and mouse cells by
promoting TGF-b activation. Supplement of D-mannose
represses proinflammatory responses in animal models of
autoimmunity (81). Moreover, dietary fibers can be fermented
and converted into SCFAs through gut microbiota. Various
studies suggest that SCFAs stimulate Treg cell differentiation,
expansion and accumulation through activation of different G
protein-coupled receptors such as GPR43 (58), GPR109A (82)
and GPR15 (83). Tryptophan is another critical food component
as an essential amino acid. It can be metabolized to kynurenin
through IECs which modulates Treg cell development (84).
Tryptophan is also the precursor of vitamin B3. Vitamin B3
binds to its receptor GPR109A on macrophages and DCs in the
gut, leading to differentiation of Treg cells. Loss of GPR109A
results in elevated levels of intestinal inflammation (82).
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Collectively, these pieces of data indicate that both dietary
components modulate Treg cell generation and function in the
gut, providing insight of dietary-based therapies in controlling
intestinal inflammation.
TREG CELLS MODULATE INTESTINAL
EPITHELIUM BARRIER FUNCTIONS

Foxp3+ Treg cells play a critical role in regulating IEC
homeostasis and intestinal barrier integrity. Although various
of cellular sources contribute to intestinal IL-10, as one major
effector molecule from Treg cells, Treg cell-derived IL-10 has
been demonstrated to play a key role for the maintenance of
mucosal immune homeostasis (85, 86). Recent study indicates
that Treg cells are required for intestinal stem cells (ISC) renewal
via IL-10. Loss of Treg cells results in decreased ISC frequency
with elevated levels of IEC differentiation (35). T cell-derived IL-
10 has been reported to regulate the IECs function via inhibiting
their fucosylation (87). Further, IL-10 is demonstrated to
suppress Fas-mediated IEC apoptosis (88), and protects IEC
from endoplasmic reticulum stress for epithelium barrier
integrity (89, 90). Given the immune regulatory function of
Treg cells in the gut, they are thus able to control epithelium
barrier function indirectly by impacting other immune cells. For
instance, it is known that Treg cells control the abundance of
Th17 cells in the gut. And intestinal Th17 cells-derived cytokines
such as IL-17 and IL-22, are beneficial for mucosal barrier
function (91–93). Moreover, a previous study indicated that
Treg cells improve intestinal barrier function by regulating
neutrophil infiltration during heatstroke (94). Treg cells have
also been shown to enhance intestinal barrier function by
repressing type 2 responses during food allergy (95). The
process of generating pTreg cells from naïve T cells carrying
environmental antigen specific TCRs is important since it can
prevent these T cells from eliciting harmful immune responses.
pTreg cell deficient mice exhibit spontaneous inflammation in
the GI tract associated with altered microbiota (96). Hence, the
reciprocal interactions between IEC and Treg cells are delicately
Frontiers in Immunology | www.frontiersin.org 4
balanced by the gut microenvironment while controlling
intestinal barrier physiology.
CONCLUSIONS

Intestinal Treg cells are critical for establishing gut tolerance and
host defense. The heterogenicity of these Treg cells are beneficial
for protecting the intestinal tissue from various sources of insults.
Importantly, the IECs play a key role in connecting
environmental cues to tissue immune system for the induction,
expansion and function of Treg cells. While the role of IEC as
non-canonical APC has been studied, further investigation is still
required to illustrate the molecular mechanism of IEC-Treg cell
crosstalk. These include correlation of spatial expression pattern
of MHC-II on IECs with Treg cell distribution, intracellular
signaling pathways of antigen process and presentation by IECs
and how specific mediators produced by IECs mediate Treg cells
generation and function. Moreover, because of the heterogeneity
of IEC population, it will be essential to interrogate in detail that
whether and how Treg cells regulate different enterocyte subsets
for mucosal neuroendocrinal responses beyond intestinal barrier
function. The understanding of the cellular and molecular
mechanisms responsible for reciprocal regulation between Treg
cells and IECs could provide new insights into how Treg cells
control tissue homeostasis on different barrier surfaces for
development of therapeutic interventions.
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