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Effect of heat input on interfacial 
characterization of the butter joint 
of hot‑rolling CP‑Ti/Q235 bimetallic 
sheets by Laser + CMT
Z. Y. Zhu1, Y. L. Liu1, G. Q. Gou1*, W Gao2 & J. Chen1,3

Composite structures made of 2 mm‑thick titanium and 10 mm‑thick carbon steel are widely used 
in infrastructures such as long‑distance gas transportation. However, cracking, which is caused by 
intermetallic compounds (ICs), is a dominate failure mode in welds of this structure. Thus, a common 
way to improve the in‑service life of is reduce the number of ICs. In this paper, we employ a novel 
hybrid welding method to fabricate composite structures of  TA2 titanium and Q235 carbon steel. 
Specifically, Ti and carbon steel is welded by laser and double Cold Metal Transfer (CMT) welding, 
respectively. The microstructure near the interface of Ti and steel is then examined using SEM, EBSD, 
EDS, with emphasis on the ICs in terms of chemical elements and morphologies. Results show that 
FeTi and  Fe2Ti are the main ICs near the interface, and responsible for the failure of the welds. The 
effect of welding heat input on the formation of ICs is investigated as well. Results show that ICs are 
smaller when the heat input is low. Under low heat input circumstance, the tensile strength of the 
weld can reach up to 420 MPa.

Titanium alloy is one of the good structural materials with low density, high strength, and suitable anti-corrosion 
properties, however, it lacks the extensive use in the noble material  characterization1. Carbon steel alloy is a 
popular structural material with good mechanical properties, weldability, heat stability, and better  economics2. In 
some extreme environmental condition like petroleum pipeline transportation and equipment  manufacturing3, 
the structures must possess a combination of performances and based on this, the CP-Ti/Q235 bimetallic sheets 
was made by hot-rolling.

The welding technology is one of the most common methods to connect titanium alloy with steel materials, 
such as diffusion  welding4–6, Tungsten inert gas (TIG)  welding7,8, friction  welding9–13,  soldering14, electron beam 
 welding15–20, and laser arc welding etc.21–23. However, due to large differences in the physical and crystalline 
chemical properties of the titanium and steel alloys (e.g., specific heat capacity, Ti: 539.1 J/kg·K, Fe: 481.5 J/kg·K; 
thermal conductivity, Ti:13.8 W/m·K, Fe:66.7 W/MGk; expansion factor, Ti: 8.20 ×  10–6·K-1, Fe:11.76 × 10–6·K−1), 
consequence large distributed residual stress after welding process and would induce cold cracks and delayed 
cracks or exfoliation of the compound layers. This would generate  Fe2Ti, FeTi and other brittle alloys compounds 
and carbides which lead to the difficulty of the welding  process24–31.

In this field, most of the research has been focused on the role of Titanium alloys with stainless steels. Com-
parative analysis of the previous literature led us to conclude that  Fe2Ti4O,  Fe2Ti, FeTi and other brittle alloys 
compounds and carbides would also be generated. So, the strength of the welded joints is not very strong and 
decreases when the welding temperature increases. Some scientists have added Cu, Ag, Mg, Mo and their com-
pounds as intermediate transition layers to weld titanium alloys with stainless  steels32–36. Their results showed 
that the quantity of brittle compounds is decreased but it cannot be eliminated.

Laser arc or laser-MIG arc welding is the most favorite welding technology which could be used to connect 
dissimilar metals with its better properties of higher power density, larger ratio of depth-to-width of the welds, 
and lower welding deformation. Cold metal transmission (CMT) welding technology has lower heat input which 
avoids drops penetration of the structures and realizes no splash droplet transition and better metallurgical 
interconnection.
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In order to solve the issue of the west to east natural gas transmission, scientists of Pangang Group Research 
Institute invented new TA2/Q235 bimetallic sheet structures with hot rolling technology. The thickness of the 
titanium alloy layer has been used as 2 mm along with the 10 mm thickness of the steel alloy layer.

In this work, laser arc welding with CMT welding technology has been optimized with different welding 
technology tests and employed to systematically investigate the connection of titanium-carbon steel compound 
structures, the microstructures, distribution of brittle metal alloy compounds, and the thermal strain change 
process.

Results and discussion
Macrostructure and mechanical properties. The optical macrographs of the sectioned area of the 
samples are shown in Fig. 1. Figure 1a,b shows the macrographs of the Q235 carbon steel welded joints. The 
fusion zone was in the perfect forming condition in the first parameter which had lower heat input, weld width: 
13.04 mm, penetration: 9.921 mm and no reinforcement. For the second parameter, weld width: 12.57 mm, 
penetration: 10.27 mm, and reinforcement: 2.3 mm. No any large defect was examined. Figure 1c shows the mac-
rographs of the titanium welded joints. The weld width is about 3.50 mm, the weld width of the back is 1.09 mm, 
and the bite edge sharpness is 1.09 mm.

Figure 1d shows the results of tensile tests measured for joints processed in different parameters, the ultimate 
tensile strength (UTS) of the base metal (BM) is slightly higher than that of joints, which is reached 497 MPa. The 
UTS of the joint in lower heat input (parameter 1) is 420 MPa, which is higher than the UTS of the joint processed 
in parameter 2(397 MPa). The total elongations of BM and both of joins is 13.2%, 13.8% and 13.9%, respectively.

Microstructural and phase analysis. Optical micrographs of the sectioned area on the Q235 side of the 
steel are shown in Figs. 2 and 3 where the first welding parameter and second welding parameter are shown, 
respectively.

Ferrites and pearlites are main microstructure for the two welding parameters. The needle-like eutectoid fer-
rite dissolved along with the austenite grain boundary and the crystal are pearlite in the weld zone, see Figs. 2a,b 
and 3a,b. The microstructure size of the second layer is much larger than the first layer. For the fusion line micro-
structures, they are typically distributed just like Widmannstatten structure ferrite with slight decarburization 
from the center zone. However, the intra-crystalline are acicular ferrite (blue arrow) with pearlite (black arrow) 
from the left side of the Q235 steel. Widmannstatten structure ferrite develops intra-crystalline growth (red 
arrow). Moreover, it distributes the proeutectoid ferrite along with grain boundary however, the intra-crystalline 
are thin ferrite with less Widmannstatten structure ferrite, see Figs. 2c and 3c. The microstructure size of the 
HAZ zone is much larger than that of the base metals, distributed with less Widmannstatten structure ferrite 
and thin ferrite.

Optical micrographs of the sectioned area on the side of the TA2 are shown in Fig. 4.
The weld (Fig. 4a) is α-Ti with wattle and needle-like microstructure. The bulky columnar crystal of differ-

ent growth direction and size do not have enough time to expand along the sides, during the solidification and 
crystallization of the rapid cooling speed of single laser welding. Moreover, this shows the needle-like micro-
structure. During the high-temperature region, the β-Ti bulky columnar crystal microstructures change to α-Ti 
martensite and show wattle microstructure.

The fusion zone is composed of battle, needle-like and zigzag α ferrites as shown in Fig. 4b,c. The micro-
structures undergo phase recrystallization and the grains of the coarse-grained regions (CGR), near the weld 
region grow rapidly. However, the grains in the fine-grained regions (FGR) which are far away from the weld do 
not grow efficiently. The HAZ zone is zigzag α ferrites (Fig. 4d) with little larger grain size than that of the base 
metals and the microstructures changed to martensite, near the fusion line.

Figure 5 are the results of X-ray diffraction pattern of the selected areas near the bonding surface and close 
to the base layer(Q235), composite layer (TA2) respectively, which confirms the main occupying element near 
the base layer of the joint is α-Fe, and near the composite layer is α-Ti, and FeTi and  Fe2Ti are the main ICs near 
the interface.

Phase distribution in the area close to the interface of joints made by the two welding parameters is shown 
in Fig. 6.

In case of first welding parameter, the Fe phase content is 46.5 wt%, where FeTi is 13.9%,  Fe2Ti 17.7%, and 
brittle compounds are 31.6%, where Ti is 21.9%. For the second welding parameter, the Fe phase content is 45.3 

Figure 1.  The macrostructure of welded joints. (a) Optical image of the sectioned area of the first parameter. 
(b) Optical image of the sectioned area of the second parameter. (c) The macrographs of the titanium welded 
joints. (d) The mechanical behavior of joints made of CP-Ti/Q235 bimetallic sheets in different parameters.
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wt%, where FeTi is 10.7%,  Fe2Ti 24.3% and brittle compounds are 35.0% with 24.3% Ti. The high content of 
brittle compounds is due to increased heat input which promotes the process of diffusion and metallurgy in the 
interface of the second welding parameter.

The grain size of the two-welding parameter is shown in Fig. 7.
The mean grain size of α-Fe is 6.5 um in the first welding parameter while it is 19.8 um in the second welding 

parameter. About 35.4% grains size is distributed from 0 to 5um, 15.6% from 5 to 10 um and some grains size 

Figure 2.  Microstructure of the Q235 steel side for the first welding parameter.

Figure 3.  Microstructure of the Q235 steel side for the second welding parameter.
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nearly reached to about 30um. For the second welding parameter, the grains size is distributed from 5 to 20um 
and some grains size reach to 50 um. About 53.4% grains size of Ti is distributed from 0 to 5um, 22.6% grains 
size is distributed from 5 to 10um and a maximum size of 30um is reached for the first welding parameter. In 
case of second welding parameter, about 53.1% grains size is distributed from 5 to 10um. The mean grains size 
of α-Ti for the two welding parameters are 7.2 and 8.5um.

About 50.2% grains size of FeTi is distributed from 0 to 5um and some grains size reached to 15um. For the 
second welding parameter, about 46.7% grains size is distributed from 5 to 10um while 10 to 30um are a uniform 
distribution. The mean size of the FeTi of two welding parameters is 2.3 and 15.6um. For the Fe2Ti, the mean size 
of the two welding parameters is 4.9 and 9.7um. About 96.9% size is distributed from 2 to 6um and some grain 
size reached to about 12um for the first parameter. However, 76.4% grains size is 6 to 14um and a maximum size 
of 40um is achieved for the second parameter.

The recrystallization distribution and volume statistics of different phases are shown in Fig. 8.

Figure 4.  Microstructure of the TA2 side. (a) Weld, (b) fusion zone, (c) fusion zone and (d) HAZ zone.

Figure 5.  X-ray diffraction pattern of the selected areas in joint: (a) close to the base layer (Q235). (b) Close to 
the base layer (TA2).
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For the first and second parameters, the recrystallization volume ratio of Fe phase are 13.3 and 16.0%, for 
FeTi 10.7 and 25.4%, and for the  Fe2Ti phase are 76.2 and 84.4%, respectively. This data was calculated with the 
Channel 5 software.  Fe2Ti phase distributes with uniform equiaxial grains shape to about full recrystallization. 
Furthermore, the uniform grains turn into steady flow state at the true stress–strain curves where some extent 
of deformation exists, which shows the dynamic mode recrystallization mechanism of  Fe2Ti. on the other hand, 
in case of Fe and FeTi phases, the low angle boundary (boundary orientation difference ≤ 15°) decreased but 

Figure 6.  Phase map of the two welding parameters. (a) First welding parameter. (b) Second welding 
parameter. Red color: Ti, Green color: FeTi; Yellow color: Fe2Ti; Blue color: Fe.

Figure 7.  Grain Size of (a)  Fe2Ti, (b) FeTi, (c) α-Fe, and (d) α-Ti grain.
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high angle boundary (boundary orientation difference ≥ 15°) increased with the increase of heat input. This led 
us to conclude that the sub-boundary and dislocation density decreased and show static mode recrystallization 
mechanism of the Fe and FeTi.

From the calculation of HKL-Channel software, the Fe phase volume ratio (Fig. 9a–d) at 2° ~ 15° section is 
7.4 and 6.9%, separately, while the mean orientation difference is 24 and 33.2%, separately. The volume ratio 
of Ti phase (Fig. 9a,b,e,f) at 2 ~ 15° section is 5.3 and 3.5%, separately, while the mean orientation difference 
are 28.2 and 34.7%, separately. In case of the peak value at 60° orientation difference will show crystalline or 
close-packed hexagonal structure of Ti The volume ratio of FeTi phase (Fig. 9a,b,g,h) at 2 ~ 15° section are 4.2 
and 10.3% separately, while the mean orientation difference are 26 and 29.2%, separately. For the  Fe2Ti phase 
(Fig. 9a,b,i,j), there exist high angle boundary and the volume ratio at low angle boundary are 0.51 and 0.33%, 
respectively and the mean orientation difference are 53.5 and 56.2%, respectively. It can be concluded that the 
change of welding parameters would promote different recrystallization extent which would change low angle 
boundary to high angle boundary at the sub-grain rotation, responsible for the disappearance of sub-grains. So, 
the density of dislocation defects decreased with the increase of heat input.

The kernel average misorientation (KAM) map in Fig. 10a,b shows that the local plastic strains of the joints 
in two parameters, the plastics strain is concentrated within the grain boundaries, and presenting an uneven 
"strip" type distribution. The mean residual strain of Fe phase (Fig. 10c) is 2.12 and 2.25 separately, the mean 
residual strain of FeTi (Fig. 10d) phase is 1.31 and 1.77 separately, the mean residual strain of  Fe2Ti (Fig. 10e) is 
0.86 and 1.20 separately, the mean residual strain of Ti (Fig. 10f) is 1.48 and 2.25 separately. The residual strain 
are mainly distributed in the inner of the grains with great inhomogeneity, the grains of larger residual strain 
interconnected with each other and showed inhomogeneity strip distribution.

Discussions
As can be seen  from37 Fig. 11a, there are some favorable factors which form Ti (for TA2: more than 99wt% tita-
nium and the fusion point is 1677 °C) and Fe (for Q235: more than 99 wt% Fe and the fusion point is 1537 °C) 
compounds. Both the α-Fe and α-Ti are evenly and non-directionally distributed (Fig. 11b). When the welding 
process is undergoing, the α-Fe diffuses into TA2 side and the α-Ti diffuses to Q235 side. With the chemical 
reaction of α-Fe with α-Ti, promoted by the reaction energy, generates high FeTi,  Fe2Ti (Fig. 11c), and other 
brittle compounds. As the  Fe2Ti (Fe ion is  Fe3+, Ti ion is  Ti6+) is more stable so, need more energy than that of 
FeTi (Fe ion is  Fe2+, Ti ion is  Ti2+). Finally, the volume ratio of  Fe2Ti for the second welding parameter is higher 
than that of the first welding parameter.

Figure 8.  Recrystallization distribution and volume statistics of different phases. (a) First welding parameter. 
(b) Second welding parameter, (c) Fe recrystallization volume statistics. (d) FeTi recrystallization volume 
statistics. (e)  Fe2Ti recrystallization volume statistics. In this graph, Blue color is for recrystallized grains, Yellow 
for un-recrystallized grains, and Red for deformed grains.
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Conclusions
In this work, we have employed laser arc welding and CMT welding technology for the fabrication joints of 
composite structures made of 2 mm-thick titanium and 10 mm-thick carbon steel. We have investigated the 
macrostructures, microstructures, Phase distribution, grain morphology and size of the weld interface, recrys-
tallization volume content and grains boundary orientation difference distribution in the sectioned welds, and 
thermal strain change process through EBSD technology. The following main conclusions are drawn:

1. With the help of appropriate laser arc welding parameter for TA2 and CMT for Q235 carbon steel, the struc-
tures of new titanium-carbon steel compounds can be well welded, the joints were fabricated successfully by 
control the heat input. The UTS of the joint in lower heat input (parameter 1) is 420 MPa, which is higher 
than the UTS (397 MPa) of the joint processed in parameter 2.

2. FeTi and  Fe2Ti are the main ICs near the interface in welding zone, the content of ICs is lower and grain size 
is smaller in the joint processed in parameters with lower heat input, and which is the reasonable for the 
more excellent mechanical properties.

3. The fraction of recrystallization volume of α-Fe phase, FeTi phase and  Fe2Ti phase are all added as the 
increase of heat input. The recrystallization percentage of  Fe2Ti phase is significantly higher than that of α-Fe 
phase and FeTi phase, and even nearly complete recrystallization of grains. It suggested that the recrystal-
lization mechanism of  Fe2Ti phase may be different from that of Fe phase and FeTi phase.

4. Thermal strain reflected directly the residual stresses in the joints, the residual strain is smaller in the joint 
processed by the parameters with lower heat input, and which is mainly distributed around the grain bounda-
ries of ICs (FeTi and  Fe2Ti).

Methods
The titanium-steel compound plates are used for the application (Fig. 12a,b) of natural gas transmission, from 
the west to east, made of single laser arc and CMT process. The carbon steel layer was first made from TPS-4000 
CMT welding technology in two layers and the welding wire is ER50-6. After that the titanium layer TA2 was 
made from a TruDisk 10002 continuous wave disc type laser and a Transpuls Synergic 4000 welding machine 
(Fig. 12c,d) and 2 KW power was used (welding speed: 30 mm/s, laser angle: 90, gas flow speed:40 L/min). The 
welding wire is ERTi-2. “V” shaped grooves with 0.5 mm gaps were used with an angle of about 40° ~ 60°. The 
CMT welding parameters of the carbon steel were divided into two systems. The detailed parameters are listed 
in Table 1.

Optical macroscopy, microscopy, phase distribution, grain morphology and size, recrystallization volume 
content, and grains boundary orientation difference distribution were carried out for microstructure analysis. 
The samples used for optical microscopy were prepared according to the standard procedure and etched via 

Figure 9.  Grains boundary diagrams of different phases. (a,b) The grain boundary diagrams of process 
parameters 1 and 2, respectively. (c,d) Fe orientation diagrams of process parameters 1 and 2, respectively. (e,f) 
The Ti orientation diagrams of process parameters 1 and 2, respectively. (g,h) The FeTi orientation diagrams of 
process parameters 1 and 2, respectively, and (i,j) is the Fe2Ti orientation diagrams of process parameters 1 and 
2, respectively.
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Figure 10.  Plastic strain change of different phases: (a) Grain boundary diagram of the first parameter (b) 
Grain boundary diagram of the second parameter (c) plastic strain of phase Fe (d) plastic strain of phase FeTi 
(e) plastic strain of phase  Fe2Ti (f) plastic strain of phase Ti.
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different reagent. In case of carbon steel, the reagent was 4% volume content nitric acid alcohol while for the 
titanium, the reagent was 3 mL HF + 10 ml  HNO3 + 87 mL  H2O.

Phase distribution, grain morphology and size of the weld interface, recrystallization volume content 
and grains boundary orientation difference distribution in the sectioned welds were analyzed via electron 

Figure 11.  Schematics representation of formation process of FeTi and  Fe2Ti compounds. (a) PHASE diagram 
of Ti-Fe and their compounds. (b) Final elements distribution of Titanium and carbon steel compound welded 
joints. (c) Magnification of (b) at the marked zone.

Figure 12.  Schematic design for the investigation of titanium alloys with carbon steel compound plates. (a,b) 
From west to east natural gas transmission and the titanium alloys with carbon steel compound plates. (c) LAW 
equipment. (d) CMT equipment. (e) Schematic of LAHW process and location of sample cutting.
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back-scattered diffraction (EBSD) on an SEM (FEM 6500). The thermal strain change process was also analyzed. 
The EBSD samples were electrolytically polished in 5% perchloric acid–ethanol solution for 45 s.

The cutting of sample for microstructure analysis was located as shown in Fig. 12e.

Data availability
The data that support the findings of this study are available from the corresponding author upon reasonable 
request.
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