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A B S T R A C T

Purpose: Osteoarthritis (OA) is a prevalent cause of disability in older adults. Identifying diag-
nostic markers for OA is essential for elucidating its mechanisms and facilitating early diagnosis.
Methods: We analyzed 53 synovial tissue samples (n = 30 for OA, n = 23 for the control group)
from two datasets in the Gene Express Omnibus (GEO) database. We identified differentially
expressed genes (DEGs) between the groups and applied dimensionality reduction using six
machine learning algorithms to pinpoint characteristic genes (key genes). We classified the OA
samples into subtypes based on these key genes and explored the differences in biological func-
tions and immune characteristics among subtypes, as well as the roles of the key genes. Addi-
tionally, we constructed a protein-protein interaction network to predict small molecules that
target these genes. Further, we accessed synovial tissue sample data from the single-cell RNA
dataset GSE152805, categorized the cells into various types, and examined variations in gene
expression and their correlation with OA progression. Validation of key gene expression was
conducted in cellular experiments using the qPCR method.
Results: Four genes AGMAT, MAP3K8, PER1, and XIST, were identified as characteristic genes of
OA. All can independently predict the occurrence of OA. With these genes, the OA samples can be
clustered into two subtypes, which showed significant differences in functional pathways and
immune infiltration. Eight cell types were obtained by analyzing the single-cell RNA data, with
synovial intimal fibroblasts (SIF) accounting for the highest proportion in each sample. The key
genes were found over-expressed in SIF and significantly correlated with OA progression and the
content of immune cells (ICs). We validated the relative levels of key genes in OA and normal
cartilage tissue cells, which showed an expression trend consistency with the bioinformatics result
except for XIST.
Conclusion: Four genes, AGMAT, MAP3K8, PER1, and XIST are closely related to the progression
of OA, and play as diagnostic and predictive markers in early OA.

1. Introduction

Osteoarthritis (OA) manifests as a chronic condition characterized by the deterioration of joints, skeletal damage, and the
degradation of articular cartilage [1]. As the condition progresses to later stages, it incapacitates approximately 53 % of those affected,
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profoundly influencing their mobility and overall quality of life [2]. Observations indicate a continuous rise in OA prevalence globally.
Over the past two decades, the incidence of OA has escalated by 113.25 %, with an annual growth rate of 0.12 % [3]. Although
pharmaceutical treatments and physical therapies can ameliorate symptoms and slow the progression of OA, there is currently no cure,
according to guidelines from the American College of Rheumatology/Arthritis Foundation [4]. Recent advances in single-cell RNA
sequencing (scRNA-seq) have shown that OA patients’ femoral cartilage contains chondrocyte profiles that differ significantly from
those of healthy individuals [5]. Additionally, new research has highlighted the importance of three disulfidptosis regu-
lators—NCKAP1, OXSM, and SLC3A2—in the individualized assessment and treatment of OA [6]. Consequently, the importance of
early detection and preventive strategies is underscored.

OA’s emergence is linked to various risk factors, such as obesity, aging, excessive physical activity, inflammation, genetic pre-
dispositions, and physical trauma. Although these factors are recognized, the definitive etiological factors and pathophysiological
mechanisms behind OA remain elusive. There is speculation that OA may result from a disruption in the balance between the
breakdown and synthesis of molecules within the articular chondrocytes, extracellular matrix (ECM), and subchondral bone [7].
Moreover, there is a growing belief that OA may function as an immune-mediated disease, characterized by the activation of immune
complexes, osteoclasts, and a dysregulation of cytokines, which are instrumental in its advancement [8]. Further elucidation of these
aspects is imperative.

Synovitis is a key feature at the earliest stage of OA. Damage to the synovial tissue is an important pathological manifestation of
persistent joint degeneration that accompanies the entire process of OA development [9]. Exploring the pathogenesis and diagnostic
markers of OA in synovial tissue is of great significance for identifying therapeutic targets, alleviating symptoms, and improving the
prognosis of this disease.

The present study examined OA-related transcriptome and single-cell sequencing data from GEO-archived synovial tissue samples.
Our objectives were to identify genes indicative of OA’s initiation, utilize these genes to stratify OA patients, probe the biological and
immunological attributes of these clusters, and delve into the contributions of these genes to both the onset and development of OA.

2. Materials

2.1. Data preparation

We obtained the scRNA-seq dataset GSE152805 [10] along with the chip sequencing datasets GSE12021 [11] and GSE55235 [12]
from the GEO database. The GSE152805 dataset, derived from Homo sapiens, was processed using the GPL20301 Illumina HiSeq 4000
platform. It comprised synovial cells from three knee OA patients, including three normal and six diseased cartilage samples, all
included in this analysis. Similarly, datasets GSE12021 and GSE55235, also from homo sapiens, utilized platforms GPL96 and GPL97
respectively. Specifically, GSE12021 contained 33 synovial tissue samples—13 normal and 20 OA—while GSE55235 included 20
samples, split evenly between healthy individuals and OA patients. All these samples were integrated into our study.

2.2. Screening of DEGs in OA

The R package “limma” [13] facilitated the differential gene analysis between OA and normal samples, enabling the identification
of significant DEGs in GSE12021 and GSE55235. We established thresholds of |log2Fold change (log2FC)| > 1 and P < 0.05. Genes
with log2FC > 1 were deemed upregulated, and those with log2FC ≤ 1 as downregulated. These DEGs were visualized using S-maps
and heatmaps, and their intersections were analyzed to discern common OA-related DEGs (OADEGs). We predicted interactions be-
tween proteins linked to these OADEGs using the STRING database [14], constructing a protein-protein interaction (PPI) network
visualized through Cytoscape.

2.3. Gene set variation analysis (GSVA)

The GSVA [15], an unsupervised, nonparametric method, was employed to convert gene expression data from matrices of indi-
vidual genes to matrices representing specific gene sets. This included performing rank statistic calculations such as the
Kolmogorov-Smirnov test on each gene set. Using the R package “gsva” (V1.42.0), we calculated the GSVA enrichment scores for each
sample across both RNA sequencing datasets.

2.4. Machine learning and screening of characteristic genes in OA

A total of six machine learning algorithms were employed in the analysis, with the GSE12021 dataset serving as the training set and
GSE55235 as the validation set. These algorithms included bagged decision tree [16], Bayesian [17], random forest [18], Wrapper
(Boruta) [19], learning vector quantization (LQV) [20], and the least absolute shrinkage and selection operator (LASSO) [21]. The
LASSO regression, a linear regression variant that introduces a penalty term (lambda× |slope|), was adopted to reduce overfitting and
improve model generalizability. The logistic regression model’s objective function was structured as follows:

min
∫

(α0, α|Xi,Yi + λ‖α‖1)

The penalty coefficient, represented by λ, was chosen using a 10-fold cross validation. The sum of the absolute values of each vector
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element is defined as ||α||1. The regression was performed using the R package “glmnet” with 1000 simulations to identify genes with
an importance greater than 0.2.

The screened genes from the six algorithms were intersected to select characteristic genes, namely Hub-OADEGs, which were
defined as genes that selected by five or more algorithms. The visualization of the Hub-OADEGs was achieved through the R package
“Upset” [22]. An analysis was performed on the Hub-OADEGs in the GSE12021 and GSE55235 datasets using the R package “cowplot.”
The results were visualized through heat maps, scatter plots, and correlation curves. Using the R package “RCircos”, a chromosome
localization map was successfully created [23].

2.5. Construction of risk model for OA

Using a multivariate logistic regression model, we assessed all Hub-OADEGs. The risk-scoring formula was derived from the
regression coefficients of characteristic genes.

riskScore=
∑

i
Coefficient (genei)×mRNA Expression (genei)

A nomographmodel was developed utilizing the R package “rms” [24] to forecast OA onset in patients, based on Hub-OADEGs from
the GSE12021 dataset. Themodel’s precision and resolution were evaluated through a calibration curve from calibration analysis [25].
Diagnostic precision was further assessed by a receiver operating characteristic (ROC) curve using “pROC” [26], with an area under the
curve (AUC) between 0.5 and 1 signifying enhanced diagnostic efficacy. Decision Curve Analysis (DCA) [27] was conducted to
ascertain the model’s predictive accuracy, facilitated by the R package “ggDCA” for generating DCA maps.

2.6. Identification of molecular subtypes of OA

Consistency clustering, a resampling-based method, was applied to delineate sub-classes and confirm clustering robustness [28].
Using the “ConsensusClusterPlus” package [29], we clustered OA samples from GSE12021 into molecular phenotypes according to
Hub-OADEGs. Principal coordinate analysis (PCoA) [30] verified the clustering’s accuracy and robustness. The variances among
clusters were depicted through a box plot crafted with the R package “ggpubr."

2.7. Evaluation of biological characteristics of different molecular phenotypes

Gene Ontology (GO) analysis [31] was used to annotate DEGs among different molecular phenotypes using “ClusterProfiler” [32].
This analysis encompasses biological processes, molecular functions, and cellular components. In addition, the statistical variances in
specific gene sets across two biological states were assessed using single-sample gene set enrichment analysis (ssGSEA) [33].

2.8. CIBERSORT

We utilized the CIBERSORT linear support vector regression tool [34], which allowed us to deconvolute the expression matrix of
human immune cell subtypes. With this tool, we were able to evaluate 22 immune cell types in the GSE12021 dataset. To examine the
infiltration disparities between OA and normal samples, we used the Wilcoxon test, which considered P < 0.05 as statistically
significant.

2.9. SsGSEA immunologic infiltration analysis

Using labeling and the enrichment fraction calculation, the ssGSEA algorithm determined the relative abundance of each type of
immune cell in the samples. As an example, the “ggplot2” program was used to display the pattern of immune cell infiltration across
illness subtypes in the GSE12021 OA dataset [35]. Correlation heatmaps, produced using “pheatmap” [36], depicted the relationships
between key characteristic genes and ICs across different OA risk groups.

2.10. Quality control on single-cell data

We utilized the “Seurat” (version 4.0) R package to import a matrix of nine samples from the single-cell dataset GSE152805 and
subsequently created a Seurat object for our analyses. Quality control measures were enforced by excluding cells expressing fewer than
250 genes and those with over 20 % of unique molecular identifiers linked to mitochondrial or ribosomal genes. Doublet cells were
identified and removed using the “DoubletFinder” function with default settings [37]. We also corrected for batch effects across the
samples using the “Harmony” R package [38].

2.11. Cluster analysis and cell annotation

Post-quality standardization, we reanalyzed the single-cell data from GSE152805 using “Seurat”. The “FindVariableFeatures”
function was employed to isolate the top 2000 genes with significant expression variability. A dimensionality reduction technique
called principal component analysis (PCA) was used on these genes [39]. Different kinds of cells were located by employing the
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“FindNeighbors” and “FindClusters” features. Marker genes for each cluster were established with a cutoff threshold of P < 0.05 and a
fold change greater than 0.5. Eight distinct cell types were annotated based on the literature by Chou CH et al. [10], with markers
identified as: SIF- PRG4, synovial subintimal fibroblasts (SSF)-WISP2, ICs-HLA-DRA, smooth muscle cells (SMC)-RGS5, endothelial
cells (EC)-TM4SF1, T cells-CD3D, mast cells-TPSAB1, and proliferative immune cells (PIC)-BIRC5.

2.12. AUCell scores

We used the “AUCell” R package (version 1.12.0) [40] to compute gene set scores for the GSE152805 dataset, passing in
Hub-OADEGs as an input. These scores estimated the percentage of highly expressed genes per cell by ranking gene expression in each
cell according to AUC values. For these gene sets, a threshold was set using the “AUCell_exploreThreshold” function. Then, to highlight
the clusters’ active characteristic genes, we used AUC scores to color-code the Uniform Manifold Approximation and Projection
(UMAP) that was contained in the clusters.

2.13. Intercellular communication analysis

The “CellChat” (version 1.1.3) R package [41] was used to analyze intercellular communication networks by using the “CellChat”
function to quantitatively analyze the networks from scRNA-seq data. Circle diagrams were drawn to display the cell-interaction
relationship of single-cell subsets in OA, and bubble diagrams were used to count all important receptor pairs during intercellular
signal transduction.

2.14. Cell differentiation of single-cell subsets

Cell differentiation in single-cell subsets was deduced using “Monocle” [42]. We generated an integrated gene expression matrix
from the Seurat object to construct a cell dataset in Monocle. The “VariableFeatures” function identified genes with high variability,
and the “setOrderingFilter”was used to sort cells. Dimensionality was reduced via the “DDRTree”method, and cell arrangements along
developmental trajectories were estimated with “orderCells”. We analyzed the trajectories of differentiation for different disease
phenotypes in the dataset, examining the expression tracks of significant genes before the progression of these phenotypes. Each
trajectory was analyzed following a standardized protocol with default settings.

2.15. QPCR validation of key genes in OA

C28/12 (human normal chondrocytes) were divided into two groups. One group was cultured with lipopolysaccharide (LPS) at 10 μ
g/mL for 12 h to obtain OA samples, while the other group did not add LPS. Two sets of samples were subjected to fluorescence
quantitative PCR detection to determine the relative expression of RNA, with primers as follows:

AGMAT (amplification fragment size 193bp)
AGMAT - F: GACCTTGGGTGGAGATCACAC.
AGMAT - R: CACCACACGCTTACAGTCCAG.
PER1 [127bp].
PER1-F: ACGGGCCGAATCGTCTACA.
PER1-R: TGGAACCATAGAACACTCCCAC.
MAP3K8 [201bp].
MAP3K8-F: CTCCCCAAAAATGGACGTTACC.
MAP3K8-R: GGATTTCCACATCAGATGGCTTA.
XIST [113bp].
XIST-F: TCTAGTCCCCCACCACCCTT.
XIST-R: GGAGGACGTGTCAAGAAGACA.

2.16. Statistical analyses

We used R (version 4.1.1) to process and analyze the data. An independent Student’s t-test was used to examine continuous
variables with normal distributions. The variables that did not follow a normal distribution were evaluated using the Mann-Whitney U
test. Various genes’ correlation coefficients (r) were calculated using Pearson’s correlation analysis. The significance levels for all
bilateral statistical tests were set at P < 0.05.

3. Results

3.1. The workflow of the data process and analysis

The workflow is depicted in Supplementary Fig. S1.
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Fig. 1. Differential gene expression analysis for OA. (A) GSE12021 dataset; comparison of DEGs between OA patients with healthy individuals; red,
high expression in patients with OA; blue, high expression in healthy individuals. (B) Correlation heatmap of DEGs in the GSE12021 dataset; darker
color represents higher correlation. (C) GSE55235 dataset; comparison of the DEGs between patients with OA and healthy individuals, red, high
expression in patients with OA; blue; high expression in healthy individuals. (D) Correlation heatmap of DEGs in the GSE55235 dataset. (E) Venn
plots of DEGs in the GSE12021 and GSE55235 datasets. (F) GO enrichment analysis of DEGs.
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3.2. Screening of OADEGs and their basic biological functions

This analysis explored genetic variances between OA and normal samples employing the GSE12021 and GSE55235 datasets
(Supplementary Table S1). In the GSE12021 dataset, we identified 4415 DEGs, consisting of 291 upregulated and 327 downregulated
DEGs (Fig. 1A and B, Supplementary Table S2). Conversely, the GSE55235 dataset yielded 1596 DEGs, with 484 upregulated and 299
downregulated (Fig. 1C and D, Supplementary Table S3). An intersection of these datasets pinpointed 45 overlapping OADEGs
(Fig. 1E). GO enrichment analysis was performed to define the biological functions of these OADEGs, significantly involving biological
processes such as gastrulation, cell fate commitment, and cell fate determination (Supplementary Table S4); cellular components like
collagen-containing ECM, collagen trimer complexes, and basement membranes (Supplementary Table S5); and molecular functions

Fig. 2. Nomogram model for OA in GSE12021. (A) Nomogram, with the score of the important 7 genes in the middle, and the Total score rep-
resenting the total score obtained by the patient based on the 7 gene score. The total score corresponds to the incidence probability below; (B) The
calibration of the Homer Lemeshow evaluation model; (C) The clinical decision curve of the diagnostic model for OA. The vertical axis represents the
net income, whereas the horizontal axis represents probability threshold or threshold probability; (D) ROC curve of the predictive model for OA
occurrence; (E) ROC curve of PER1 gene expression predicting the onset of OA; (F) ROC curve of XIST gene expression predicting the onset of OA;
(G) ROC curve of AGMAT gene expression predicting the onset of OA; (H) ROC curve of MAP3K8 gene expression in predicting the onset of OA.
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Fig. 3. Immune infiltration analysis conducted with the CIBERSORT algorithm on the GSE12021 dataset. (A) Histogram depicting the proportion of
ICs. (B) Box plot comparing the abundance of immune cell infiltration across OA subtypes. (C) Heatmap illustrating the correlation of immune cell
infiltration abundance, displayed in red and blue gradients. (D) Correlation analysis between the expression level of the PER1 gene and the
infiltration abundance of activated dendritic cells. (E) Correlation analysis linking the expression level of the PER1 gene with CD8T cell infiltration.
(F) Analysis of the correlation between the PER1 gene expression level and the infiltration of activated NK cells. (G) Examination of the correlation
between PER1 gene expression and the infiltration abundance of M2 macrophages.
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such as receptor ligand activity and nuclear localization sequence binding (Supplementary Table S6, Fig. 1F).

3.3. PPI network of OADEGs

A PPI network of the 45 OADEGs was established using the STRING database and visualized with Cytoscape software (Supple-
mentary Fig. S2A). This network comprised 43 nodes and 12 interaction pairs, with node weights calculated using the Cluster-
Coefficient algorithm in the “CytoHubba” Cytoscape plug-in. The results showed that NFKBIA, CXCL12, and TLR7 had the highest
weights and highest correlations with other genes (Supplementary Fig. S2B).

Using the GSE12021 dataset for training and the GSE55235 dataset for validation, this study constructed a diagnostic model for OA.
Using the bagged tree (Supplementary Fig. S3A), Bayesian (Supplementary Fig. S3B), random forest (Supplementary Fig. S3C), Boruta
(Supplementary Fig. S3D), LQV (Supplementary Fig. S3F) and LASSO-logistic (Supplementary Fig. S3E) algorithms, the relationship
between the 45 OADEGs and the incidence of OA in the GSE12021 dataset was analyzed, and the characteristic genes of different
algorithms were intersected (Supplementary Fig. S3G). Four important characteristic genes of OA (Hub-OADEGs) were found to be
closely related to the pathogenesis of OA: AGMAT, MAP3K8, PER1, and XIST.

The GSE12021 dataset was used to create a diagnostic model for OA (Fig. 2A), which was verified across both the training and
validation cohorts. A P-value of 1 in the training set (GSE12021) indicated a minimal risk of Type I error, demonstrating that the
model’s predictions were well-aligned with actual data, meaning that the model’s calibration was tested by the Hosmer-Lemeshow test
(Fig. 2B). DCA assessed the model’s clinical utility in the training set (GSE12021), demonstrating significant clinical value and benefit
(Fig. 2C). Model diagnostics revealed an AUC of 0.962 for the training set (Fig. 2D). The four Hub-OADEGs had excellent diagnostic
ability independent of the onset of OA, with AUC value of PER1 0.888 (Fig. 2E), XIST 0.819 (Fig. 2F), AGMAT 0.850 (Fig. 2G), MAP3K8
0.823 (Fig. 2H).

The Hosmer–Lemeshow dataset showed the same result in GSE55235 as in GSE12021 (Supplementary Fig. S2A) and DCA analysis
(Supplementary Fig. S2B). The C-index of the diagnostic model constructed in this study in the training set (GSE12021) and the
validation set (GSE55235) is 0.99 and 1, respectively (Supplementary Fig. S2C). We also verified the diagnostic ability of the four Hub-
OADEGs in diagnosing the onset of OA in the validation set (GSE55235). The results showed that the AUC values of AGMAT (Sup-
plementary Fig. S2D), MAP3K8 (Supplementary Fig. S2E), PER1 (Supplementary Fig. S2F), and XIST (Supplementary Fig. S2G) were
0.890, 0.980, 1, and 0.815, respectively, indicating that all four genes had excellent diagnostic ability.

3.4. Correlation between the Hub-OADEGs

In the GSE12021 dataset, correlation coefficients were recorded as 0.39 between PER1 and MAP3K8, -0.59 between XIST and
MAP3K8, and 0.42 between XIST and AGMAT (Supplementary Fig. S5A). For the validation set GSE55235, the coefficients were 0.69
for PER1 andMAP3K8, -0.73 for XIST andMAP3K8, and -0.77 for MAP3K8 and AGMAT (Supplementary Fig. S5B). The positions of the
four hub genes on human chromosomes are described with a circle map in (Supplementary Fig. S5C), in which MAP3K8 is located on
chromosome 10, PER1 is located on chromosome 17, XIST is located on chromosome X, and AGMAT is located on chromosome 1.

Clusters A and B were identified using a consistent clustering method based on the four Hub-OADEGs. Supplementary Fig. S6A
shows the grouping results. Supplementary Fig. S6B shows the consistency index for the different categories. As shown in the figure,
the rising slope dropped the lowest when the samples were divided into two categories, indicating that the two categories are more
reasonable. Supplementary Fig. S6C is a gravel map for the best classification parameters. To demonstrate the stability of the consistent
clustering, we validated the two subtypes of OA samples based on the GSE12021 dataset using PCoA, which showed relatively high
stability (Supplementary Fig. S6D).

Analysis of differential gene expression between Clusters A and B revealed 3560 genes, with 508 genes upregulated in Cluster A and
869 in Cluster B (Supplementary Fig. S6E). GO enrichment analysis demonstrated that Cluster A predominantly featured enrichment in
biological processes such as regulation of protein aggregation and oxidative phosphorylation, cellular components including tertiary
granule, and molecular functions like NADH dehydrogenase (ubiquinone) activity (Supplementary Table S7, Supplementary Fig. S6F).

3.5. Differences in immune characteristics between subtypes of OA

Utilizing the GSE12021 dataset, we assessed 22 types of immune cell infiltrations across the two OA subtypes through CIBERSORT
analysis (Fig. 3A). The results indicated significantly elevated levels of immature CD8T cells, CD8T cells, regulatory T cells, and resting
dendritic cells in Cluster A. In contrast, Cluster B showed higher quantities of naive CD4 T cells, memory CD4 T cells, activated
dendritic cells, and resting mast cells (Fig. 3B). The thermograph displaying these findings is shown in Fig. 3C. Further correlation
analysis linked the Hub-OADEGs with various immune cell types; notably, PER1 was negatively correlated with activated dendritic
cells (r= − 0.74, p< 0.001) (Fig. 3D) and positively correlated with CD8T cells (r= 0.77, p< 0.001) (Fig. 3E) and activated NK cells (r
= 0.76, p < 0.001) (Fig. 3F). Additionally, a negative correlation existed between PER1 and M2 macrophage content (r = − 0.74, p <

0.001) (Fig. 3G).
Results showed that Cluster A had more activated CD8 T cells, central memory CD8 T cells, effector memory CD4 T cells, and

effector memory CD8 T cells than Cluster B (P< 0.05) (Supplementary Fig. S7A), when comparing the levels of immune cell infiltration
between the two OA subtypes. Significant associations were found between the content of ICs and all four Hub-OADEGs (P < 0.05)
(Supplementary Fig. S7B).
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Fig. 4. scRNA-seq revealed the complexity of OA. (A) Based on the single cell dataset (GSE152805), cells were clustered into 10 clusters through
UMAP. (B) Six cell types were annotated through singleR and sample sources. (C) The UMAP diagram shows the distribution of 9 samples. (D) The
bar chart displays the proportion of each cell type in 9 samples. (E) The heat map displays the expression of genes specifically expressed for each cell
type in the cell, with circle size representing the average expression value of characteristic genes.
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Fig. 5. Heterogeneity analysis for OA in GSE152805. (A) Analysis of differences in cell subpopulations related to different OA; red, high expression
genes in this cell subpopulation; blue, low expression genes in this cell subpopulation; (B) Comparing the DEGs of patients with OA in healthy
samples; (C) GO enrichment analysis of highly expressed genes in OA; (D) Analysis of differences in GO enrichment scores related to OA. GO,
Gene Ontology.
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3.6. Interaction network of mRNA-miRNA or mRNA-TF for Hub-OADEGs

Networks for mRNA-miRNA and mRNA-TF were established based on the four Hub-OADEGs. The mRNA-TF network encompassed
198 interactions involving 156 TFs, with MAP4K8 and PER1 engaging with 79 and 58 TFs, respectively (Supplementary Fig. S8A). The
network of mRNA-miRNA included 192 interactions with 188 miRNAs, where PER1 was linked to 111 miRNAs and AGMAT to 64
miRNAs (Supplementary Fig. S8B).

3.7. Quality control of single-cell data using seurat

Using the Seurat R package (version 4.0.2), we created objects for additional analysis by importing a count matrix for nine samples
from the single-cell dataset. Following initial quality control by Cell Ranger, we conducted further quality assessment, retaining cells
with over 250 genes, more than 500 UMIs, and a log10GenesPerUMI above 0.8, mitochondrial UMI ratio below 20 %, and red blood
cell gene ratio below 5 % as high-quality cells. The “DoubletFinder” R package was used to eliminate doublets, resulting in 35,737
cells. The “NormalizeData” function with the “LogNormalize” method standardized the sequencing depth for dataset GSE152805. We
utilized the “vst” method to identify 2000 variable features by activating the “FindVariableFeatures” function. To reduce the effect of
sequencing depth, the data was scaled using the “ScaleData” function. The ElbowPlot function was used by PCA to identify important
principal components. The top 20 components were then selected for Uniform Manifold Approximation and Projection based on their
statistical significance. The variables’ genes were used as inputs.

3.8. Cluster analysis and cell type annotation of single-cell data

After rigorous quality control, 35,737 cells from the single-cell OA dataset were successfully categorized into ten distinct clusters
using UMAP for dimensionality reduction and visualization (Fig. 4A). Cells were annotated into eight cell types as shown in (Fig. 4B):
Cluster 3 and Cluster 10 were annotated as SIFs (5032,36.93%); Clusters 7 and 19 were annotated as B cells (2109, 5.37%); Clusters 10
and 21 were annotated as EC (1306, 3.33 %); Clusters 4 and 8 were annotated as SSF (5966, 43.78 %); Cluster 11 was annotated as ICs
(1307, 9.59 %); Cluster 12 was annotated as SMC (465,3.41 %); Cluster 13 was annotated as EC (449, 3.29 %); Cluster 14 was an-
notated as T cells (169, 1.24%); Cluster 16 was annotated as mast cells (122, 0.90%); Cluster 17 was annotated as ProIC (117, 0.86 %).
Fig. 4C shows the distribution of cell subtypes across the samples. The proportion of each cell type per sample was determined; SIFs
constituted a significant proportion in each sample (Fig. 4D). Key marker genes for the various cell types, identified through the
Cellmarker database and publications by Chou et al. [7] are displayed in the form of dot graphs: SIF (PRG4), (WISP2), ICs (HLA-DRA),
SMC (RGS5), EC (TM4SF1), T cells (CD3D), mast cells (TPSAB1), and ProIC (BIRC5) (Fig. 4E).

Fig. 6. Hub OA-related gene score in GSE152805. (A) Score of four important OA characteristic genes: AGMAT, MAP3K8, PER1, and XIST. 6220
cells exceed the threshold of 0.07. (B) UMAP is plotted based on the scores of four important OA characteristic genes, namely AGMAT, MAP3K8,
PER1, and XIST, for each cell; (C) Area under curve (AUC) box plot of the scores of four important OA characteristic genes, AGMAT, MAP3K8, PER1,
and XIST, in different cell subtypes.
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3.9. Heterogeneity analysis of cell subsets in OA

We analyzed the differential genes among various subsets of patients with OA in the GSE152805 data set using the “Findallmarkers”
function, the results of which showed that genes PRG4 and HTRA1 were overexpressed, HLA-DRB1 and CCL3 low-expressed in SIF;
Genes MMP2 and WISP2 were overexpressed, whereas HLA-DRA and CCL3 were low-expressed in SSF; HLA-DRA and CCL3 were

Fig. 7. Monocle analysis in GSE152805. (A) Pseudo time series analysis (time process); (B) Quasi temporal analysis (different disease processes); (C)
The expression levels of MAP3K8 and XIST in the quasi temporal process; (D) Changes in the expression levels of MAP3K8 and XIST over time; (E)
The enrichment differences of the cartilage development pathway in different disease types of OA and Health groups; Green color represents OA;
Red color represents Health. (F). The relationship between MAP3K8 expression level and cartilage development pathway score; (G) Enrichment
differences of the articular cartilage development pathway in different disease types of OA and normal samples; Geen color represents OA; Red color
represents Health. (H). The relationship between MAP3K8 expression level and articular cartilage development pathway score; OA, osteoarthritis.
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overexpressed, where CLU and DCN were low-expressed in ICs; ACTA2 and RGS5 were overexpressed, whereas CLU and COMP were
low-expressed in SMC; TM4SF1 and SELE were overexpressed, whereas PLA2G2A and DCN were low-expressed in EC; CXCR4 and
CD52 were overexpressed, whereas CLU and C2orf40 were low-expressed in T cells; CPA3 and CD69 were overexpressed, whereas
CHI3L2 and ASPN were low-expressed in mast cells; PTTG1 and STMN1 were overexpressed, whereas CFD and WISP2 were low-
expressed in ProIC (Fig. 5A, Supplementary Table S8). We analyzed the heterogeneity between OA and healthy samples from a
single-cell perspective in the GSE12021 dataset and found that TIMP1, COL3A1, MSMP, and IL11 were highly expressed in OA samples
(Fig. 5B). The GO enrichment analysis showed that the ECM pathway (Fig. 5C) was highly enriched in OA, whereas pathways such as
detoxification of copper ion and stress response to copper ion were also activated in patients with OA (Fig. 5D).

3.10. Expression score of Hub-OADEGs in OA cell subsets

To explore autophagic expression in OA patients, we utilized the “AUCell” R package to analyze the functional activity and high
expression gene proportion in each cell using four key Hub-OADEGs. This analysis revealed two prominent AUC peaks; by applying a
threshold of 0.07, we observed that 6220 cells displayed relatively elevated AUC values (Fig. 6A). These cells were mainly distributed
in synovial membrane fibroblasts and ICs (Fig. 6B). Compared with subsynovial fibroblasts, AGMAT, MAP3K8, PER1, and XIST were
mainly highly expressed in synovial fibroblasts (Fig. 6C, P < 0.001).

3.11. Mesocellular evolution and pseudotemporal analysis of OA cells

In this study, a pseudotemporal analysis was conducted using the GSE152805 dataset to construct developmental trajectory maps
of healthy samples (health), medial tibial (MT), platform cartilage damage (OAMT), and lateral tibial (oLT) platform cartilage damage
(OA OIT) in pseudotime. We colored the pseudo-time series diagram from two aspects: the pseudo-time process (Fig. 7A) and sample
phenotype (Fig. 7B). We found that the pseudo-time trajectory developed from a healthy phenotype along the medial tibial (MT)
plateau cartilage injury (OA MT) to the lateral tibial (oLT) plateau cartilage injury (OA oIT). Next, we analyzed the relationships
between four genes (AGMAT, MAP3K8, PER1, and XIST) and OA progression. Comparative analyses demonstrated that MAP3K8
expression was significantly higher in healthy versus OA-affected samples (Fig. 7C, top), and this expression decreased progressively as
OA progressed (Fig. 7D, bottom). In a similar pattern, XIST expression was also higher in healthy samples than in those affected by OA
(Fig. 7C, bottom). As OA progressed, XIST expression gradually decreased (Fig. 7D). Next, when comparing healthy samples with OA
samples, cartilage development was highly enriched in both synovial and subsynovial fibroblasts (P < 0.001, Fig. 7E). Articular
cartilage development was highly enriched in OA samples, both in synovial and subsynovial fibroblasts (P< 0.001, Fig. 7G). There was
a significant negative correlation between MAP3K8 expression and both general cartilage (r= − 0.37, P< 0.001, Fig. 7F) and articular

Fig. 8. qRT-PCR results show that the expression levels of key genes in OA cells and normal cartilage tissue cells （A）AGMAT was significantly
reduced(P < 0.05)（B）The total expression of MAP3K8 was significantly increased in OA cells (P < 0.05) (C)PER1was significantly reduced(P <

0.05) (D)XIST was no significant expression differences in cells.
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cartilage development (r = − 0.33, P < 0.001, Fig. 7H).

3.12. Analysis of communication between different cell types

Utilizing “CellChat” for quantitative and visual analysis of cellular communication among eight cell types, we mapped the inter-
action intensity and frequency using heat maps and circular charts (Supplementary Figs. S9A and S9B). Notably, interactions between
ProIC and cell types such as SMC and EC were markedly intense. Through an in-depth analysis of the cell-cell communication network,
we pinpointed the collagen and FN1 pathways as the foremost influences on the reception and emission signals of SIF in synovial
fibroblasts, respectively (Supplementary Fig. S9C). Therefore, we used a bubble diagram to illustrate the cellular communication
received (Supplementary Fig. S9D) or emitted by SIFs via the collagen and FN1 pathways. Among the cellular communications
received by SIF, the number of fibroblasts communicating through the collagen pathway is the highest, and they communicated with
CD44 receptor ligands through COL6A2. Among the communications emitted by SIF, they mainly communicate with each other
through FN1 and CD44 receptor ligand pairs.

3.13. Laboratory validation of key genes in OA

We utilized the qPCR technique to assess the relative expression of pivotal genes in OA cells compared to normal cartilage tissue
cells (Fig. 8A–D). Expression of MAP3K8 markedly escalated in OA cells (P < 0.05), whereas levels of AGMAT/PER1 substantially
declined (P < 0.05).

4. Discussion

OA is a widespread joint disorder predominantly affecting the knees, severely impairing quality of life and potentially resulting in
disability [43]. Owing to the lack of effective interventions to prevent or reverse its progression, individuals with advanced disease
frequently necessitate joint replacement surgery [44]. Therefore, identifying characteristic biological diagnostic markers is crucial for
early diagnosis of the disease as well as for understanding its pathogenesis. Synovial tissue is the connective tissue membrane of bones
and joints that nourishes, maintains, and protects the normal function of joints, together with the synovial fluid. Synovitis is a key
factor in the initiation and pathological processes of OA and leads to pain and clinical symptoms [45]. Therefore, genetic research on
synovial tissue samples is important for exploring the pathogenesis of OA.

In our study, aiming to pinpoint genes for the early detection of OA, we evaluated synovial tissue samples from two datasets,
GSE12021 and GSE55235, encompassing 53 samples (30 OA and 23 normal). This analysis led to the identification of 45 DEGs linked
to OA onset. We applied six machine-learning algorithms to perform dimensionality reduction on the 45 DEGs mentioned above. By
obtaining the intersection of the results of the six algorithms, we identified four Hub-OADEGs: AGMAT, MAP3K8, PER1, and XIST.
Diagnostic analysis found that in both the training and validation sets, these four genes had high diagnostic value and could inde-
pendently predict OA, serving as molecular markers for the early diagnosis of OA. We also validated the expression of the four genes in
cell experiment, which showed difference in OA comparing to control, except XIST. That could be a performance bias due to the small
sample of our cell experiment.

Yang et al. [46] uncovered the circRSU1-miR-93-5p-MAP3K8 axis, a regulator of OA progression via oxidative stress modulation,
posing as a viable target for OA treatment. In parallel, Kanbe et al. [47] reported that circadian genes such as Per1 and Per 2 exhibit
differential expression in chondrocytes, significantly influencing their metabolic rhythm in OA contexts. These findings emphasize the
critical role of these four genes in OA, marking their diagnostic relevance as a novel discovery in our study.

To delve deeper into the role of four pivotal Hub-OADEGs in OA progression, we applied an unsupervised clustering approach to
organize 33 synovial tissue samples into two groups (Cluster A and Cluster B) based on these genetic markers. Examination of
functional enrichment within these clusters indicated that Cluster A was primarily associated with biological processes like protein
catabolism and the regulation of oxidative phosphorylation, as well as with respiratory chain complexes. It also showed enrichment in
cellular components such as the inner mitochondrial membrane protein complex and tertiary granules, along with enzymatic functions
including NADH dehydrogenase (ubiquinone), oxidoreductase, and NADH dehydrogenase (quinone) activities acting on NAD(P)H.
Therefore, we speculate that Clusters A and B represent two different stages of OA development. Patients in Cluster A were in the early
stage of OA, whereas those in Cluster B were in the intermediate or later stages. In the initial stages, OA is characterized by the
progressive degradation and destruction of cartilage tissue [48], with inflammatory responses heightening the activity of proteolytic
enzymes that expedite the breakdown of cartilage cells’ ECM. These characteristics are consistent with the biological functions
prevalent in Cluster A.

Immune mechanisms play a vital role in both the initiation and progression of OA. Our comparative analysis of immune profiles
between the clusters showed that Cluster A exhibited enhanced levels of innate immune responses, including higher numbers of
neutrophils, activated NK cells, resting dendritic cells, and naive B cells, which are indicative of early immune activity in OA pro-
gression. The primary pathological alterations in the OA synovium are driven largely by a mix of inflammatory and anti-inflammatory
cytokines. During this stage, the innate immune system takes charge as the first line of defense against pathogens. It helps eliminate
damaged and aging cells and coordinates the activation and control of targeted immune responses [49]. The innate immune system is
mainly regulated by a barrier composed of monocyte macrophages, natural killer cells, T lymphocytes, complement cells, and a series
of cytokines that are involved in local inflammatory reactions and tissue repair. In later stages of OA, as depicted by Cluster B, the
immune landscape is dominated by the activation of dendritic cells, M2 type macrophages, and resting mast cells, which contribute to
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the autoimmune aspects of OA. During this phase, the body releases inflammatory chemicals that disrupt immunological homeostasis
and speed up the breakdown of connective tissues including bone and cartilage [50]. Cluster B’s higher concentrations of CD4 naïve
and CD4 memory resting T cells suggest an active adaptive immune response. This response is marked by the permeabilization of the
ECM immune barrier and the presentation of surface antigens specific to chondrocytes, which in turn activate related T cells within the
immune repertoire. During this phase, T cells emit lymphokines to neutralize antigens, which concurrently inflicts damage and in-
tensifies OA progression [47]. These observations corroborate the aforementioned insights.

ssGSEA identified disparities in the distribution of ICs between Clusters A and B, noting particularly that γδ T cells were less
abundant in Cluster A than in Cluster B. Recent research suggests that γδ T cells play roles in age-related conditions, such as OA [51,
52]. Faust et al. [53] noted that these cells are crucial for IL-17 production, which is linked to the senescence-related response to injury
in OA. Further research has confirmed diminished levels of γδ T cells in individuals with OA [54]. We speculate that the role of T cells
varies at different stages of OA. The complicated mechanism of γδ T cells in OA progression requires further exploration. We attempted
to identify evidence from the PPI protein network and found that the four genes interacted with 188 miRNAs and 156 TFs. All four
genes are important genes that affect OA. Among these, MAP3K8 and PER1 were the most strongly associated with other small
molecules.

We further analyzed cell typing using a scRNA-seq dataset and found that OA cells could be clustered into eight cell types, with the
highest proportion being SIF and SSF. In Wang X et al.’s study [55], single-cell analysis was also used to analyze the cell distribution of
cartilage tissue in healthy individuals. It was found that chondrocytes such as fibrochondrocytes and regulatory chondrocytes
accounted for the vast proportion of cells. In our study, we did not find any clustering of chondrocytes, which might be related to our
study of synovial tissue, where there were fewer chondrocytes but a higher proportion of SIF and SSF. Synovial fibroblasts, essential for
normal joint function, are key in the initiation and progression of OA. When activated, these cells secrete cytokines, chemokines, and
enzymes that degrade the matrix, thus promoting inflammatory cell recruitment, expediting the breakdown of the cartilage matrix,
and ultimately leading to the destruction of joint cartilage and bone [56]. The cell evolution and pseudo-temporal analyses in this
research found a marked enhancement in cartilage development processes in both SIF and SSF, consistent with earlier studies.

Enrichment analyses of cellular pathways revealed the activation of “Detoxification of copper ion” and “Stress response to copper
ion” in OA patients, indicating a potential role for copper ion metabolism in the progression of OA. Research examining levels of five
metal ions in the blood of OA patients showed that high copper ion concentrations were associated with a greater likelihood of
developing OA, aligning with our observations [57]. Yet, further research is needed to elucidate the specific pathways involved.

We also found that the four Hub-OADEGs were abnormally expressed in SIF, which implied that the four genes might be involved in
the differentiation of cells. Our pseudo-temporal series analysis further demonstrated that the four Hub-OADEGs are intimately linked
with the progression of OA. As the disease progressed, their expression levels exhibited either an increase or a decrease. In addition, we
confirmed the crucial involvement of these genes in OA formation by finding a negative association between MAP3K8 expression and
the “cartilage development” pathway.

We also validated the expression of the four genes in cell experiment, which showed the same expression trends as the bioinfor-
matics except XIST. That could be a performance bias due to the small sample of our cell experiment, or differences in experimental
conditions. Nevertheless, the validation of AGMAT, MAP3K8, PER demonstrated that these genes are involved in the progress of OA
and might become treatment targets.

The novelty of this study is reflected in the following aspects. To our knowledge, this study marks the inaugural application of the
CIBERSORT and ssGSEA algorithms to systematically examine differences in immune cell infiltration among various OA subtypes,
thereby shedding light on the immunological mechanisms underlying OA. We identified four key hub genes that were significantly
associated with OA (Hub-OADEGs: AGMAT, MAP3K8, PER1, and XIST) and investigated their expression patterns and potential
functions in various ICs. By integrating scRNA-seq data, we provided detailed annotation and analysis of different cell types in patients
with OA, revealing the high heterogeneity and complexity of OA cells. Furthermore, using CellChat, we analyzed intercellular
communication and explored the crucial role of synovial fibroblasts in OA progression. These findings offer new perspectives for the
targeted therapy of OA. The study faces a number of limitations. The modest sample size could undermine the statistical robustness of
the results. Additionally, reliance on publicly available data sources introduces risks related to sample heterogeneity and potential
biases in the data. The analysis of immune cell infiltration using the CIBERSORT and ssGSEA algorithms also carries inherent as-
sumptions and constraints, necessitating further validation with larger, independent datasets. Moreover, the bioinformatics outcomes
of this research require additional experimental work to confirm the roles of the identified hub genes and their impact on immune cell
infiltration within OA contexts.

Future studies should focus on several key areas. It is imperative to increase the sample size to strengthen the statistical validity and
applicability of the results. Experimental studies are crucial to ascertain the precise functions of the hub genes and ICs identified as
significant in OA. Moreover, in-depth exploration of the regulatory mechanisms of these hub genes and their dynamic changes during
OA progression is warranted. Utilizing more advanced single-cell sequencing technologies to investigate cell communication and
signaling pathway changes at different stages of OA, reveal the underlying pathophysiological mechanisms. In conclusion, this study
introduces a new perspective on the immunological aspects of OA, and it is expected that subsequent detailed investigations will
enhance the guidance available for clinical diagnosis and treatment.

5. Conclusions

AGMAT, MAP3K8, PER1, and XIST could serve as early molecular diagnostic markers for OA, and these four genes could inde-
pendently and accurately predict the occurrence of OA. Based on these four genes, which play regulatory roles in the differentiation of
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the subtypes, OA samples can be clustered into different subtypes, Moreover, these four genes are closely associated with the pro-
gression of OA.

Ethics approval and consent to participate

Not applicable.

Consent for publication

Not applicable.

Funding

This work was supported by the National Natural Science Foundation of China [grant number: 82072472].

Data availability statement

The datasets used during the present study are available from the corresponding author on reasonable request.

CRediT authorship contribution statement

Enming Yu: Writing – original draft, Visualization, Validation, Methodology, Formal analysis, Data curation, Conceptualization.
Mingshu Zhang: Visualization, Validation, Software, Resources, Methodology, Investigation. Chunyang Xi: Visualization, Valida-
tion, Methodology, Formal analysis, Data curation. Jinglong Yan: Writing – review & editing, Supervision, Resources, Project
administration, Funding acquisition, Conceptualization.

Declaration of competing interest

The authors declare that they have no known competing financial interests or personal relationships that could have appeared to
influence the work reported in this paper.

Appendix A. Supplementary data

Supplementary data to this article can be found online at https://doi.org/10.1016/j.heliyon.2024.e37047.

References

[1] B. Abramoff, F.E. Caldera, Osteoarthritis: pathology, diagnosis, and treatment options, Med. Clin. 104 (2) (2020) 293–311, https://doi.org/10.1016/j.
mcna.2019.10.007.

[2] A. Colletti, A.F.G. Cicero, Nutraceutical approach to chronic osteoarthritis: from molecular research to clinical evidence, Int. J. Mol. Sci. 22 (23) (2021) 12920,
https://doi.org/10.3390/ijms222312920. Published 2021 Nov 29.

[3] H. Long, Q. Liu, H. Yin, et al., Prevalence trends of site-specific osteoarthritis from 1990 to 2019: findings from the global burden of disease study 2019, Arthritis
Rheumatol. 74 (7) (2022) 1172–1183, https://doi.org/10.1002/art.42089.

[4] S.L. Kolasinski, T. Neogi, M.C. Hochberg, et al., 2019 American College of rheumatology/arthritis foundation guideline for the management of osteoarthritis of
the hand, hip, and knee [published correction appears in arthritis care res (hoboken). 2021;73(5):764], Arthritis Care Res. 72 (2) (2020) 149–162, https://doi.
org/10.1002/acr.24131.

[5] Z.W. Sun, M.Y. Yan, J.J. Wang, et al., Single-cell RNA sequencing reveals different chondrocyte states in femoral cartilage between osteoarthritis and healthy
individuals, Front. Immunol. 15 (2024) 1407679, https://doi.org/10.3389/fimmu.2024.1407679.

[6] K.B. Hu, Y.H. Ou, L.Y. Xiao, et al., Identification and construction of a disulfidptosis-mediated diagnostic model and associated immune microenvironment of
osteoarthritis from the perspective of PPPM, J. Inflamm. Res. 17 (2024) 3753–3770, https://doi.org/10.2147/JIR.S462179.

[7] M. Geyer, C. Schönfeld, Novel insights into the pathogenesis of osteoarthritis, Curr. Rheumatol. Rev. 14 (2) (2018) 98–107, https://doi.org/10.2174/
1573397113666170807122312.
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